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Abstract

In this paper, we define and study a natural generalization of the multicut and multiway cut problems: the minimum multi-
multiway cut problem. The input to the problem is a weighted undirected graph G = (V, E) and k sets S1, S2, . . . , Sk of
vertices. The goal is to find a subset of edges of minimum total weight whose removal completely disconnects each one of the
sets S1, S2, . . . , Sk , i.e., disconnects every pair of vertices u and v such that u, v ∈ Si , for some i . This problem generalizes both
the multicut problem, when |Si | = 2, for 1 ≤ i ≤ k, and the multiway cut problem, when k = 1.

We present an approximation algorithm for the multi-multiway cut problem with an approximation ratio which matches
that obtained by Garg, Vazirani, and Yannakakis on the standard multicut problem. Namely, our algorithm has an O(log k)

approximation ratio. Moreover, we consider instances of the minimum multi-multiway cut problem which are known to have
an optimal solution of light weight. We show that our algorithm has an approximation ratio substantially better than O(log k) when
restricted to such “light” instances. Specifically, we obtain an O(log LP)-approximation algorithm for the problem when all edge
weights are at least 1 (here LP denotes the value of a natural linear programming relaxation of the problem). The latter improves
the O(log LP log log LP) approximation ratio for the minimum multicut problem (implied by the work of Seymour and Even et al.).
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The input to the minimum multicut problem is an undirected graph G = (V, E) with a weight (or cost) function
w : E → R+ defined on its edges, and a collection (s1, t1), . . . , (sk, tk) of vertex pairs. The objective is to find a
subset of edges of minimum total weight whose removal disconnects si from ti , for every 1 ≤ i ≤ k. The problem
is known to be APX-hard [8]. An O(log k)-approximation algorithm for the problem was obtained by Garg, Vazirani
and Yannakakis [13].

I A preliminary version of this work appeared in the proceedings of the 9th Scandinavian Workshop on Algorithm Theory (Lecture Notes in
Computer Science, vol. 3111) 2004, pp. 273–284.
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The minimum multiway cut problem is a subproblem of the minimum multicut problem. The input consists of a
weighted undirected graph G = (V, E), as in the multicut problem, and a set {t1, t2, . . . , tk} of vertices. The goal is
to find a subset of edges of minimum total weight whose removal disconnects ti from t j , for every 1 ≤ i < j ≤ k.
The problem is also known to be APX-hard [8]. A ( 3

2 −
1
k )-approximation algorithm for the problem was obtained

by Calinescu, Karloff and Rabani [4]. An improved (1.3438 − εk)-approximation algorithm for the problem was
obtained by Karger et al. [15]. In particular, for k = 3 the algorithm of Karger et al. [15] achieves an approximation
ratio of 12/11, which matches the integrality gap of the linear programming relaxation of [4]. This result was also
obtained independently by Cunningham and Tang [6].

In this work, we define and study a natural generalization of both the multicut and multiway cut problems:
the minimum multi-multiway cut problem. The input of the minimum multi-multiway cut problem consists of an
undirected graph G = (V, E) with a weight function w : E → R+ defined on its edges, and k sets of vertices
S1, S2, . . . , Sk (also referred to as groups). The goal is to find a subset of edges of minimum total weight whose
removal disconnects, for every 1 ≤ i ≤ k, every two vertices u, v ∈ Si . When |Si | = 2, for all 1 ≤ i ≤ k, the
minimum multi-multiway cut problem is exactly the minimum multicut problem, and when k = 1, the minimum
multi-multiway cut problem is the minimum multiway cut problem. On the other hand, note that any instance of
minimum multi-multiway cut can be reduced to a minimum multicut instance, by simply listing all the pairs that
have to be disconnected. Using the Garg, Vazirani and Yannakakis algorithm, this immediately implies an O(log n)

approximation algorithm for minimum multi-multiway cut. We improve upon this ratio in this work.

The minimum multicut problem. The minimum multicut problem (and its relation to multicommodity flow) have
been extensively studied during the last few decades. The problem in which k = 1 is the standard s−t cut problem, and
is known to be solved exactly in polynomial time [10]. The case in which k = 2 was also shown to be polynomially
solvable by Yannakakis et al. [23] using multiple applications of the max-flow algorithm. For any k ≥ 3 the problem
was proven to be APX-hard by Dahlhaus et al. [8] and thus cannot permit a PTAS, unless P = NP. In a recent paper
by Chawla et al. [3] the minimum multicut problem is shown to be NP-hard to approximate within any constant factor,
assuming the Unique Games Conjecture of Khot [14]. Chawla et al. also show that a stronger version of the conjecture
implies an inapproximability factor of Ω(log log |V |).

The currently best known approximation ratio for the minimum multicut problem is obtained in the work of Garg,
Vazirani, and Yannakakis [13]. They present a polynomial algorithm that, given a graph G and a set of k pairs of
vertices, finds a multicut of weight at most O(log k) times the optimal multicut in G. Their algorithm is based on a
natural linear programming relaxation of the minimum multicut problem and has the following outline. By solving the
relaxation, a fractional multicut of the given graph G is obtained. It can be seen that this fractional solution implies a
semi-metric on the vertices of G. This semi-metric is now used to round the fractional multicut into an integral one.
Namely, the so called region growing scheme (introduced by Leighton and Rao [18] and used also by Klein et al. [17])
is applied to define for each pair (si , ti ) a region, i.e., a subset of vertices, which are in this case a ball of a specific
radius centered at si . The multicut obtained by the algorithm is now defined as all edges in E with are cut by one of
the defined regions.

Several results in the field of approximation algorithms have been inspired by the region growing technique for
rounding the solution of linear programs. These include applications of the divide and conquer paradigm (see for
example a survey by Shmoys [22]), the design of approximation algorithms for the minimum multicut problem on
directed graphs [16,9,5,11] and the results obtained for the minimum correlation clustering problem [7,2].

In this work we study the region growing rounding technique when applied to the multi-multiway cut problem.

Our results. In this paper we present two main results. First, we present an approximation algorithm for the
multi-multiway cut problem with an approximation ratio which matches that obtained by [13] on the standard
multicut problem. Namely, our algorithm has an O(log k) approximation ratio. Our algorithm solves a natural linear
programming relaxation of the multi-multiway cut problem, and rounds the fractional solution obtained using an
enhanced region growing technique. Roughly speaking, the region growing technique used in this work differs from
that used in previous works as in our case multiple regions are grown in a simultaneous manner rather than one by
one.

Secondly, we consider instances to the minimum multi-multiway cut problem which are known to have an optimal
solution of light weight. Denote such instances as light instances. We show that our algorithm has an approximation
ratio substantially better than O(log k) when restricted to such light instances. Considering the connection between
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the minimum multi-multiway cut problem and the closely related minimum uncut problem (defined formally below),
we show that our result on light instances of minimum multi-multiway cut implies a result of independent interest on
the minimum uncut problem. Our results can be summarized as follows.

Theorem 1.1 (General Multi-Multiway Cuts). There exists a polynomial time algorithm which approximates the
minimum multi-multiway cut problem within an approximation ratio of 4 ln(k + 1).

Theorem 1.2 (Light Multi-Multiway Cuts). Let I be an instance of the minimum multi-multiway cut problem. Let
OptI be the weight of the optimal multi-multiway cut of instance I . If w(e) ≥ 1 for all e ∈ E, then one can approximate
the minimum multi-multiway cut problem on I within an approximation ratio of 4 ln(2OptI ).

Corollary 1.3 (Light Minimum Uncut). If an undirected graph G = (V, E) can be made bipartite by the deletion
of k edges, then a set of O(k log k) edges whose deletion makes the graph bipartite can be found in polynomial time.

A few remarks are in place. Recall that the multi-multiway cut problem is a generalization of both the multicut and
multiway cut problems. Hence, our results on the multi-multiway cut problem apply to both these problems as well.
Specifically, Theorem 1.2 implies a 4 ln(2OptI ) approximation ratio for the standard minimum multicut problem.

To the best of our knowledge, light instances of the minimum multicut problem have not been addressed
directly in the past. However, light instances of the symmetric multicut problem on directed graphs2 have been
considered. Namely, Seymour [21] proved an existential result which implies (via [9]) an O(log(OptI ) log log(OptI ))

approximation algorithm for the symmetric multicut problem in the directed case (under the same setting as
Theorem 1.2). This in turn implies an O(log(OptI ) log log(OptI )) approximation algorithm for the undirected case
as well. Hence, in this case our contribution can also be viewed both as a direct proof and an improved result for the
“light multicut” problem on undirected graphs.

Our second remark addresses Corollary 1.3 which discusses the familiar minimum uncut problem. Let G = (V, E)

be an undirected graph with a nonnegative weight function w : E → R+ defined on its edges. The minimum uncut
problem is the problem of finding a set of edges of minimum weight whose removal disconnects all odd cycles in G,
i.e., the resulting graph is bipartite. This problem is also known as a special case of the minimum 2CNF≡ deletion
problem. The problem is known to be APX-hard [20], and has an O(

√
log |V |) approximation algorithm [1]. Assuming

the Unique Games Conjecture the minimum uncut problem is NP-hard to approximate within any constant factor [14].
The parameterized complexity of the minimum uncut problem has also been considered. Namely, in a recent work,
Guo et al. [12] show that given an undirected graph that can be made bipartite by deleting k of its edges, one can find
in time O(2k poly(|V |)) a subset of edges of size k whose removal yield a bipartite graph. In this case, Corollary 1.3
implies an O(poly(k, |V |))-time algorithm which finds O(k log k) such edges.

Finally, in a recent work, Nagarajan and Ravi [19] consider the requirement cut problem, which generalizes the
multi-multiway cut problem discussed in this work. The input of the requirement cut problem consists of an undirected
graph G = (V, E) with a weight function w : E → R+ defined on its edges, k sets of vertices S1, S2, . . . , Sk and
k requirements r1, . . . , rk . The goal is to find a subset of edges of minimum total weight whose removal separates
each set Si into at least ri disconnected components. When ri = |Si | the requirement cut problem reduces to
the multi-multiway cut problem. Nagarajan and Ravi show that the requirement cut problem can be approximated
within an approximation ratio of O(log n log (k maxi ri )) and that under certain complexity assumptions it cannot be
approximated beyond a ratio of Ω(log k) by a reduction from the set-cover problem. When restricted to the multi-
multiway cut problem, the results of [19] do not match those presented in this work. We may also mention that
Nagarajan and Ravi use the rounding procedure presented in this work to obtain a better approximation algorithm for
the requirement cut problem where the sizes of the sets are not too large. More specifically, [19] shows how to use our
approach to obtain a O((maxi |Si |) log k)-approximation algorithm for the requirements cut problem.

Organization. The remainder of the paper is organized as follows. In Section 2 we present our algorithm for the
minimum multi-multiway cut problem. The proof of Theorems 1.1 and 1.2 appear in Section 2.4. In Section 3 we
present the proof of Corollary 1.3.

2 In the symmetric multicut problem on directed graphs we are given a directed graph with k pairs of vertices (si , ti ), and our objective is to find
a set of edges of minimum weight which disconnects all cycles containing si and ti for all i = 1, . . . , k.
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2. The multi-multiway cut problem

In this section we present our approximation algorithm for the multi-multiway cut problem.

2.1. Multi-multiway cut linear programming relaxation

A multi-multiway cut can be represented by a set of Boolean variables x(e), one for each edge e ∈ E . If e ∈ E
belongs to the multi-multiway cut x(e) = 1, otherwise x(e) = 0. Our objective is to find a minimum weight multi-
multiway cut which disconnects every path connecting pairs of vertices from the same group. We denote by P the set
of all such paths. The multi-multiway cut problem may be posed as the following integer program:

min
∑
e∈E

w(e)x(e)∑
e∈P

x(e) ≥ 1 ∀P ∈ P

x(e) ∈ {0, 1} ∀e ∈ E .

By relaxing the integrality condition, this integer program may be relaxed to obtain the multi-multiway cut linear
programming relaxation:

min
∑
e∈E

w(e)x(e)∑
e∈P

x(e) ≥ 1 ∀P ∈ P

x(e) ≥ 0 ∀e ∈ E .

It is not hard to verify that this relaxation can be solved in polynomial time regardless of the fact that it may involve
exponentially many constraints. This follows from the observation that the variables x(e) imply a semi-metric on the
vertices of the given graph G. Namely, one can define the distance between any two vertices u and v by the length of
the shortest path between u and v, where every edge e in E has length x(e). Given this semi-metric, the constraints
above are equivalent to the requirement that the distance between every pair of vertices belonging to the same group
is at least one. This, in turn implies a natural separation oracle for the multi-multiway cut linear programming
relaxation. There is also an equivalent linear program of polynomial size. This relaxation has an integrality gap of
Ω(log k). Letting LP be the value of the linear relaxation, the integrality gap is also Ω(log(LP)) (even on graphs
with edge weights ≥1). Both are implied by the integrality gap of the natural minimum multicut linear programming
relaxation [13]. This implies that our analysis is tight.

2.2. Definitions and notations

Let x = {x(e)}e∈E be an optimal solution to the multi-multiway cut linear programming relaxation. Denote by
LP the value of the linear program at x , and denote by wmin the minimal weight of an edge e ∈ E . As mentioned
above, we define the length of an edge e ∈ E to be x(e), and the length of a path to be the sum of the lengths of its
edges. The distance between a pair of vertices u, v ∈ V , denoted by distx (u, v), is now defined to be the length of the
shortest path between u and v. Let Cut(S) = {(u, v) ∈ E | u ∈ S, v ∈ V \ S}, for any set of vertices S ⊆ V . Also
let wt (E ′) =

∑
e∈E ′ w(e) for any set of edges E ′ ⊆ E . We denote the set of all distances of vertices from terminals

in Si by Disti = {distx (s, u) | s ∈ Si , u ∈ V }. For r ∈ [0,∞) the ball of radius r centered at si j is defined as
Balli j (r) = {v ∈ V | distx (si j , v) ≤ r}, where 1 ≤ i ≤ k and 1 ≤ j ≤ |Si |. Finally, throughout our work, for various
functions f let f (x−) = limy→x− f (y).

Roughly speaking, we will be interested in two properties of a given set of balls. The first is the number of edges
cut by these balls. The second is the number of edges inside the given set of balls, referred to as the volume of the
balls.

More specifically, for each i , we consider the set of balls centered at vertices of Si where each ball is of equal
radius r ∈ [0,∞). We define (an upper bound on) the weight of the edges ‘leaving’ these balls as

ci (r) =

|Si |∑
j=1

wt (Cut(Balli j (r))).
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CUTALG(α, δ)

1. CUT ← φ

2. Solve the multi-multiway cut linear programming relaxation.
3. While there is a path from some s′ ∈ Si to s′′ ∈ Si (where 1 ≤ i ≤ k)
4. Set ri to be the radius r in

(
Disti ∪ { 12 }

)⋂
(δ, 1

2 ] that minimizes the value of ci (r−)
vi (r−)

5. F ←
⋃|Si |

j=1 Cut(Balli j (r−i ))

6. CUT ← CUT ∪ F
7. V ← V \

⋃|Si |
j=1 Balli j (r−i )

8. E ← E ∩ (V × V )

9. ∀l ∈ {1, . . . , k} Sl ← Sl ∩ V
10. Return CUT

Fig. 1. Approximation algorithm for minimum multi-multiway cut.

The volume of this set of balls is defined to be

vi (r) = α · LP+
|Si |∑
j=1

( ∑
e=(u,v)∈E

u,v∈Balli j (r)

w(e)x(e)+
∑

e=(u,v)∈E
u∈Balli j (r)

v /∈Balli j (r)

w(e)(r − distx (si j , u))

)
,

where α is a parameter, which does not depend on r , and will be specified later.
A few remarks are in place. First notice that in ci (r), an edge may contribute more than once, as Cut(Balli j (r)) ∩

Cut(Balli j ′(r)) is not necessarily empty (where 1 ≤ j 6= j ′ ≤ |Si |) and thus ci (r) is an upper bound on the value of
the cut. Secondly, in the definition of vi (r), the summand α · LP should be viewed as the volume of a set of balls all
of radius 0. Finally, note that the function vi in [0,∞) is not necessarily continuous but is always continuous from the
right.

2.3. Algorithm

Our polynomial time approximation algorithm for multi-multiway cut is described in Fig. 1. Roughly speaking,
our algorithm follows the algorithmic paradigm presented in [13]: after solving the linear programming relaxation
from Section 2.1, our algorithm rounds the fractional solution using a region growing rounding technique. Namely,
for every set Si which includes a pair of connected vertices, we simultaneously grow balls of a specific equal radius
ri < 1/2 around all vertices in Si . The edges in the cut produced by these balls are added to the solution, while the
vertices (and their adjacent edges) in the balls are removed from the graph. The radius ri picked is determined by the
values ci (r) and vi (r) defined previously.

Our algorithm depends on two parameters α ≥ 0 and δ ∈ [0, 1/2). We assume w.l.o.g. that w(e) > 0 for all
e ∈ E and that LP > 0. Therefore, if there exists a path between two (or more) vertices in Si , then vi (r) > 0 for all
r ∈ (δ,∞). In particular, Step 4 of the algorithm will be well defined. Note that the vertex set V and the groups Si
change after each round of the While Loop in Step 3. This implies changes in the functions ci and vi .

In the next subsection we prove the following theorem:

Theorem 2.1. CUTALG(α, δ) produces a cut of weight at most

2(1+ kα)

1− 2δ
ln
(

(1+ α)LP
αLP+ 2δwmin

)
LP.

As an immediate result of Theorem 2.1 we obtain Corollaries 2.2 and 2.3 below, which imply Theorems 1.1 and
1.2 stated in the introduction, respectively.

Corollary 2.2. CUTALG(1/k, 0) is a 4 ln(k + 1)-approximation algorithm for multi-multiway cut.

Corollary 2.3. If w(e) ≥ 1 for all e ∈ E, CUTALG(0, 1/4) is a 4 ln(2LP)-approximation algorithm for multi-
multiway cut.
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2.4. Analysis

In this subsection we prove Theorem 2.1. For the following two lemmas consider the sets Si and the functions vi
and ci in any round of the While Loop of Step 3 in CUTALG(α, δ).

Lemma 2.4. The function vi is differentiable in (0,∞) except for a finite number of points. In addition, if vi is
differentiable at r then ci (r) = d

dr vi (r).

Proof. By the definition of vi , if vi is not differentiable at r , then r must be equal to distx (si j , u) for some
j ∈ {1, . . . , |Si |} and some vertex u ∈ V . Therefore, there is only a finite number of values in (0,∞) for which
vi is not differentiable. The second statement stems from the definition of the functions vi and ci . �

Lemma 2.5. For every δ ∈ [0, 1/2), if there is a path between vertices in Si , then there exists r ∈ (δ, 1/2) such that
ci (r) ≤ 2

1−2δ
ln
(

(1+α)LP
vi (δ)

)
vi (r).

Proof. Assume on the contrary that for every r ∈ (δ, 1/2)

ci (r) >
2

1− 2δ
ln
(

(1+ α)LP
vi (δ)

)
vi (r).

Recall that vi (r) > 0 for all r ∈ (δ, 1/2), as there exists a path between vertices in Si and we assume that w(e) > 0
for all e ∈ E . Therefore,∫ 1/2

δ

ci (r)

vi (r)
dr > (1/2− δ)

2
1− 2δ

ln
(

(1+ α)LP
vi (δ)

)
= ln

(
(1+ α)LP

vi (δ)

)
.

By Lemma 2.4, vi is not differentiable at only a finite number of points, say s1 ≤ · · · ≤ sl . Set s0 to be δ and sl+1 to
be 1/2. Now, by Lemma 2.4, and by the fact that vi (r) is monotone increasing and continuous from the right:∫ 1/2

δ

ci (r)

vi (r)
dr =

l∑
j=0

∫ s j+1

s j

d
dr vi (r)

vi (r)
dr

=

l∑
j=0

(
ln vi (s−j+1)− ln vi (s j )

)
≤ ln vi ((1/2)−)− ln vi (δ)

= ln
vi (

1
2
−
)

vi (δ)
.

As vi (
1
2
−
) ≤ (1+ α)LP, the latter yields a contradiction. �

Proof (of Theorem 2.1). Let I = {i1, . . . , is} ⊆ {1, . . . , k} be the ordered set of group indices for which algorithm
CUTALG(α, δ) entered the While Loop (the parameter s denotes the size of I ). Recall that in each iteration of
the algorithm the graph G = (V, E), the groups Si , the sets Balli j and the functions vi , ci and distx change.
In what follows we denote the graph, sets and functions corresponding to the `’th iteration of the While Loop as
G`
= (V `, E`), S`

i , Ball`i j , v`
i , c`

i , and dist`x . (where 1 ≤ ` ≤ s).
First, observe that the set of edges returned by the algorithm disconnects all terminals within a group, since every

path between terminals has length at least 1, while the radius of the balls was chosen to be less than 1/2 (Step 5 of the
algorithm).

The weight of the multicut produced by the algorithm is at most
∑s

`=1 c`
i`(r
−

i` ). Here, the definition of ri` is from
Step 4 of our algorithm.

By Lemma 2.5, for each ` ∈ {1, . . . , s} and index i = i` ∈ I there exists r ′i ∈ (δ, 1/2) such that

c`
i (r
′

i ) ≤
2

1−2δ
ln
(

(1+α)LP
v`

i (δ)

)
v`

i (r
′

i ). By the choice of ri in Step 4 of CUTALG(α, δ), it is not hard to verify that

c`
i (r
−

i )/v`
i (r
−

i ) ≤ c`
i (r
′

i )/v
`
i (r
′

i ). This follows from the fact that the radius r in (δ, 1/2] that minimizes the value of
c`

i (r
−)/v`

i (r
−) is actually in the set Disti ∪ {1/2}.
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Therefore the weight of the cut produced by the algorithm is at most

s∑
`=1

2
1− 2δ

ln

(
(1+ α)LP

v`
i`(δ)

)
v`

i`(r
−

i` ).

Consider a certain value ` ∈ {1, . . . , s}. Let i = i`. Since there exists a path between at least two vertices in the
group S`

i ,

v`
i (δ) ≥ αLP+

|S`
i |∑

j=1

( ∑
e=(u,v)∈E`

u,v∈Ball`i j (δ)

wminx(e)+
∑

e=(u,v)∈E`

u∈Ball`i j (δ)

v /∈Ball`i j (δ)

wmin(δ − dist`x (si j , u))

)

≥ αLP+ 2δwmin.

Hence, the weight of the cut produced by the algorithm is bounded by

2
1− 2δ

ln
(

(1+ α)LP
αLP+ 2δwmin

) s∑
`=1

v`
i`(r
−

i` ).

Observe that by the definition of v`
i` and by Steps 7, 8 and 9 of the algorithm it holds that

∑s
`=1 v`

i`(r
−

i` ) ≤

kαLP+ LP, yielding the desired bound on the weight of the cut. �

3. “Light” minimum uncut

Corollary 1.3. If an undirected graph G = (V, E) can be made bipartite by the deletion of k edges, then a set of
O(k log k) edges whose deletion makes the graph bipartite can be found in polynomial time.

Proof. Let G = (V, E) be an undirected graph of size n which can be made bipartite by the deletion of k edges. Using
the reduction presented in [17] one can (efficiently) obtain a graph G ′ = (V ′, E ′) (with unit edge weights) and a set of
n pairs of vertices {(si , ti )}ni=1 with the following properties: (a) the minimum multicut on input G ′, {(si , ti )}ni=1 is of
value at most 2k, and (b) given any multicut of G ′ of weight w one can (efficiently) find at most w edges in G whose
removal results in a bipartite graph. Now using CUTALG(0, 1/4) on input G ′, {(si , ti )}ni=1 we obtain (Corollary 2.3) a
multicut of G ′ of weight at most O(k log k), which by the above implies our assertion. �

4. Concluding remarks

In this work we have defined and analyzed the multi-multiway cut problem, which is a generalization of both the
multicut and the multiway cut problems. We have presented an approximation algorithm for the minimum multi-
multiway cut problem with an approximation ratio that matches the currently best known approximation ratio for the
minimum multicut problem. Moreover, we have shown that our algorithm performs significantly better on instances
which are known to have a “light weight” multicut.

The question whether there exists an algorithm (for both the minimum multi-multicut and the minimum multicut
problems) with an approximation ratio that improves over the presented ratio of O(log k) remains an intriguing open
problem. It is not likely that such an algorithm will use in a direct manner the standard relaxation of the multi-
multiway cut problem of Section 2 due to its large integrality gap. In a recent work of Agarwal et al. [1] the integrality
gap of a natural semidefinite programming relaxation for minimum multicut is also shown to be Ω(log |V |). A similar
semidefinite programming relaxation for minimum multi-multiway cut can be formulated. As before, this implies that
an improved approximation algorithm that uses this relaxation naively is not probable.
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