Hexavalent half-arc-transitive graphs of order $4p$

Xiuyun Wang, Yan-Quan Feng
Department of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China

A R T I C L E I N F O
Article history:
Received 5 July 2008
Accepted 20 November 2008
Available online 13 January 2009

A B S T R A C T
A graph is half-arc-transitive if its automorphism group acts transitively on its vertex set and edge set, but not arc set. It was shown by [Y.-Q. Feng, K.S. Wang, C.X. Zhou, Tetravalent half-arc-transitive graphs of order $4p$, European J. Combin. 28 (2007) 726–733] that all tetravalent half-arc-transitive graphs of order $4p$ for a prime p are non-Cayley and such graphs exist if and only if $p - 1$ is divisible by 8. In this paper, it is proved that each hexavalent half-arc-transitive graph of order $4p$ is a Cayley graph and such a graph exists if and only if $p - 1$ is divisible by 12, which is unique for a given order. This result contributes to the classification of half-arc-transitive graphs of order $4p$ of general valencies.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout this paper graphs are assumed to be finite, simple and undirected, but with an implicit orientation of the edges when appropriate. For a graph X, let $V(X)$, $E(X)$, $A(X)$ and $\text{Aut}(X)$ be the vertex set, the edge set, the arc set and the automorphism group of X, respectively. Let D_{2n} be the dihedral group of order $2n$, and \mathbb{Z}_n the cyclic group of order n as well as the ring of integers modulo n. Denote by \mathbb{Z}_n^* the multiplicative group of \mathbb{Z}_n consisting of numbers coprime to n, and for a prime p, denote by \mathbb{Z}_p^m the elementary abelian group $\mathbb{Z}_p \times \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p$ (m times). For a finite group G and a subset S of G such that $1 \not\in S$ and $S = S^{-1}$, the Cayley graph $\text{Cay}(G, S)$ on G with respect to S is defined to have vertex set G and edge set $\{(g, sg) \mid g \in G, s \in S\}$. A graph X is isomorphic to a Cayley graph on G if and only if its automorphism group $\text{Aut}(X)$ has a subgroup isomorphic to G, acting regularly on vertices (see [1, Lemma 16.3]).

A graph X is said to be vertex-transitive, edge-transitive or arc-transitive if $\text{Aut}(X)$ acts transitively on $V(X)$, $E(X)$, or $A(X)$, respectively. A graph is said to be half-arc-transitive provided that it is vertex-transitive and edge-transitive, but not arc-transitive. More generally, by a half-arc-transitive action of
a subgroup G of $\text{Aut}(X)$ on a graph X we shall mean a vertex-transitive and edge-transitive, but not arc-transitive action of G on X. In this case, we shall say that the graph X is G-half-arc-transitive.

The investigation of half-arc-transitive graphs was initiated by Tutte [2] and he proved that a vertex- and edge-transitive graph with odd valency must be arc-transitive. In 1970 Bouwer [3] constructed a $2k$-valent half-arc-transitive graph for every $k \geq 2$ and later more such graphs were constructed (see [4–10]). Let p be a prime. It is well known that there are no half-arc-transitive graphs of order p or p^2 [11], and by Cheng and Oxley [12], there are no half-arc-transitive graphs of order $2p$. Alspach and Xu [4] classified half-arc-transitive graphs of order $3p$ and Wang [10] classified half-arc-transitive graphs of order $4p$ and p^2 [11].

Proposition 2.3

Let X be a graph. Then X is half-arc-transitive if and only if X is both vertex-transitive and edge-transitive, but not arc-transitive.

Proposition 2.4

Let X be a graph. Then X is half-arc-transitive if and only if X is both vertex-transitive and edge-transitive, but not arc-transitive.

Proposition 2.5

Let X be a graph. Then X is half-arc-transitive if and only if X is both vertex-transitive and edge-transitive, but not arc-transitive.

Proposition 2.6

Let X be a graph. Then X is half-arc-transitive if and only if X is both vertex-transitive and edge-transitive, but not arc-transitive.

Proposition 2.7

Let X be a graph. Then X is half-arc-transitive if and only if X is both vertex-transitive and edge-transitive, but not arc-transitive.

Proposition 2.8

Let X be a graph. Then X is half-arc-transitive if and only if X is both vertex-transitive and edge-transitive, but not arc-transitive.

Proposition 2.9

Let X be a graph. Then X is half-arc-transitive if and only if X is both vertex-transitive and edge-transitive, but not arc-transitive.

Proposition 2.10

Let X be a graph. Then X is half-arc-transitive if and only if X is both vertex-transitive and edge-transitive, but not arc-transitive.

Proposition 2.11

Let X be a graph. Then X is half-arc-transitive if and only if X is both vertex-transitive and edge-transitive, but not arc-transitive.
Let D be a symmetric (v, k, λ)-design and denote by V and V' the sets of points and blocks of D, respectively. The incidence graph $B(D)$ of D has vertex set $V \cup V'$ and edge set $\{xy \mid x \in V, y \in V', x \neq y\}$, and the graph $B'(D)$ is the incidence graph of the complementary design of D. Thus $B'(D)$ has vertex set $V \cup V'$ and edge set $\{xy \mid x \in V, y \in V', x \neq y\}$. Denote by $H(11)$ the unique symmetric $(11, 5, 2)$-design. Let $n > 2$ be an integer. The symmetric design $PG(n - 1, q)$ has as its point and blocks the points and hyperplanes, respectively, of the $(n - 1)$-dimensional projective space over $GF(q)$ with the incidence relation being determined by inclusion. The following proposition can be extracted from Theorem 2.4 and Table 1 in [12].

Proposition 2.5. Let X be a connected edge-transitive graph of order $2p$, where p is a prime. Then X is symmetric. Assume $p \geq 7$. If X has valency 3 then one of the following holds:

1. $X \cong G(2 \cdot 7, 3)$, the Heawood graph of order 14, and $\text{Aut}(G(2 \cdot 7, 3)) \cong \text{PGL}(2, 7)$;
2. $X \cong G(2p, 3)$, $p \geq 13$ and 3 \mid (p - 1)$, with $\text{Aut}(G(2p, 3)) \cong (\mathbb{Z}_p \times \mathbb{Z}_3) \times \mathbb{Z}_2$.

If X has valency 6 then one of the following holds:

3. $X \cong B(\text{PG}(2, 5))$, $p = 31$ and $\text{Aut}(B(\text{PG}(2, 5))) \cong P^1GL(3, 5) \rtimes \mathbb{Z}_2$;
4. $X \cong B'(H(11))$, $p = 11$ and $\text{Aut}(B'(H(11))) = \text{PSL}(2, 11) \rtimes \mathbb{Z}_2$;
5. $X \cong G(2p, 6)$ and 6 \mid (p - 1)$, with $\text{Aut}(G(2 \cdot 7, 6)) \cong S_7 \rtimes \mathbb{Z}_2$ and $\text{Aut}(G(2p, 6)) \cong (\mathbb{Z}_p \times \mathbb{Z}_6) \times \mathbb{Z}_2$ for $p \geq 13$.

Let G act transitively on a set Ω. Then G induces an action on $\Omega \times \Omega$ defined by $(x, y)^g = (x^g, y^g)$ for $(x, y) \in \Omega \times \Omega$ and $g \in G$. The orbits of G on $\Omega \times \Omega$ are called **orbits** of G. The orbital $\Delta = \{(x, x) \mid x \in \Omega\}$ of G is trivial and all other orbits of G in $(\Omega \times \Omega) \setminus \Delta$ are nontrivial. Let Θ be a nontrivial orbital of G. The pair (Θ, Θ) is a directed graph with vertex set Ω and directed edge set Θ, called the **orbital digraph** of G relative to Θ. For any orbital Θ of G, it is easy to show that $\Theta^* = \{ (\alpha, \beta) \mid (\beta, \alpha) \in \Theta \}$ is also an orbital of G, called the **paired orbital** of Θ, and Θ is said to be self-paired if $\Theta^* = \Theta$. Clearly, if Θ is a non-self-paired orbital then the underlying graph of (Θ, Θ) is G-arc-transitive. Conversely, if X is a half-arc-transitive graph then X is an underlying graph of an orbital digraph $(V(X), \Theta)$ of $\text{Aut}(X)$ for some non-self-paired orbital Θ. In this case, $\text{Aut}(X)$ is a subgroup of the automorphism group of the digraph $(V(X), \Theta)$. Thus, we have the following proposition.

Proposition 2.6. Let X be a connected half-arc-transitive graphs of valency $2n$. Let $A = \text{Aut}(X)$ and let A_u be the stabilizer of $u \in V(X)$ in A. Then each prime divisor of $|A_u|$ is a divisor of $n!$. In particular, if X has valency 6 then A_u is a $[2, 3]$-group.

The following proposition is due to Burnside.

Proposition 2.7 ([25, Theorem 8.5.3]). Let p and q be primes and let m and n be non-negative integers. Then, any group of order $p^m q^n$ is solvable.

3. Main result

In this section we classify hexavalent half-arc-transitive graphs of order $4p$. First we introduce some examples of half-arc-transitive graphs. Let p be a prime such that $p - 1$ is divisible by 12, and let $G = \langle a, b \mid a^p = b^4 = 1, b^{-1}ab = a^r \rangle$ with $r^2 = -1 \mod p$. Note that r is an element of order 4 in \mathbb{Z}_p^* and the group G is independent of the choice of r. Since \mathbb{Z}_p^* is cyclic, there are exactly two elements of order 6 in \mathbb{Z}_p^*, say ε and ε^{-1}. Define

$${\mathcal{C}}(4p) := \text{Cay}(G, \{b, b^{-1}, ab, (ab)^{-1}, a^\varepsilon b, (a^\varepsilon b)^{-1}\}).$$

Let α be the automorphism of G induced by $a \mapsto a^\varepsilon$ and $b \mapsto b$. It is easy to show that α is an isomorphism from the Cayley graph $\text{Cay}(G, \{b, b^{-1}, ab, (ab)^{-1}, a^\varepsilon b, (a^\varepsilon b)^{-1}\})$ to the Cayley graph $\text{Cay}(G, \{b, b^{-1}, ab, (ab)^{-1}, a^{-\varepsilon} b, (a^{-\varepsilon} b)^{-1}\})$. Thus, $\mathcal{C}(4p)$ is independent of the choice of ε. The following is the main result of this paper.

Theorem 3.1. Let p be a prime. Then X is a hexavalent half-arc-transitive graph of order $4p$ if and only if $12 \mid (p - 1)$ and $X \cong \mathcal{C}(4p)$.

Lemma 3.2. Let p be a prime. If there is a hexavalent half-arc-transitive Cayley graph on a group G of order $4p$ then $p \geq 7$ and $G \cong \langle a, b | a^p = b^4 = 1, b^{-1}ab = a' \rangle$ for some square root r of -1 modulo p. Moreover, for each prime p satisfying $12 | (p - 1)$, the Cayley graph $\mathcal{C}(4p)$ as defined above is half-arc-transitive.

Proof. Let $X = \text{Cay}(G, S)$ be a hexavalent half-arc-transitive Cayley graph on the group G of order $4p$ with respect to S. Then X is connected because there are no half-arc-transitive graphs of order p or $2p$ (see [12]). It follows that $|S|=6, S^{-1} = S$ and $\langle S \rangle = G$. By Proposition 2.3, G is non-abelian and by Proposition 2.2, $p \geq 7$. From the elementary group theory we know that up to isomorphism there are three non-abelian groups of order $4p$ for an odd prime $p \geq 7$:

- $G_1(p) = \langle a, b | a^{2p} = b^2 = 1, b^{-1}ab = a^{-1} \rangle$,
- $G_2(p) = \langle a, b | a^{2p} = 1, b^2 = a^r, b^{-1}ab = a^{-1} \rangle$,
- $G_3(p) = \langle a, b | a^{2p} = b^4 = 1, b^{-1}ab = a' \rangle$, $r^2 = -1 \pmod{p}$.

By Proposition 2.3, there is no involution in S, and then since $G = \langle S \rangle$, one has $G \neq G_1(p)$. Suppose $G = G_2(p)$. Then S contains at least one element of order 4 and its inverse. Each element of order 4 is of the form $a^i b^j$ or $a^{-i} b^{-j}$ for an integer i. The automorphism of $G_2(p)$ induced by $b \mapsto b^{-1}, a \mapsto a$, maps $a^i b^j$ to $(a^i b^j)^{-1}$ for any integer j and fixes (a) pointwise. This is impossible by Proposition 2.3. Thus, $G = G_3(p)$.

Now let $12 | (p - 1)$ and $\mathcal{C}(4p) = \text{Cay}(G, S)$ with $G = \langle a, b | a^p = b^4 = 1, b^{-1}ab = a' \rangle$ ($r^2 = -1 \pmod{p}$) and $S = \{b, b^{-1}, ab, (ab)^{-1}, a^r b, (a^r b)^{-1}\}$, where ε is an element of order 6 in \mathbb{Z}_p^*. To finish the proof of the lemma, we only need to show that $\mathcal{C}(4p)$ is half-arc-transitive. Note that the fact ε is an element of order 6 in \mathbb{Z}_p^* implies that $\varepsilon^2 = -1 = 0$ in \mathbb{Z}_p^*. Hence $\varepsilon \neq 1$ is invertible, so the map $a \mapsto a^r, b \mapsto ab$ induces an automorphism of G, say α. Thus, $b^a = ab, (ab)^a = a'd = a^r b$ and $(a' b)^a = b$. It follows that $\alpha \in \text{Aut}(G, S)$ and hence $\mathcal{C}(4p)$ is edge-transitive. Furthermore, one may easily show that Aut(G, S) = $\langle \alpha \rangle \cong \mathbb{Z}_3$. Let $A = \text{Aut}(\mathcal{C}(4p))$. Denote by A_1 the stabilizer of the vertex 1 in A and by A_1^* the subgroup of A_1 fixing every neighborhood of 1 in $\mathcal{C}(4p)$. We first claim that $A_1^* = 1$.

Depict the induced subgraph by the set of vertices having distance less than 3 and some vertices having distance 3 from 1 in $\mathcal{C}(4p)$ as Fig. 1. One may see that for any $u \in \{b, ab, a' b\}, v \in \{b^{-1}, (ab)^{-1}, (a' b)^{-1}\}$, there is exactly one 4-cycle passing through 1, u and v. Thus A_1^* fixes all 4-cycles passing through 1 pointwise. In particular, A_1^* fixes $\{a^{-r} b^2, a^{-r} b^2, a^r b^2, ab^2, b^2, a^{-r} b^2, a^{-r} b^2, a^{-r} b^2, a^{-r} b^2, a^{-r} b^2\}$ pointwise. Furthermore, A_1^* fixes the

![Fig. 1. An induced subgraph in the Cayley graph $\mathcal{C}(4p)$.](image)
set \{a^\epsilon, a^{(e-1)r}\} and the set \{a^e, a^{(1-e)r}\} which are neighbors of \(a^e b\) and \(ab\), respectively. One may compute that
\[
N(a^\epsilon) = \{a^{1+\epsilon}b, a^{2\epsilon}b, a^{-\epsilon}b^{-1}, a^{-\epsilon(1+\epsilon)}b^{-1}\},
\]
\[
N(a^{(e-1)r}) = \{a^{-1}b, a^{2\epsilon-1}b, a^{1-\epsilon}b^{-1}, a^{-1(1-\epsilon)}b^{-1}\},
\]
\[
N(a^e) = \{a^{2\epsilon}b, a^{1+\epsilon}b, a^{-1}b^{-1}, a^{-1-\epsilon}b^{-1}\},
\]
\[
N(a^{(1-e)r}) = \{a^{-\epsilon}b, a^{2-\epsilon}b, a^{-1-\epsilon}b^{-1}, a^{-1(1+\epsilon)}b^{-1}\}.
\]
Note that \(N(a^\epsilon) \cup N(a^{(e-1)r}) \cap \{N(a^e) \cup N(a^{(1-e)r})\} = \{a^{e+1}b\}.\) Thus, \(A^e\) fixes \(a^{e+1}b\) and the 6-cycle \((1, a^e b, a^{e+1} b, a^{e+1} b, a^e b, ab)\) pointwise. This means that \(A^e\) fixes \(a^\epsilon, a^{(e-1)r}, a^e\) and \(a^{(1-e)r}\), and hence \(A^e\) fixes every neighbor of \(a^e b\) and \(ab\). Similarly, one may show that \(A^e\) fixes every neighbor of \(b^{-1}\) and \((ab)^{-1}\). It follows that \(A^e\) fixes every vertex at distance 2 from 1. By the connectivity and the vertex-transitivity of \(C_4(4p), A^e\) fixes every vertex in \(C_4(4p),\) that is, \(A^e = 1.\)

Thus \(A^e\) is isomorphic to a subgroup of \(S_6.\) If \(5 \mid |A^e|\) then the constituent \(A^e_{N_1(1)}\) of \(A^e\) on the neighborhood \(N(1)\) of 1 in \(C_4(4p)\) is 2-transitive, implying that \(C_4(4p)\) is 2-arc-transitive, which is impossible by Fig. 1, because some 2-arcs in \(C_4(4p)\) are contained in 4-cycles and some are not. Thus, \(|A^e|\) is a divisor of 144. Since \(A^e = A^e_{N_1(1)}\), \(|A : R(G)|\) is a divisor of 144. It follows that \(|A : R(G) \times (\alpha)|\) is a divisor of 48. Let \(P = \langle R(\alpha) \rangle.\) Then \(P \trianglelefteq R(G)\) and \(P\) is a Sylow \(p\)-subgroup of \(A^e\). Since \(a^e = a^{-1}\), one has \(P^m = P,\) implying \(R(G) \times (\alpha) \leq N_4(P).\) Thus, \(|A : N_4(P)|\) divides 48. Note that \(|A : N_4(P)|\) is the number of Sylow \(p\)-subgroups of \(A^e.\) Then, \(|A : N_4(P)| = mp + 1\) for some integer \(m\) and \(mp + 1\) divides 48. Since \(p \equiv 1 \pmod{12},\) one has \(mp + 1 = 1,\) forcing \(P\) to be normal in \(A^e.\)

Consider the quotient graph \(C_4(4p) / P\) of \(C_4(4p)\) corresponding to the orbits of \(P,\) that is, the graph with the orbits of \(P\) as vertices and with two orbits being adjacent if there are edges of \(C_4(4p)\) between these two orbits. Since \(a^e \in A,\) the normality of \(P\) in \(A^e\) implies that \(C_4(4p) / P\) is a 4-cycle, say \(C_4(4p) / P = \langle B_0, B_1, B_2, B_3 \rangle.\) The induced subgraph \((B_i, B_{i+1})\) of \(B_i \cup B_{i+1}\) in \(C_4(4p) / P\) for each \(i \in \mathbb{Z}_4\) is a cubic edge-transitive graph of order 2p, which is arc-transitive by Proposition 2.5. Let \(K\) be the kernel of \(A^e\) acting on \(V(C_4(4p) / P).\) Since \(|B_i| = p,\) for each \(i \in \mathbb{Z}_4,\) \(K\) is primitive on \(B_i.\) Suppose that \(K\) is unfaithful on \(B_i.\) Then the kernel of \(K\) on \(B_i\) is transitive on \(B_{i+1}\) because \(K\) is primitive on \(B_{i+1},\) which implies that the induced subgraph \((B_i, B_{i+1})\) is isomorphic to \(K_{p, p}.\) If it follows that \(p = 3,\) contrary to the fact that \(12 \mid (p - 1).\) Thus, \(K\) acts faithfully on \(B_i,\) and by Proposition 2.5, \(|K_1| = 3\) and \(|K| = 3p.\) Since \(C_4(4p) / P\) is a 4-cycle, \(A^e / K\) is isomorphic to a subgroup of \(D_8.\) Thus, \(|A^e / K| = 4\) or 8, that is, \(|A| = 12p\) or \(24p.\) Thus, \(|A : R(G) \times (\alpha)| = 1,\) or 2, implying \(R(G) \times (\alpha) \leq A.\) Note that \(R(G)\) is characteristic in \(R(G) \times (\alpha),\) forcing \(R(G) \leq A,\) that is, \(C_4(4p)\) is a normal Cayley graph. By Proposition 2.1, \(A_1 = \Aut(G, S)\). Since \(\Aut(G, S) = (\alpha) \cong \mathbb{Z}_3, C_4(4p)\) is half-arc-transitive. □

The lexicographic product \(X[Y]\) of graphs \(X\) and \(Y\) is the graph with vertex set \(V(X[Y]) = V(X) \times V(Y)\) and with two vertices \(u = (x_1, y_1)\) and \(v = (x_2, y_2)\) adjacent whenever \(x_1\) is adjacent to \(x_2,\) or \(x_1 = x_2\) and \(y_1\) is adjacent to \(y_2.\) To finish the proof of Theorem 3.1, it suffices to prove the following lemma.

Lemma 3.3. Let \(p\) be a prime and \(X\) a hexavalent half-arc-transitive graph of order \(4p.\) Then \(12 \mid (p - 1)\) and \(X \cong C_4(4p).\)

Proof. Since there are no half-arc-transitive graphs of order \(p\) or \(2p\) (see [12]), \(X\) is connected. Let \(A = \Aut(X).\) Recall that \(X\) is an underlying graph of an orbital digraph \(D := (V(X), \Theta)\) of \(A\) for some non-self-paired orbital \(\Theta.\) Thus, \(A \leq \Aut(D)\) and \(D\) is a directed graph with out- and in-valency equal to 3. Let \(u \in V(X)\) and denote by \(A_u\) the stabilizer of \(u\) in \(A.\) By Proposition 2.6, \(A_u\) is a \(\{2, 3, p\}\)-group and hence \(A\) is a \(\{2, 3, p\}\)-group with \(|A|\) not divisible by \(p^2.\) The edge-transitivity of \(X\) implies that \(12p \mid |A|\). By Proposition 2.2, \(p \geq 7.\) Let \(N\) be a minimal normal subgroup and \(P\) a Sylow \(p\)-subgroup of \(A.\) Then \(|P| = p.\) We first prove the following claim.

Claim: \(P \leq A.\)

Suppose that all minimal normal subgroups of \(A\) are nonsolvable. Then \(N \cong T^m\) where \(T\) is a non-abelian simple \(\{2, 3, p\}\)-group. Since \(p^2 \mid |A|\) and \(p \geq 7,\) we have, by [26, pp. 12–14], that \(m = 1\) and \(N = T\) is one of five groups given in Table 1. By the simplicity of \(N,\) \(N\) has orbits of length \(p, 2p\) or \(4p,\)
and hence $|N : N_u|=p, 2p, 4p$, where N_u is the stabilizer of u in N. Since N_u is contained in a maximal subgroup of N, Table 1 and Proposition 2.4 combined together imply that $N \cong L_2(7)$ or $L_3(3)$. Suppose first that $N \cong L_2(7)$. Then $|V(X)|=28$, and since, by assumption, A has no solvable minimal normal subgroup, we have that $C_A(N)=1$. Consequently $A \leq \text{Aut}(N)$, which implies that $|A| \leq |N||\text{Out}(N)|$.

By the ATLAS [27], $|\text{Out}(N)| = 2$ and thus either $|A| = |N|$ or $|A| = 2|N|$. It follows that N has at most two orbits on $V(X)$. If N is transitive on $V(X)$ then $|N_u|=6$, and X is the underlying graph of an orbital digraph of N for some non-self-paired orbital. However, with the use of program software MAGMA [28] one can see that this is impossible. If N has two orbits on X then the fact that $A \leq \text{Aut}(N)$ implies that $A = \text{PGL}(2,7)$ and thus $|A_u|=12$. However, by the ATLAS [27], A_u is a maximal subgroup of A, contradicting Proposition 2.4. The case $N \cong L_3(3)$ is excluded in a similar manner; details are left to the reader.

We have proved that A has at least one solvable minimal normal subgroup, say N. This N is elementary abelian. Since $|V(X)| = 4p$, N cannot be a 3-group. If N is a p-group then N is a normal Sylow p-subgroup of A and the claim is true. In what follows we assume that N is an elementary abelian 2-group, say $N \cong \mathbb{Z}_2^r$ for some integer r. Let K be the kernel of A acting on the quotient graph X_u of X corresponding to the orbits of N. Clearly, $N \leq K$ and since $|V(X)| = 4p$, orbits of N on $V(X)$ are of length 2 or 4.

Suppose the orbits of N are of length 4. Now, furthermore, $|X_u|=p$ and X_u has valency 2 or 6. If X_u has valency 2 then $X_u=C_p$, say $X_u = (B_0, B_1, \ldots, B_{p-1})$ with B_i and B_{i+1} adjacent for each $i \in \mathbb{Z}_p$. The induced subgraph (B_i, B_{i+1}) of $B_i \cup B_{i+1}$ in X is an edge-transitive cubic graph of order 8, and therefore it is isomorphic to the three-dimensional hypercube Q_3. Note that $\text{Out}(Q_3)=S_4 \times \mathbb{Z}_2$. Then K is faithful on each B_i and $K \leq S_4$, forcing $N \cong \mathbb{Z}_2^2$. If X_u has valency 6, the stabilizer K_u of u in K fixes each neighborhood of u in X because K fixes every orbit of N. It follows that $K_u = 1$ and $N \cong \mathbb{Z}_2^2$. Thus, NP is a regular subgroup of A, that is X is a Cayley graph on NP. By Lemma 3.2, NP has a cyclic Sylow 2-subgroup, a contradiction.

Hence the orbits of N are of length 2. Then, $|X_u|=2p$ and X_u has valency 3 or 6. If X_u has valency 3 then $X \cong X_u(2K_3)$. Note that X_u is edge-transitive because X is edge-transitive. By Proposition 2.5, X_u is arc-transitive and hence $X \cong X_u(2K_3)$ is arc-transitive, a contradiction. Thus, X_u has valency 6. In this case, $K_u = 1$ and $K \cong \mathbb{Z}_2$. And one may view A/N as a group of automorphisms of X_u, that is, $A/N \cong \text{Aut}(X_u)$. Set $H = A/N$. Then X_u is H-half-arc-transitive. Note that $6p \upharpoonright |H|$. By Proposition 2.5, X_u is isomorphic to $B(PG(2,5))$, B(H(11)) or $G(2p,6)$ with $6 \mid (p-1)$. Suppose $X_u \cong B(PG(2,5))$. Then H is a $\{2,3,31\}$-subgroup of $\text{Aut}(B(PG(2,5))) = PGL(3,5) \ltimes \mathbb{Z}_2$ and $186 \mid |H|$, implying that $H \cap PGL(3,5)$ is a proper subgroup of $PGL(3,5)$ with order divisible by 93. By MAGMA [28], $|H \cap PGL(3,5)| \geq 93$. Thus, $|H|=186$ and $|A|=3 \cdot 4 \cdot 31$. Note that A has normal Sylow 31-subgroups and so A is solvable. Then, X is a Cayley graph on a Hall $\{2,31\}$-subgroup of A. By Lemma 3.2, $4 \upharpoonright (31-1)$, a contradiction. Suppose $X_u \cong B(H(11))$. Then H is a $\{2,3,11\}$-subgroup of $\text{Aut}(B(H(11))) \cong \text{PSL}(2,11) \rtimes \mathbb{Z}_2$ and $33 \mid |\text{PSL}(2,11)|$, which is impossible because $\text{PSL}(2,11)$ has no proper subgroup with order divisible by 33. Thus, $X_u \cong G(2p,6)$ with $6 \mid (p-1)$. First assume $p \geq 11$. By Proposition 2.5, $\text{Aut}(G(2p,6))$ has a normal Sylow p-subgroup, implying that $PN/N \leq A/N$. It follows that $PN \not\leq A$. Clearly, P is characteristic in PN and hence $P \not\leq A$. The claim holds. Now assume $p < 11$. Then $X_u \cong G(2,7,6)$. In this case, X_u has vertex set $V \cup V$ with $V = \{i \mid i \in \mathbb{Z}_7\}$ and $V = \{i \mid i \in \mathbb{Z}_7\}$, and edge set $\{ij \mid i, j \in \mathbb{Z}_7, i \neq j\}$. Recall that X_u is H-half-arc-transitive. Let H^* be the subgroup of H fixing V and V^* setwise. Then $|H \cap H^*| = 2$. Clearly, for each $i \in \mathbb{Z}_7$, one has $H_i \leq H^*$, $H_i = H_{i'}$ and H^* acts faithfully on V, where H_i and $H_{i'}$ are the stabilizers of i and i' in H, respectively. By half-arc-transitivity of H, H_{0} has two orbits of length 3 on $V \setminus \{0\}$, say O_1 and O_2. If $H_0(=H_0^*)$ is faithful on O_1, then $H_0(=H_0^*)$ is faithful on O_1.

Table 1
Non-abelian simple $\{2,3,p\}$-groups ($p \geq 7$), extracted from [27,26].

<table>
<thead>
<tr>
<th>Group</th>
<th>p</th>
<th>Order</th>
<th>Indices of maximal subgroups</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_2(7)$</td>
<td>7</td>
<td>$2^3 \cdot 3 \cdot p$</td>
<td>8, p</td>
</tr>
<tr>
<td>$L_2(8)$</td>
<td>7</td>
<td>$2^3 \cdot 3^2 \cdot p$</td>
<td>9, 36, 4p</td>
</tr>
<tr>
<td>$L_2(17)$</td>
<td>17</td>
<td>$2^3 \cdot 3^2 \cdot p$</td>
<td>18, 6p, 8p, 9p</td>
</tr>
<tr>
<td>$L_3(3)$</td>
<td>13</td>
<td>$2^3 \cdot 3^3 \cdot p$</td>
<td>144, p, 18p</td>
</tr>
<tr>
<td>$U_3(3)$</td>
<td>7</td>
<td>$2^3 \cdot 3^3 \cdot p$</td>
<td>36, 4p, 9p</td>
</tr>
</tbody>
</table>
then as a permutation group of degree 7 on \(V \), \(H^* \) contains a transposition or a 3-cycle. Note that \(H^* \) is primitive on \(V \) and \(V' \). By [29, Theorem 13.3], \(H^* \) is 2-transitive on \(V \) and \(V' \). This implies that \(H_0 = H_{0'} \) is transitive on \(V \setminus \{0\} \), implying that \(H \) is arc-transitive on \(X_0 \), a contradiction. Thus, \(H_0 \) is faithful on \(O_1 \), implying that \(H_0 \leq S_3 \). It follows that \(|H^*| \leq 42 \) and by Sylow theorem, \(H^* \) has a characteristic Sylow 7-subgroup, implying that \(H \) has a normal Sylow 7-subgroup, that is, \(PN/N \leq A/N \). Thus, \(PN \leq A \) and since \(P \) is characteristic in \(PN \), one has \(P \leq A \). This completes the proof of the claim.

Now consider the quotient graph \(X\rho \) of \(X \) corresponding to the orbits of \(P \). Then \(|V(X\rho)| = 4 \) and \(X\rho \) has valency 2 or 3. Let \(K \) be the kernel of \(A \) acting on \(V(X\rho) \).

If \(X\rho \) has valency 3, then \(X\rho \) is the complete graph \(K_3 \). In this case, \(K_3 \) fixes every out-neighbor of \(u \) in the directed graph \(D \), which implies \(K_3 \) is isomorphic to \(Z_3 \) and \(A/P \leq S_4 \). Since \(12p \mid |A| \), one has \(A/P \cong A_4 \) or \(S_4 \). Let \(R \) be a Sylow 2-subgroup of \(A_4 \). Then \(R \cong Z_2 \times Z_2 \) and \(RP \) acts regularly on \(V(X) \). This means that \(X \) is a Cayley graph on \(RP \). By Lemma 3.2, \(RP \) has a cyclic Sylow 2-subgroup, a contradiction.

Thus, \(X\rho \) has valency 2, that is, \(X\rho \) is a 4-cycle, say \(X\rho = (B_0, B_1, B_2, B_3) \) with \(B_i \) and \(B_{i+1} \) adjacent for each \(i \in \mathbb{Z}_4 \). The induced subgraph \(T = (B_i, B_{i+1}) \) of \(B_i \cup B_{i+1} \) in \(X \) is an edge-transitive cubic graph of order \(2p \), and by half-arc-transitivity of \(X \), all edges in \(T \) have the same direction either from \(B_i \) to \(B_{i+1} \) or from \(B_{i+1} \) to \(B_i \) in the directed graph \(D \). Thus, \(3p \mid |K| \) and \(A/K \cong \mathbb{Z}_4 \). By Proposition 2.5, \(T \) is the Heawood graph of order 14 for \(p = 7 \) or the Cayley graph \(G(2p, 3) \) for a prime \(p \geq 13 \) such that \(p - 1 \) is a multiple of 3. If \(T \) is the Heawood graph then \(\text{Aut}(T) \cong \text{PGL}(2, 7) \) and hence \(K \leq \text{PSL}(2, 7) \). Note that \(P \leq A \) implies that \(A \) is solvable. Thus, \(K \) is a proper subgroup of \(\text{PSL}(2, 7) \) and since \(21 \mid |K| \), \(K \) must be a maximal subgroup of \(\text{PSL}(2, 7) \) isomorphic to \(Z_2 \times Z_2 \), implying \(|K| = 21 \) and \(|A| = 84 \). In this case, \(T \) is the Cayley graph \(G(2p, 3) \) for a prime \(p \geq 13 \) such that \(p - 1 \) is a multiple of 3, then by Proposition 2.5, \(|\text{Aut}(T)| = 6p \) and hence \(|K| \leq 3p \). It follows that \(|A| = 12p \) for \(p \geq 7 \). Thus, \(A_3 \) is a Sylow 3-subgroup of \(A \). Let \(R \) be a Sylow 2-subgroup of \(A \). Then \(RP \) is a regular subgroup of \(A \). By Lemma 3.2, one may let \(X = \text{Cay}(G, S) \), where \(G = \langle a, b \mid a^6 = b^3 = 1, b^{-1}ab = a' \rangle \) (\(r^2 = -1 \) (mod \(p \)) and \(|S| = 6 \). Note that \(r^2 = -1 \) (mod \(p \)). By the normality of \(P \) in \(A, P \leq R(G) \). Set \(C = C_4(P) \). Since there is no involution in \(G \) which commutes with \(a, C \) is a \(\{3, p\} \)-group. Suppose \(3 \mid |C| \). Then \(A_3 \leq C \). And since \(|A| = 12p, A_3 \) is normal in \(C \) and hence characteristic in \(C \). Since \(C \leq A \), one has \(A_3 \leq C \), a contradiction. Thus, \(P \). Since \(A/C = A/P \leq \text{Aut}(P) \cong \mathbb{Z}_p \) for \(p \mid |A/P| \), one has \(R(G)/P \leq A/P \), implying \(R(G) \leq A \). Thus \(X = \text{Cay}(G, S) \) is a normal Cayley graph. By Proposition 2.1, \(A = R(G) \times \text{Aut}(G, S) \) and since \(|A| = 12p \), there is an element \(\beta \) of order \(3 \) in \(\text{Aut}(G, S) \).

Each element of order 4 in \(G \) is of the form \(a'b \) or \(a'b^{-1} \) for some integer \(i \). Note that the connectivity of \(X \) implies \(\text{Aut}(S) = G \). This means that \(S \) contains at least two elements of order 4 and since \(\text{Aut}(G) \) is transitive on the set \(\{a'b \mid 0 \leq i \leq p - 1\} \), one may assume \(b \in S \). Suppose that \(S \) contains exactly two elements of order 4. By Proposition 2.3, \(S \) contains no involutions and hence \(S = \{a, a^{-1}, a', a'^{-1}, b, b^{-1}\} \) for some integers \(i,j \). However, the automorphism of \(G \) induced by \(a \mapsto a^{-1}, b \mapsto b \) fixes \(S \) and maps \(a' \) to \(a'^{-1} \), contrary to Proposition 2.3. Suppose that \(S \) contains exactly four elements of order 4. Since for each \(k \in \mathbb{Z}_p \) the map \(a \mapsto a^k, b \mapsto b \) induces an automorphism of \(G \), one may assume \(S = \{a', a^{-1}, b, b^{-1}, ab, (ab)^{-1} \} \). In this case, the automorphism of \(G \) induced by \(a \mapsto a^{-1}, b \mapsto ab \) fixes \(S \) and maps \(a' \) to \(a'^{-1} \), contrary to Proposition 2.3. It follows that \(S \) consists of elements of order 4. Since one may assume \(S = \{b, b^{-1}, ab, (ab)^{-1}, a'b, (a'b)^{-1}\} \) for some \(i \in \mathbb{Z}_p \), clearly, \(i \neq 0, 1 \). Note that there is no automorphism of \(G \) mapping \(b \) to \(b^{-1} \). Hence, \(\langle \beta \rangle \) has two orbits on \(S \), that is, \(\{b, ab, a'b\} \) and \(\{b^{-1}, (ab)^{-1}, (a'b)^{-1}\} \). Furthermore, one may assume that \(\beta \) permutes \(b, ab \) and \(a'b \) cyclically. Thus, \(\eta b = ab \) and \(\beta a = (ab)^{-1} \beta = a'b(ab)^{-1} = a'^{-1} \). And \(b = (ab)^{-1} = a'^{-1}ab \), implying \(p^2 = i + 1 = 0 \) (mod \(p \)) in \(\mathbb{Z}_p \). In this case, \(p^2 = 1 \) (mod \(p \)) and \(l \neq -1 \), forcing that \(i \) is an element of order 6 in \(\mathbb{Z}_p^* \). Thus, \(6 \mid (p - 1) \). Since \(4 \mid (p - 1) \), one has \(12 \mid (p - 1) \) and \(X \cong C_4(4p) \).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (10871021) and the Specialized Research Fund for the Doctoral Program of Higher Education in China (20060004026).

References