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a b s t r a c t

In this paper, we propose some improvements on a new gradient-type method for solving
large-scale unconstrained optimization problems, in which we use data from two previous
steps to revise the current approximate Hessian. The new method which we considered,
resembles to that of Barzilai and Borwein (BB) method. The innovation features of this
approach consist in using approximation of the Hessian in diagonal matrix form based
on the modified weak secant equation rather than the multiple of the identity matrix in
the BB method. Using this approach, we can obtain a higher order accuracy of Hessian
approximation when compares to other existing BB-type method. By incorporating a
simplemonotone strategy, the global convergence of the newmethod is achieved. Practical
insights into the effectiveness of the proposed method are given by numerical comparison
with the BB method and its variant.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we focus on the minimization of a smooth function of n variables:

min f (x), (1)

where x ∈ Rn and n is large. The Barzilai and Borwein (BB) gradient method for solving (1) takes the form

xk+1 = xk − B−1k gk, (2)

where gk = ∇f (xk) and the stepsize αk is determined by letting Bk = (1/αk)I to be an approximation of the Hessian of f
at xk. Let us denote sk = xk+1 − xk and yk = gk+1 − gk. In order for Bk+1, the update of Bk, to have a certain quasi-Newton
property

Bk+1sk = yk. (3)

Barzilai and Borwein [1] choose αk such that

Bk+1 = argmin
B=(1/α)I

‖Bk+1sk − yk‖2 , (4)

and yields

αk+1 =
sTkyk
sTk sk

. (5)

∗ Corresponding author. Tel.: +60 176032604; fax: +60 389423789.
E-mail addresses:mahboubeh@inspem.upm.edu.my, mahboubeh_farid@yahoo.com (M. Farid), leong@math.upm.edu.my (W.J. Leong),

malik@fsas.upm.edu.my (M.A. Hassan).

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.03.014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81977162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:mahboubeh@inspem.upm.edu.my
mailto:mahboubeh_farid@yahoo.com
mailto:leong@math.upm.edu.my
mailto:malik@fsas.upm.edu.my
http://dx.doi.org/10.1016/j.camwa.2010.03.014


3302 M. Farid et al. / Computers and Mathematics with Applications 59 (2010) 3301–3307

The BB gradient method is preferable over the classic steepest descent method both in theory and in real computations. It is
known that the classical steepest descentmethod converges linearly and is badly effected by ill conditioning (see [2]). On the
other hand, the BB gradient method does not require line search and often needs less computation. Moreover, BB method is
shown to be R-superlinearly convergent for two-dimensional strictly convex quadratics [1] and for any dimensional convex
quadratics, the method is shown to be R-linearly convergent [3]. Due to its simplicity and numerical efficiency, the BB
gradient method has now received many attentions, for example see [4–6]. BB method greatly speeds up the convergence,
however it does not guarantee descent on the objective function at every iteration and it is not easy to generalize themethod
to general nonlinear functions.
To cope with these advantages, a fixed-step gradient-type method of BB-kind were suggested by Hassan et al. [7] and

Leong et al. [8], respectively. Leong et al. [8] considered the approximation of the Hessian by a diagonal matrix based on
weak secant (or weak quasi-Newton) equation

sTkBk+1sk = s
T
kyk. (6)

Their gradient algorithm is monotone in the sense that it guarantees descent in each iteration while function and extra
gradient evaluations are not required. Global and a linear rate of convergence are also established for their method.
On the other hand, Hassan et al. [7] derived a diagonal updating formula for approximation the inverse Hessian under

similar approach of Leong et al. [8]. Incorporating a different strategy, they showed that their algorithm can ensure
descent on function values in each iteration and is also globally converged. Apart from these advances, both of these
diagonal updating employ a standard one-step two-point approach in Hessian approximation, which is commonly used by
standard BB or quasi-Newton methods. In contrast, this paper develops a new gradient-type method for solving large-scale
unconstrained optimization problem by extending and adapting the approach of [7,8] while uses a two-step multi-point
approach to increase the accuracy of Hessian approximation. The fundamental idea in here is to furnish an interpolating
curve in a variable space and later uses it to derive a generalized weak secant equation, which can then be employed in the
construction of our new Hessian approximation.
The rest of this paper is organized as follows: In Section 2, we present a new diagonal updating scheme for gradient-type

method based on the improved weak secant equation. Section 3 discusses the properties of this new algorithm and a new
monotone gradient algorithm is described. The global convergent under mild assumption will be established in Section 4
and numerical results are reported in Section 5.

2. Two-step diagonal updates

In this section we define our new gradient method based on diagonal updating. This method generates a sequence of
points {xk} by

xk+1 = xk − B−1k gk, (7)

where Bk is a diagonal matrix. Our aim is to construct a matrix Bk through diagonal updating which is a good approximation
of the Hessian. Note that any approximation of Hessian should satisfy the secant equation (3) to ensure that the curvature
information is corrected. However, since Bk is diagonal and to maintain only O(n) floating point operation, it is reasonable
to let Bk satisfies only the weak secant equation (6). By using only sk and yk, we just utilize data from one previous step to
revise the current approximate Hessian and it is known as one-step gradient method. In this section, in order for Bk to be
a more accurate approximation of the Hessian matrix, we employ an interpolating curve in the variable-space to derive an
approximation generalization of weak secant equation. We consider one of the most successful of two-step method which
employs the current approximation to theHessian to determine the parameterizations of the interpolating curve and, hence,
the derivatives which are required in the generalized updating formula. (see for more detail in [9–12]).
Now, by incorporating this two-step information we can offer an improved weak secant equation as follows:

(sk − γksk−1)TBk+1(sk − γksk−1) = (sk − γksk−1)T (yk − γkyk−1), (8)

or say

rTk Bk+1rk = r
T
kwk. (9)

In formula (8) and (9) we use data from the last two steps instead of one previous step. Therefore it is needed to construct
interpolating quadratic curves x(τ ) and h(τ ) (where τ ∈ R) such that x(τ ) interpolates the two last iterates xk−1, xk and xk+1,
and h(τ ) interpolates the corresponding last gradient vectors gk−1, gk and gk+1 (which are assumed to be available). Since
we are using more information from several recent steps in the construction of x(τ ) (by contrast, the derivation of standard
BB and quasi-Newton methods utilizes only data from the most recent step, i.e. xk to xk+1), we expect that the new secant
equation derived from this approach, will also be able to improve the accuracy in Hessian approximation. The derivatives
of these two curves at τ = τ2, where τj is the value of τ for which

x(τj) = xk+j−1, j = 0, 1, 2 (10)

h(τj) = gk+j−1, j = 0, 1, 2 (11)
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are then substituted into the relation (derived from applying the Chain Rule to g(x(τ ))),

G(xk+1)x′(τ2) = g ′(x(τ2)), (12)

where primes denote differentiation with respect to τ . Note that

rk
def
= x′(τ2), (13)

and

wk
def
= h′(τ2) ≈ g ′(x(τ2)). (14)

To determine γk in (8), we need the values of τ0, τ1 and τ2. Here we consider one of the successful approach that was
introduced by Ford and Moghrabi [11]: consider a norm of the general form ‖z‖M

def
= {zTMz}1/2 where M is symmetric-

positive-definite matrix and here we let M = Bk. Without the loss of generality, we choose τ2 = 0 and the value of {τj}2j=0
is determined as follows:

− τ1 = τ2 − τ1
def
= ‖x(τ2)− x(τ1)‖Bk
= ‖xk+1 − xk‖Bk
= ‖sk‖Bk

=
(
sTkBksk

)1/2
, (15)

and

− τ0 = τ2 − τ0
def
= ‖x(τ2)− x(τ0)‖Bk
= ‖xk+1 − xk−1‖Bk
= ‖sk + sk−1‖Bk

=
(
(sk + sk−1)TBk(sk + sk−1)

)1/2
. (16)

By defining the quantity δ by the ratio

δ =
τ2 − τ1

τ1 − τ0
, (17)

rk, wk are given by the following expressions

rk = sk −
δ2

1+ 2δ
sk−1, (18)

wk = yk −
δ2

1+ 2δ
yk−1. (19)

Hence, when the inequality rTkwk > 10
−4 ‖rk‖2 ‖wk‖2 is satisfied, we can state the resulting update formula for Bk+1 in

the following theorem,

Theorem 2.1. Assume that Bk > 0 is a positive definite diagonal matrix and Bk+1 is an updated version of Bk, which is also
diagonal. Let us denote∆k = Bk+1 − Bk as the deviation between Bk+1 and Bk. Suppose that rk 6= 0 where rk andwk are defined
by (18) and (19), respectively. Consider the following minimization problem:

min
1
2
‖∆k‖

2
F ,

s.t. rTk1krk = r
T
kwk − r

T
k Bkrk,

and∆k is a diagonal matrix,

(20)

where ‖.‖F denotes the Frobenius norm. Then the optimal solution of (20) is given by

∆
(i)
k =

(
rTkwk − r

T
k Bkrk

)
n∑
i=1
(r (i)k )4

(r (i)k )
2, i = 1, 2, . . . , n (21)

where the∆(i)k is ith diagonal component of ∆k and r
(i)
k is the ith component of vector rk.
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Proof. In (20) the objective function is strictly convex and the feasible set is also convex. Therefore we can state the
Lagrangian function for (20) as follows

L(∆k, µ) =
1
2
‖1k‖

2
F + µ

(
rTk1krk − r

T
kwk + r

T
k Bkrk

)
(22)

where µ is the Lagrange multiplier associated with constraint. Differentiating L with respect to each component of∆k and
setting them to zero yields

∆
(i)
k = −µ(r

(i)
k )
2 for all i = 1, 2, . . . , n. (23)

By multiplying each of Eq. (23) by (r (i)k ) for each i = 1, 2, . . . , n, adding them together and invoking the constraint r
T
k∆krk

= rTkwk − r
T
k Bkrk we have

µ =
(rTkwk − r

T
k Bkrk)

n∑
i=1
(r (i)k )4

. (24)

Finally, by substituting (24) into (23) we obtain (21). �

It follows from Theorem 2.1 that the optimal updating formula for Bk+1 is given by

b(i)k+1 = b
(i)
k +

(rTkwk − r
T
k Bkrk)

n∑
i=1
(r (i)k )4

(r (i)k )
2, i = 1, 2, . . . , n (25)

where b(i)k+1 and b
(i)
k is the ith diagonal element of Bk+1 and Bk, respectively. However there is no guarantee that either

Bk+1 > 0 or the sequence {f (xk)} generated by gradient-type method with updating scheme (7) is always monotonically
decreased. Hence some safeguards are introduced.
In the next section, we will include safeguards to maintain positive-definiteness of Bk+1 that based on scaling strategy

and also strategy for preserving monotonicity in function values.

3. Scaling on the diagonal updates

In order to define our safeguarding strategy, we first describe the scaled diagonal update. The scaled diagonal updating
formula is similar to formula (25), except that the matrix Bk is replaced by σkBk:

Bk+1 = Bk+1(σkBk, rk, wk), (26)

where σk is a scaling parameter. Note that Bk+1 still satisfies the weak secant equation.
From (25), we observe that the possibility of non positive-definiteness occurs in Bk+1 is when rTkwk − r

T
k Bkrk < 0. Therefore

by considering scaling parameter

σk = min
(
rTkwk
rTk Bkrk

, 1
)
, (27)

we have

b(i)k+1 = σkb
(i)
k +

(rTkwk − r
T
k σkBkrk)

n∑
i=1
(r (i)k )4

(r (i)k )
2

=



rTkwk
rTk Bkrk

b(i)k if rTkwk − r
T
k Bkrk < 0

b(i)k +
(rTkwk − r

T
k Bkrk)

n∑
i=1
(r (i)k )4

(r (i)k )
2 if rTkwk − r

T
k Bkrk > 0

i = 1, 2, . . . , n (28)

where rk, wk and σk is given by (18), (19) and (27) respectively. Hence we can guarantee the positive-definiteness of Bk+1.
Moreover scheme (28) cannot guarantee monotonicity of function value. One can show that if

bMk+1 <
2(bmk )

2

bMk
(29)
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where bmk , b
M
k , b

M
k+1 be the smallest and largest diagonal component of Bk and Bk+1, respectively, then the possibility of non-

monotonic behavior occurs in the sequence {f (xk)}might be observed. Hence a safeguard on this limitation is needed.
In the following, we present our algorithm as well as the safeguard strategy for monotonicity in the detail:

TMDGrad Algorithm.

Step 0. Choose an initial point x0 ∈ Rn, and a positive definite matrix B0 = I . Let k := 0.
Step 1. Compute gk. If ‖gk‖ ≤ ε, stop.
Step 2. If k = 0, set x1 = x0 −

g0
‖g0‖
, Else if k = 1 set rk = sk andwk = yk go to Step 4.

Step 3. For k ≥ 2, compute τ0, τ1 and δ, by Eqs. (15)–(17), respectively, calculate rk, wk and σk by Eqs. (18), (19) and (27),
respectively.
If rTkwk ≤ 10

−4 ‖rk‖2 ‖wk‖2,
set rk = sk andwk = yk.

Step 4. Let xk+1 = xk − B−1k gk and update Bk+1 = diag
(
b(1)k , b

(2)
k , . . . , b

(n)
k

)
, where b(i)k , i = 1, 2, . . . , n is given by (28).

Step 5. Check whether bMk+1 <
2(bmk )

2

bMk
:

If yes, set Bk+1 = ϑ I where ϑ = min
(

bMk
2(bmk )

2 ,
δTk γk

δTk δk

)
.

Else retain Bk+1 that is computed by Step 4.
Step 6. Set k := k+ 1 and return to Step 1.

4. Convergence analysis

We shall also establish the convergence of the TMDGrad algorithmwhen applied to theminimization of a strictly convex
quadratic function with constant Hessian.

Theorem 4.1. Assume that f (x) ∈ C2 is a strictly convex quadratic function. Let {xk} be a sequence generated by the TMDGrad
method and x∗ is a unique minimizer of f . Then either gk = 0 holds for some finite k ≥ 1, or limk→∞ ‖gk‖ = 0.

Proof. Denote G = ∇2f . Again let bmk , b
M
k , b

m
k+1 and b

M
k+1 be the smallest and largest diagonal elements of Bk and Bk+1,

respectively. Consider the Taylor expansion of the strictly convex function, f at xk+1:

f (xk − B−1k gk) = f (xk)− g
T
k B
−1
k gk +

1
2
gTk B
−1
k GB

−1
k gk. (30)

Since Grk = wk, it follows that rTk Grk = g
T
k B
−1
k Bk+1B

−1
k gk.Thus

f (xk+1) ≤ f (xk)− c ‖gk‖2 , (31)

where c = (bMk )
−1
−

(bmk )
−2bMk+1
2 > 0. If c > 0

(
or bMk+1 >

2(bmk )
2

bMk

)
, we have f (xk+1) ≤ f (xk) for all k.

Else if c < 0
(
or bMk+1 <

2(bmk )
2

bMk

)
, then we let Bk+1 = ϑ I where ϑ = min

(
bMk
2(bmk )

2 ,
sTk yk
sTk sk

)
. Hence (31) becomes

f (xk+1) ≤ f (xk)− c̄ ‖gk‖2 ,

where c̄ = bmk −
(
(bMk )

2ϑ
)
/2. With our choice of ϑ , we have that c̄ ≥ 0. This implies that f (xk+1) ≤ f (xk) for all k and since

f is bounded below, it follows that

lim
k→∞

f (xk)− f (xk+1) = 0.

As f (xk)− f (xk+1)→ 0, and c > 0 then limk→∞ ‖gk‖ = 0, i.e. xk convergence to x∗. �

5. Numerical results

The TMDGrad method described in Section 3 is compared with the BB method and with MDGrad method. MDGrad
method is implemented using MonoGrad of Leong et al. [8] with a different monotone strategy. All of these methods belong
to a class of gradient methods without line searches.
The numerical experiments are carried out on a set of 30 test function given in Table 1 with dimension ranging from 10

to 104. The full description of these test problems can be found in [13,14].
All of the experiments are run on a PC with Core Duo CPU and the codes are written with Matlab 7.0. The stop criterion

are ‖gk‖ ≤ 10−4. We also force the routine to stop if the number of iteration exceed 1000. The performance of TMDGrad,
MDGrad and BB method, relative to iteration, is evaluated using the profiles of Dolan and Moré (see [15]).
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Table 1
Test problem and its dimension.

Problem Dimension References

Extended trigonometric, Penalty 1, Penalty 2, 10, . . . ,10 000 Moré et al. [14]
Quadratic QF2, Diagonal 4, Diagonal 5, Generalized tridiagonal 1,
Generalized Rosenbrock, Generalized PSC1, Extended Himmelblau,
Extended three exponential terms, Extended block diagonal BD1,
Extended PSC1, Raydan 2, Extended tridiagonal 2, 10, . . . ,10 000 Andrei [13]
Extended Beale, Broyden tridiagonal, Quadratic diagonal perturbed, 10, . . . ,1000 Moré et al. [14]
Perturbed quadratic, Quadratic QF1, Diagonal 1, Diagonal 2, Hager,
Diagonal 3, Generalized Tridiagonal 2, Almost perturbed quadratic,
Tridiagonal perturbed quadratic, Full Hessian FH1, Full Hessian FH2,
Raydan 1, 10, . . . ,1000 Andrei [13]

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

τ

p(
r

≤
τ)

No. of Iteration

TMDGrad MDGrad BB

Fig. 1. Performance profile based on iterations.

From Fig. 1, we can see that, TMDGrad algorithm outperforms the MDGrad algorithm and BB method. In addition, our
new method yields the best performance for large-scale unconstrained optimization. The numerical evidence provided by
the tests are reported in Table 1 and illustrated in Fig. 1 demonstrates clearly that TMDGrad shows significant improvement,
when compared with the BB and single-step MDGrad. Note that our algorithm still needs just O(n) storage.
Especially it is different from other monotone gradient methods (for example see [16,17]) in the sense that function

evaluation and line searches are not required. Numerical results on a large number of problems indicate that our methods
are very promising.

6. Conclusion

A technique for update Hessian approximation in diagonal matrix form in two-step weak secant equation has been
introduced. Numerical results illustrated in Fig. 1 demonstrate clearly that the TMDGrad method shows significant
improvements, when compared with the BB and MDGrad method. Hence we can conclude that TMDGrad method is
preferable due to encouraging numerical results, simple to implement, higher order accuracy of Hessian approximation,
O(n) storage requirement and globally converged.
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