-
View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Elsevier - Publisher Connector

Journal of Computational and Applied Mathematics 27 (1989) 17-36 17
North-Holland

A Jacobi-like algorithm for computing the
generalized Schur form of a regular pencil

J.-P. CHARLIER and P. VAN DOOREN
Philips Research Laboratory, Av. Van Becelaere 2, Box 8, B-1170 Brussels, Belgium

Received 29 June 1988
Revised 13 October 1988

Abstract: We develop a Jacobi-like scheme for computing the generalized Schur form of a regular pencil of matrices
AB — A. The method starts with a preliminary triangularization of the matrix B and iteratively reduces A to triangular
form, while maintaining B triangular. The scheme heavily relies on the technique of Stewart for computing the Schur
form of an arbitrary matrix A. Just as Stewart’s algorithm, this one can efficiently be implemented in parallel on a
square array of processors. This explains some of its peculiarities, and at the same time yields further insight in
Stewart’s algorithm.
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1. Introduction

The cyclic by rows version of the Jacobi algorithm for computing the eigenvalue decomposi-
tion of an n X n Hermitian matrix performs iteratively “sweeps” of unitary transformations:

(1,2)(1,3)(1,4) ... (1, n—=1)(1, n)
(2,3)(2,4) ... (2, n—1)(2, n)
(1)
(n—2,n—=1)(n—-2, n)
(n—1, n)

where (i, j) denotes a Givens rotation that only affects rows and columns i and j such that the
elements (i, j) and (j, i) are annihilated. For each of these annihilations, there are two possible
angles from which the smaller (or inner) one is chosen.

Recently, Brent, Luk and Van Loan have proposed a parallel implementation of this algorithm
[1,2]. It consists in a reordering of the rotations (1) in order to execute them efficiently on a
square grid of systolic processors. With such an array of O(n X n) processors, the diagonalization
is then achieved in /inear, i.e. O(n), time. This striking result is due to the facts that

(i) several of the rotations in (1) can be performed in parallel,

(i1) successive “groups” of rotations can be pipelined on the square grid of processors.

Each of these two factors yields a speedup of the order of #. On the other hand, the
convergence of the algorithm is such that, in practice, the number of sweeps is almost
independent of n (see [1]).
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Various extensions of this basic algorithm were soon presented for related decompositions of a
matrix 4 or of a pair of matrices 4 and B. Those extensions differ mainly by the effect of
appropriate unitary transformations on the 2 X 2 diagonal blocks of 4 or of the pair (A4, B).
They include the eigenvalue decomposition algorithm for normal matrices proposed by Goldstine
and Horwitz [10]; the Schur decomposition algorithm proposed by Stewart [24], see also [4]; the
singular value decomposition originally proposed by Kogbetliantz [15,16] and rederived for
parallel computers by Brent et al. [1,2]; and the generalized singular value decomposition
algorithm presented by Paige [19]. Other related developments are the QR-decomposition
algorithm proposed by Luk [17] (which in fact is not iterative but terminates after 3n time steps),
the product singular value decomposition proposed by Heath et al. [13] and by Fernando and
Hammarling (8], and the construction of the “closest matrix” proposed by Ruhe [22].

Among all (standard or generalized) eigenvalue and singular value decompositions involving
only unitary transformations, there is definitely one that is missing and prevents the picture from
being complete: the generalized Schur form of a regular (i.e. det(B — A) # 0) pencil AB — A with
A and B arbitrary in € [11, p. 253]. It consists in constructing unitary matrices U and ¥ such
that

*=(AB—-A)V=(AB,—A4,), (2)
where 4, =(4, ;) and B = (13,- ;) are upper triangular. On sequential machines, (2) is typically
computed by the QZ-algorithm of Moler and Stewart [18). Here we present instead a Jacobi-like
method for constructing iteratively the matrices 4, and B,. Let us introduce it briefly. By
analogy with the above-mentioned algorithms, U (resp. V') will be approached by successive
application of Givens rotations G, (¢, d) (resp. G, (¥, e,)):

1 .. 0 0 e 0]
0 ... Cos ¢, eo. dpsing, ... 0| i
Gij(¢ka dk)= (3)
0 ... —d,sin¢, ... COS ¢ S
[0 ... 0 0 N
1 1

i J
(k=1,2, ...); d, stands for the complex conjugate of d,, |d, | =1, and it is assumed that, at
step k, a rotation in the plane (i, j) is performed. Denoting by A4, = (a'%¥’) and B, = (b{¥)) the
iterates after execution of the kth step, and writing only the effect on the related diagonal
blocks, we characterize the method as

al’? al cos ¢, —d, sing, ||af™P alk™P cos ¥, e, sin Y,
ol (k-1 - (| = o ’

0 afj) a;; ) a4 e, siny, cosy,
(4)

o,
B bk cos ¢, —d, sin ¢k][b§,-k‘1) b,(]’-‘“l)} cos ¥, e, sin xpk}
o |- (k=1)  p(k—1) :

0 bjj bﬂ bjj

d, sin ¢, cos ¢,

d, sin ¢, cos ¢, —e, sin y, cos Y

(5)
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An elementary 2 X 2 generalized Schur decomposition is thus realized at each step. It is easily
seen that (4)—(5) amounts to two 2 X 2 Schur decompositions since the matrices

{ cos Y,  —e, sin xpk”b(."“l) b(’.‘“l)]‘l[af{“l) ,(,k 1)]
— ., , .k L (k—1) (k~1) (k—1)
[ &k sin ¥, cos ¥ || b)) e B a;;
[ cos ¥, e, sin ¥, |
—é, siny, cos y, J

8
=
(=%

k 1 k-1 k—1 k—1) |~
[ cOs ¢ —d, sin qsk” (k=1) a,(-j )”bfi ) bi(j )]
7 k=1 k-1 k=1 k=1
[dk sin ¢, cos ¢y Jl j(, ) 4 )J[bf,- b )J

cos ¢, d, sin ¢k

(7

are now triangular. Yet none of these matrices is actually a submatrix of By '4, or 4,B; . In
this sense this method differs from Stewart’s standard Schur algorithm [24]. Nevertheless, when
convergence is almost achieved, the matrices 4, and B, are both nearly tnangular. If moreover
j =i+ 1, then the 2 X 2 matrices (6) and (7) are near to the corresponding 2 X 2 blocks of B; A,
and A4, B, respectively. This will be further analyzed in the sequel.

In the next section, we develop preliminary results about “normal pencils”, needed for a better
understanding of our method. In Section 3 the method and its possible variants are explained in
more detail and are related to Stewart’s Schur decomposition. Global and asymptotic conver-
gence are then analyzed in Sections 4 and 5, respectively. In Section 6 we give some test examples
illustrating the convergence analysis. Finally concluding remarks include comments about the
possible derivation of a real variant of the Schur algorithm.

—d, sin¢, cos ¢,

2. Normal pencils

The standard Schur form of a matrix 4 is diagonal if and only if A4 is normal. Similarly, in the
genera]ned situation, cnerml forms occur when the nenm] is “normal” in some sense. We

investigate these forms here. For convenience, one of both matrices of the pencil is first assumed
to be invertible, but it will be argued that this constraint is not crucial. Normality is important
because it can be associated to fast asymptotic convergence of Jacobi-like methods for comput-

ing Schur decompositions (see [24] and later sections).

Theorem 2.1. Let AB — A be a regular pencil with B invertible. Then there always exist unitary
transformations U and V yielding a generalized Schur decomposition

AB,—A,=U*(AB—A)V (8)
of the form
(i) AB,—A4,=T(AD,— D,) if B4 is normal
(i) A A, =1 \ \D, — D), if B~"A is normal,
(ii) )\BS A, =(AD,— DT, if AB™' is normal,

(iii) ABS ~A, = ADD —D,, if both B~ Y4 and AB ! are normal,
where D, and D, are diagonal and T is unit upper triangular.
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Proof. We start from any generalized Schur decomposition (8), which aiways exists. Decompose
then A, as T,D, and B, as T, D, with both T, and T, unit upper triangular. If B~'4 is normal,

-1, 1 e Ty O . L DR T T s, s
D, (T, 'T,)D, is normal and upper triangular by construction. Therefore, it must also be

diagonal. If D, is non-singular, then one has 7, b‘ 'T, =TI and (i) follows with T= T, = T,. If D, is
singular, then 7, 'T, = Tup is the identity matrix except possibly for non-zero elements above the
diagonal in the columns of 7, corresponding to zero diagonal elements in D,. Hence T,,D, = D,.
But then A4, could as well be decomposed as A, = T,D, with T, = T,T_'. Therefore T, 'T, =1
and (i) follows now with T=T, = T,.

If AB™! is normal, a similar reasoning yields (ii)

Finally, if both B"'4 and AB~' are normal, then we have simultaneously that AB, ~ 4, =
T()\D - D, \-—(XD — DT, for some unit unner tna oular matrices 7. and T.If )\D - D,

gl A ~“a’* S = EEsesr Frpr Tt

has dlstmct dlagonal elements for some value of A, then one must have T, = T, = I since thlS is
the only upper triangular matrix commuting with a diagonal matrix with distinct diagonal
elements, and (1ii) follows immediately. On the other hand, if AD,— D, has repeated diagonal
elements for all values A, then this must also be the case for D, and D, separately. We show
that (8) can then be updated by performing additional row and column transformations such
that 7, and T, become both the identity matrix. For simplicity of the argument, let us suppose

there is only one repeated value and the equal diagonal elements in D, and D, are adjacent, say,

(%)

Alpaal AARIRS j &

N = diac! + + ~ P v
L, = QLA Xy oy Xpp, Oy, 8y Xyyooiy Xy g,y

Db=diag{y1,.~., Yes B’”-’B’ Yiseeos yn}
Then it follows that

T;' = Tl = diag{fks ’f" In—l} (10)
with 7" unit upper triangular. Let now T=U3V* be the singular value decomposition of this
diagonal block. Because of the special form of D, and D,, the factors U and V can be
“absorbed” in the matrices U and V' and the new diagonal blocks of D, and D, become
respectively o3 and B2. In this updated decomposition one clearly has Tl T I and (iii) is
proved. O

An annoying detail in this theorem is the condition that B must be invertible. This can be
avoided as follows. Let AB — A4 be a regular pencil and pick arbitrary values s and ¢ (with
s*+ ¢?=1). Consider the new pencil

N(sB~cA)—(cB+s4). (11)
Tha aionmiralizng ~AF thic mvamnil and thaca ~AF A D A ava walatad ke
111C CIE ALVALUCD UL LI PCI V11 Alivl LIIvose UL /A D £1 1O 1llalvil U_y

X, =(ch, +sd,)/(sh,;— ca,), \,=4,/b,, (12)

where 4, and b,, are the diagonal elements of the generalized Schur decomposition (2) of
AB — A. This follows easily from the fact that if AB,— A, = U*(AB — A)V is a generalized
Schur decomposition for AB — A4, then N (sB,— cA,) — (c¢B,+ s4,) = U*[N'(sB — cA) — (¢B +
sA))V is a generalized Schur decomposition for N'(sB — cA) — (¢B + sA). One easily checks then
that if AB — A4 is regular, so is N'(sB — c¢4) — (¢B + sA4). Moreover, there is always a point s/c
which is not an eigenvalue of AB — 4, and hence sB — cA4 is then regular. Finally, whenever the
appropriate matrices are invertible, one easily checks that B~ 4 is normal iff (sB — cA) " '(¢B +
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sA) is normal and that 4B~ is normal iff (¢B + sA)(sB — c4)~ ! is normal. The transformation
(11) thus preserves the decompositions of Theorem 2.1 for a// pairs (s, ¢) and these exist if for
some pair (s, c) the matrices (sB — cA) '(cB + s4) and/or (cB + sA)(sB — cA) ' are normal.
From this we are led to the following definition of what could be called a “normal pencil”
AB — A.

Definition 2.2. A regular pencil AB — A is said (i) left normal, (ii) right normal, and (iii) normal,
iff there exist unitary transformations U and V yielding a generalized Schur decomposition
AB,.—A,=U*(AB—A)V (13)
respectively of the form
() AB,—A,=T(AD,— D,),
(1) AB,—4,=(AD,~ Da)T,
(i) AB,—A,=AD, —

e 4 AAAAAA o

mra T anmd N A
IG1C L/, allld L/, alv lagvllial auu

F—

Since the invertibility of B is not essential in this anymore, we wiil suppose in the sequel of
this paper that B is invertible in order to simplify all discussions.

3. Description of the method

Basically, we want to obtain the generalized Schur decomposition of a pencil AB — A by
applying to it rotations of the type (4)—(5) in an iterative manner. Notice that one of the two
matrices, say B, can be made triangular in a finite number of steps by a preliminary QR-decom-
position. We shall see that triangularity is then automatically maintained for the iterates B, in
the method described below. Although this preprocessing is not essential, it simplifies notations
and derivations, and also somewhat decreases the complexity of each iteration. Moreover 1t can
be executed SyStOi call y in sn time steps [1/]. Unless otherwise stated, we thus ass i
sequel that B is upper angular.

the st j

T ot than ha v lawer mart of 4 A meathad ic caid ta he crnvercent when tha
LAOL LilviL sz uw “ oL lbl, _y AUVYLL ycul, vl /lk. HivuUIvUu 10 daiul wo o \.«UllVClsCllL wiicCil LI
Frobenius norm of L,, i
TAEND> 7“7‘)72 (14)
I k I alm H :

I>m

tends to 0. Before examining this in further sections, we have to choose a particular ordering of
tha alamantary ratatinnmge and ta enerifu whicnh anclag ara ta ko camgidaead oitvan ota

Lllb \/l\/lll\/lltal_y lULatlUllD auu w Oyb\zll)' vvuu,u allélbb alv WU uUe LU TiSi uclicu al a Elvcll bLClJ

Remark first that ¢, and ¢, are each one of the two solutions of a quadratic equation Wthh

can be derived from (K\ or /'7\ T et us denote by &, {resn. ¢'~) the soluti for which !sin ¢
J \"O \lVOlJ yo} lll\-/ aUluI.l\)Ll lUl Vvlu\/ll ‘ l i yk

(resp. |sin ¢, |) is the nearest to 1, and by ¢, (resp. ¢ ) the other solution, at step k. The
rotations corresponding to ¢ and ¢, will b

corresponding to ¢; will be referred to as the “inner” rotations. In both pairs (¢, ¥,)
determined according to (4)-(5), inner and outer rotations are not necessarily associated with
each other. It is not difficult to derive from (6) that the product [tan ¢, - tan ¢ | is given by the

e referred to au the “outer” rotations, while those
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ratio of the off-diagonal elements in the 2 X 2 block before rotation:

|tan ¢ ;- tan Yo | = blgk-l)aj(.tk_l) (15)
e e g |
and, similarly from (7), that
|tan ¢y - tan = aj(:(_l)b}jk_l) 16
1 do| = a,(f—l)b,(,-k_l) — a,(,.k"l)b,(f'l) . (16)

These relations are used later on.

We now describe the method. As it is heavily inspired by the one proposed by Stewart in the
standard case (B = I'), we limit the description to essential features, referring to Stewart’s paper
[24, particularly Sections 3 and 4] for further developments. The method of Stewart is based on
the two following choices:

1. Only rotations in planes (i, i+ 1) are performed. At each step, the transfer between the
lower and the upper triangular parts of the matrix is limited inside the diagonal block, and
is only due to the annihilation of the element in position (i + 1, {). Other transfers, in
particular undesirable ones from the upper part to the lower part, are thus ruled out.

2. According to what precedes, only elements of the first subdiagonal are annihilated.
Therefore, in order to maximize the “mixing” of the matrix at each step, only outer rotations
are considered. This tends to ensure that a significant part of other elements of the lower
diagonal part move into the first subdiagonal and be subsequently annihilated. Neverthe-
less, in a number of situations, the outer rotations are close or even equal to the identity
matrix, and the algorithm may not converge. Attempts to basically improve this behavior
have failed so far [4].

Choice 1 is maintained in the generalized case. At step k, we thus have
12
Ll = 1l Lo 12— a1 (17)

The norm of L, never increases for increasing values of k. Additional features are that

(1) B, is then upper triangular as B, _; was,

(ii) the product of the 2 X 2 diagonal blocks of 4, and B;' is close to the corresponding
block of A, B;'.
The iterative process is then divided in a number of sweeps, during each of which all the lower
diagonal elements would be temporarily annihilated. As in the standard case [24], we consider
here two kinds of sweeps. A forward sweep consists of the following sequence of rotation planes:

(1,2)(2,3)...(n—=2,n—=1)(n—1, n)

1,2)(2,3)...(n—2, n—1)

(18)
(1,2)(2, 3)
(1’2)
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and a backward sweep corresponds to the sequence:

(n—1,n)(n-2,n-1)..
(n=1,n)(n—-2,n-1)..

3)(1,2)

w L»
S v

2,
2,

N

(19)
(n—l n)(n—2,n—1)
(n—1, n)

In the standard case, if the outer rotations are distant enough from the identity matrix, the
application of a forward or of a backward sweep of outer rotations essentially reduces to the
inversion of the order of the lower diaganals. The parallel implementation of these orderings in
the generalized case is the same as in the standard case, except that two matrices, instead of one,
are mapped on the array of processors (see [24, Fig. 4.3]). In particular a double sweep, consisting
of a forward and a backward sweep, can efficiently be pipelined on such an array.

The generalization of choice 2 is less immediate. In contrast to the standard case, two angles
are to be computed at each step and, since they are not independent, it is not possible in general
to retain for both the solution corresponding to the outer rotation. Also, to some extent,
convergence properties depend jointly on two choices: the side (left or right) on which an outer
rotation is apprieu and the type of Sweep UOr‘ ward or backward ) which is per formed. AruiCipaL-
ing on the next sectrons, we make this a little more precise in the two following pornts

1IN T4 il lha ol

tha tha rdad tha
\1) L wil D€ SNOWIi \QCL/U.UII 't} Ll.lal \IUUBIII_)'} IJIC PIUUCDD UUIIVDIECD PIUVIUDU lll.at 'Dlll \Pk I lb

large enough at each step of a forward sweep and that |sin ¢, | is large enough at each step of a

"\Q(‘]{‘!IQ!‘A CLI7AATY T"\anf{\f‘ﬂ wa ﬁhr\ncp f“\P cn]nhnn fnr oh fracn \'l \ COTrTag
VAVRWAGIW SYWLUP. 11101 VIVIV, W LIIVUSY IV SVLILUIUIL 3V P (WO . i) VULIeS

rotation at any step of a forward (resp. backward) sweep.
(2) Let us assume first that the process has reached a stage near the conver

(2) Let us assume first that the process has reached a stage near the conv .
alf,; is close to 0, and secondly that the pencil is right normal, i.e. that 4, B; ' is normal
Applying Theorem 2.1, we thus have a{%) b{® = b*) a{/>. Hence, except possibly for special
matrix patterns, the product (15) is close to O, whlle (16) takes yet a finite value. Since both inner
rotations are then close to the identity, the choice of the outer rotation for the transformation on
the left side (angle ¢,) seems to be appropriate. Conversely, if the pencil was left normal, the
outer rotation to the right side (angle ¥, ) would be chosen. Indeed, we shall prove (Section 5)
that the convergence of the process, when applied to a right (resp. left) normal pencil, is
“ultimately” quadratic through any forward (resp. backward) sweep if an outer rotation is
performed on the left (resp. to the right) side at each step.

Summing up, we propose the following method (its features will be analyzed and tested in the

rest of the paper):

Method. Let AB ~ A be an arbitrary pencil with B upper triangular. Sequences of iterates A, and
B, (k=1,2,...) are generated by applying to it an alternance of forward sweeps (18) and
backward sweeps (19), until the Frobenius norm (17) of the strictly lower part of A, is smaller than
a prescribed value or stagnates. At each step of a forward (resp. backward) sweep, an outer
rotation is performed on the left side (resp. right side), from which the right side (resp. left side)

7N

rotation is aeaucea such that me etememary aecomposnwn (4) (2) is ootaznea
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4. Global convergence

Stewart’s algorithm for computing the standard Schur decomposition of a matrix is not
convergent in general. The algorithm discussed here for computing the generalized Schur
decomposition of a pencil is not convergent either, to the same extent: there does not exist any
neat characterization of the whole class of pencils for which this algorithm converges, and not
any modification of the method is known which could guarantee convergence. Nevertheless, it is
possible to derive a nontrivial sufficient condition for convergence. We develop it now.

Let us apply the algorithm to some pencil AB, — 4, and let us follow its evolution over, say, a
forward sweep (a similar argument should hold for a backward sweep). For notational conveni-
ence, the reasoning will be illustrated for matrices of order 5. Such a formal simplification was
already used by Wilkinson in proving the ultimate quadratic convergence of the standard Jacobi
method for Hermitian matrices [26], and, more recently, by Fernando in the global convergence
proof of a particular implementation of the Kogbetliantz method for computing the singular
value decomposition of an arbitrary matrix [7]. In some respects, our result is related to
Fernando’s.

The pencil AB,— 4, is thus transformed by a sequence of ten Givens rotations, with the
following order of transformation planes:

(1,2)(2,3)(3,4) (4, 5)
(1,2)(2,3) (3, 4)
(1,2)(2, 3)

(1,2)

At step k, corresponding to the plane (i, i + 1), a pair of rotation angles (¢,, ¥, ) is computed in
such a way that the elements (i + 1, i) of 4, and B, are set or maintained to 0. Looking at the
sequence { A, }, we aim at bounding || Ly, || in terms of || Ly || (see (14)).

Let us detail the iterates A,. The first ones are shown below. Each lower element is identified
by a letter the index of which increases only when the value of the element is modified; x is

generic.

(20)

[ x x x x| [ x x x| X X x x X
a, x x X X 0 x X a, X x X
k=1 k=2
Ag=|bo e x x x| > b, ¢ x x x b, O X x
1,2) 2,3)
co fo ho x x g HL hy x X o L ko x x
| do 80 o Jo X |di & fo Jo X |41 8 i Jo X|
Fx x x Xx x| | x X X X
a, x X X X a, X X
k=3 k=4
e d b3 83 X X X e d b3 6‘3 b X X =A4 (21)
(3.4 4., 5)
6 f3 0 x x ¢y fa hy x X
| dy & i & xJ |4, 8 i3 0 x|
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The elements of the bottom row of 4, can be written as

r. 1 r- ~ 9
2 veo e coSs ¢y
: S d, sin ¢ (22)
- f 0 Gq SID @y~ COS ¢3 » \&& )
&3 8 )2 - 0
d2 ‘ dl (4] bl lld4 sin ¢4 : d3 sin ¢3 + COS ¢2J

[ — L. —

where part of their history is made explicit from (21). The Euclidean norm of the right-hand side
vector is readily seen to be equal to (1 — sin‘g, - sine, - sin‘p,)'/*. On the other hand, the
Frobenius norm of the right-hand side matrix equals || L, ||; indeed the equalities

2 2 2 __ 2 2 2 2
[by[“+ ler|“+ ldi| = lay|“+ |bs] "+ |c;3]°+ |da]7,

(23)
2 2 2 2 -2 2 : 2 \==
(&2 + 1A 15 = e *+ [ fa ]2+ 1851°% iz "= [hs]| "+ |i5]

follow from the fact that, at a given step, the norm of a line is altered only if one of its elements
is annihilated. Summing up, and taking into account that || L,|| is not increasing when k
increases, we have from (22) that

12
l

A T 20 13 12 _nr 24 -2, ., 2.
[i3] " T [ &3] T lda |7 s [[Ly]] "1 — SI7Qy - S1"y * SINQ, )

T n2{1 _ a2 Ny 21 20 ILYA
Tl Lg ]l LTSI Qy 0] =l Lg (] \L TSIy 4) \<9)
ar come anolac rl’:# and 4. . caticfvino
10T some angles ;4 and ¢, 4 Sallst ymng
Sin2¢2$4 2 Sin2¢2’4 2 Sin2¢4 M Sin2¢3 M Sin2¢2 . (25)

The norm of the bottom row is not modified by subsequent steps and the expression (24) thus
remains valid through them.

A same argument is now applied to the strictly lower triangular part of the (n —1) X (n—1)
leading principal submatrix of 4,. The next three steps are

r . . . -~ . . - s . . . ~n =
A A A A A A A A A A
0 x x x x a, x X Xx x
k=5 k=6
> |by 4 x x x| > ]|b 0 x x x
1,2 PR o l@x») PR L
Cq4 Js i3 X X Cq4 Jg Tiqg X X
| ds 84 i3 J X ] | ds & iy o x|
[x x x x Xx]
a, x x x x
k=17
- b e x x x|=4,
3.9
s f 0 x «x
| ds g is J3 x|
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Subsequent steps do not alter the norm of the (n — 1)th row, which can be expressed as
lesI?+ 1 f7 12 < LI La 12 = 11 Ly lI* cos’s 4] (1 — sin’, - sin'e)
<1 Ly ||? sin’g, 4 (1 = sin’p, - sin’e)
=\ Ls||? Sin2¢2’4(1 - Sin2¢6,7)
= || Lo||? Sin2¢2,4(1 - sin2<f>6’7) (26)
with
sin’gg ; > sin¢g ; > sin’e, - sin’ess. (27)

Similarly, after the 9th step:

X X X x X X X X
0 x x x x dg x X X
. b, e; x x x = by O X X|=A,
1,2 @3
¢ Jfo hs x x ¢ fo he x X
_d4 8 is fi x| _d4 81 e J3 X|
we have
112 < [ 11 Lo )2 = | Lall > €08’y g = 1| Ly || * sin’ 4 cO8’7] (1 — sin’gs )
<1 Lg || ? sin’, 4 - sin’ps 5 (1 — sin’py)
=l Lo || * sin’p, 4 Sin2¢6,7(1 - sin2¢9‘9)
= || Lo |l > sin’g, 4 - sin’es 7 (1 - Sinzqggs) (28)
with
sin’gy o = Sin’ o > sin’ho. (29)

Finally, the last step

X X X X X
0 X X X x
k=10
DO b e x X X A_ 4 vields |a, |2 = 0. (30)
X X

02Dl e; fio hs
ds 8 s J» X

Adding the contribution of each row (i.e. (24), (26), (28), and (30)), we can characterize the
effect of the entire forward sweep by

I Lyoll 2= Il Lo |l *(cos$, 4 + siny 4 - COS’ s 7 + sin’p, 4 - sin’ehg ; - c0s’dg )
< 1 Lol 2(1 — sin’$, 4 - sin’ - sin’dy g ) (31)
or, in terms of the rotation angles
Lol < [ Loll? [1 — (sin’p, - sin’e, - sin’¢, ) (sin’¢ - Sin2¢7)(sin2¢9)] . (32)

Clearly, this relation does not depend in any way on the triangularity of B. In fact, if B is full,
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the same inequality can be written for the iterates B,’s, with L, redefined accordingly. Also,
generalization to pencils of arbitrary order is immediate. On the other hand, a similar bound
holds for a backward sweep: simply, the angles ¢, ’s are then to be considered instead of the ¢,’s
As already mentioned, this result, as well as its proof, is formally comparable to one obtained by
Fernando in another context [7). Moreover, related bounds have been derived for various
Jacobi-like diagonalization processes, but both angle sets are involved in general [12,14]. Finally,
pote that (32) is also valid in the standard case (Stewart’s method); the distinction between
forward and backward sweeps is however not relevant anymore, since both angles are identical at
each step.

From (32) and the corresponding inequality for a backward sweep, we can directly infer the

PR

1ollo wmg suj]tczent condition for convergence to upper trlangular forms:

Theorem 4.1. Any Jacobi-like method, consisting of forward and backward sweeps of elementary
rotations (4)—(5) between adjacent rows and columns, is convergent if

0. El—e,eJU[n—¢, m+e€] through any forward sweep

and

i

_“._

= I R .
YeE | TE €]V T,

where € is a positive constant, independent of k.
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similar constraint was already considered by Forsythe and Henrici when studying the global
fo m
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4.1 obviously applies to the method defined in Section 3 and, a fortiori, to St
alrpndv mentioned, it remains an open _llm_sg on 0

global convergence occurs in the standard well as in the generalized cases.
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wart’s method. As
to characterize the class

5. Ultimate convergence

Near the convergence (“ultimately”), most of the Jacobi-like methods (with appropriate
orderings) converge quadratically. In general, this does not depend on whether they are globally
convergent or not. Ultimate quadratic convergence means (roughly) that, if the norm of the
matrix part which is to be annihilated is already smaller than some distance between the diagonal
elements (or their limit vaiues, e.g. the eigenvalues), then its decrease over a subsequent sweep of
elementary transformations is quadratic. When proposing his method for computing the stan-
dard Schur decomposition of an arbitrary matrix, Stewart indicated that its ultimate convergence
is quadratic for normal matrices having distinct eigenvalues [24, Section 5]. He gave a qualitative

malircic hagad AT tiearridr gt amto W a claacer Tanen ¢lan cizailas wacc:] £ PR N

alldl_yblb uabcu O1i LuLilliuily algulLliClits. vv i JllUw LICIC llldl a Siimiiar u:auu llUlub 101 lllC lllClllUU °
of Section 2 for computing the generalized Schur decomposition of a (left or right) normal pencil

(see Definition 2.2), and we develop a quantitative reasoning which in return applies to the

standard case. The followmg simple lemma will be useful.
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Lemma S5.1. Let N be a normal matrix. Then, for any partition

Ny, Nu]
N= 33
[Nzl Ny (33)

with square diagonal blocks, we have
I Ny |l = 1l Nyy Il (34)

Proof. Due to NN*=N*N, one has N;;Nj] + N, Ni3 = NIN;; + Nyi N, The result follows
from comparing traces in this relation. O

We now state the main result. The parameter S stands for the number of elementary
transformations in a forward or backward sweep: S = I[n(n — 1)].

Theorem 5.2. Let the pencil AB — A have distinct eigenvalues
20 = min|A,—A,| >0. (35)
i*j
Assume that B is upper triangular and non-singular. Generate the sequence { A, B, } by the method
defined in Section 3. Assume also that a state has been reached when

(Q+Vn =1} L NB 7 |, < 38, (36)

where L, denotes the strictly lower part of A,. Then the iterates A, produced at the subsequent steps
converge to the upper triangular form according to
4SIB7 I,

ILrislh < ——5— I Ll ? (37)

over
— any forward sweep, if AB — A is right normal,
— any backward sweep, if AB — A is left normal,
~ any ( forward or backward) sweep, if AB — A is normal.

Proof. The proof is inspired, while it is more complex, by those for standard eigenvalue and
singular value decompositions by Jacobi methods [20,21,26]. We detail the case of a right normal
pencil, assuming thus that AB~! is normal. For left normal or normal pencils, the argument is
quite analogous.

Consider some step k (k>r) in a forward sweep, corresponding to the rotation plane
(i, j=i+1) and to the rotation angles (¢, ¥,). Denote by a hat the corresponding 2 X 2
diagonal blocks of 4, and B,. At the step, the 2 X 2 matrix

A oA q m;  m;;

AkB k= mﬁ mjj (38)
is implicitly triangularized by the outer rotation of angle ¢, (see (7) and the definition of the
method in Section 3) or, equivalently, the matrix

m.. -m;
[ —m, om, } (39)

ij i
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is implicitly triangularized by the inner rotation of angle (¢, — 7). This angle is easily shown to
verify

2{m,,|
1 t
-1 £ —— 4
tan(o, = 37) | < 37— (40)
provided that

'mij”mjil < 1

'mii_mjjlz S 4

(41)

holds. This is directly derived from an analysis of the quadratic equation yielding tan(¢, — 37)

or, more generally, follows from a perturbation result of Stewart [23, Theorem 4.11] applied to

the matrix (39). We verify condition (41) in the following three steps.

~ Denote N, = A4, B; ' =(n,,). Remark that N, is normal and B, is upper triangular at every
step k. For any block partitioning of the type (33) of N,, 4,, and B,, we have (N,),; =
(Ay)5(B,)1'. This and Lemma 5.1 gives (k > r)

-1 ~1 —
(Nl = 1N Il = 1(A)u (B T <UL (B 2 < WLl B7H 5
<L IB™ M2, (42)
where the invariance of the 2-norm with respect to orthogonal transformations and the
monotonic decrease of || L, || for increasing values of k are taken into account.

— It is easily seen that the difference between A kf?,: 1 and the corresponding 2 X 2 block of
A, B; ', say X, satisfies
n; ny A oA . -1
=A B, + X, with | X||<|[L || B |,- (43)

Ry Ry

Note that this bound clearly requires j =i + 1. We thus have
Vmy = ngl, \my—n; ) <L B 2, (44)
and, using (42),
Im |, 1my | <20 L) )| B7 ] 5 (45)
— On the other hand, the Gershgorin circle theorem [11, p. 200} yields here

i 1/2

i—1 n -1 n
I}\i_niil< Z lnim|+ Z lnim|<vnm1 angm+ Z nlzm (46)
m=1 =1 m=i+1

m=i+1 m
for some eigenvalue A;. Hence
|[Ai—ny | <Vn=1||L || B7l, (47)

results from the application of Lemma 5.1 to the second sum in (46) and from the fact that the
Frobenius norm of the strictly lower part of N, is smaller than || L[| || B™'||,. Due to (44)
and (46), we thus have

[Ai—=my | < N —ny|+|n;—my;| <A +Vn=1)||L | | B~"],. (48)

Same bounds hold for the distance between n 4 or m; and another eigenvalue A ’ Therefore,
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the assumption (36) ensures that every diagonal element is associated unequivocally to one
eigenvalue. Moreover,

|m;—m | =(m,=X)~ (A, =X,) = (A, —m)|
= l>\i—>\j|_|7\i_mii _I}\j—mjjl
>28 =201+ Vn—=1)| L1 1 B7 |, > 8. (49)

Combining (37), (45), and (49), one easily verifies that the condition (41) is satisfied (if n > 2).
The bound (40) is then valid. We obtain

AL IB N,

|tan(¢, — 37) | < 5 (50)
By using here the estimation (32), valid over a forward sweep, in the form
r+S8 r+S
I1Lys sl < ||L,n2(1 - 11 sin2¢k) <L X cos’y, (51)
=r k=r

and noting that |cos ¢, | < [tan(¢, + 37) |, we finally have

r+S8 2 —-1y2 4 —1512
16||L,|I"I1B |l 16S||L,||I* 1Bl
HLr+S“2<“Lr“2k; 82 z = 82 = ’ (52)

ie. (37). O

This result can be commented in several respects:

(i) According to Theorem 5.2, the ultimate convergence of our method is quadratic during (at
least) every second sweep if the pencil is right or left normal and during any sweep if the pencil is
merely normal. The “type of normality” of the current pencil is thus not presumed. On the
contrary, if a pencil was known to be left (or right) normal, a variant of the method could of
course be devised where only backward (or forward) sweeps would be performed. These
situations, as well as the behavior of the method for non-normal pencils, are illustrated in the
next section. Note however that, as mentioned in Section 3, the most efficient parallel implemen-
tation is obtained by alternating forward and backward sweeps throughout the iterative process.

(ii) The main difference between the estimate (37) and other ones valid for standard
Jacobi-like methods is the presence of ||B~}||, in the coefficient. Whether this factor reflects real
features is also tested in the next section.

(iii) The assumption that B is upper triangular is not essential. Without it, an inequality of the
type (37) could still be obtained. But the condition (36) and the coefficient of the quadratic term
in (37) would then take a (much) more complicated form, due in particular to the harder
derivation of analogues of (42) and (43). Since moreover triangularity leads to lower computa-
tional complexity, we do not go deeper into the full case.

(iv) Clearly, Theorem 5.2 applies to Stewart’s method for computing the standard Schur
decomposition [24]. It suffices to set B to I in the above statement. Furthermore a factor 2 can
be saved in (37) by looking closely at the proof. Indeed, in the standard case, we have m,, =n,,
(X =0 in (43)). Hence, the inequality |n,;|,|n ;| <||L,| is obtained instead of (45), and (48)
reduces to (47). Taking this into account, we can write the following slightly sharper result:
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Theorem 5.3. Let the normal matrix A have distinct eigenvalues
286 = min |\, —A;| > 0. (53)

i+j

Generate the sequence { A, } by Stewart’s method. Assume that a state has been reached when

Vn— 1L, < 18, (54)
where L, denotes the strictly lower part of A,. Then the iterates A, produced at the subsequent steps
converge to the upper triangular form according to

2/s
Lpssll < —g—llLrHZ- (55)

Again, no distinction has to be made here between forward and backward sweeps since both
angles are identical at each step. Since the Schur form of a normal matrix is diagonal, Theorem
5.3 slightly extends a result of Ruhe [21] who proved the ultimate quadratic convergence of the
Jacobi method for diagonalizing a normal matrix by the “optimal” procedure of Goldstine and

Horwitz [10], i.e. by minimizing

at each step k. The Schur method, while not optimal in this sense, exhibits the same convergence
rate; moreover, the coefficient in the bound (55) is very close to Ruhe’s.

(v) Theorems 5.2 and 5.3 are valid for pencils having distinct eigenvalues. No attempt was
made to generalize it for pencils having multiple eigenvalues. Nevertheless, it can be conjectured
(as Stewart did) that in the latter case ultimate quadratic convergence still holds, provided that
the diagonal elements associated to the multiple eigenvalues occupy adjacent positions. Indeed,
under this condition, proofs have been given for a number of Jacobi-like processes (e.g. the
diagonalization of Hermitian matrices [25] and the singular value decomposition of triangular
matrices [3]). In particular, the above-mentioned result of Ruhe [21] was originally stated also for
this situation.

6. Numerical tests

We illustrate now the analysis presented in the prewous sections. In partlcular we focus on

+ not retri ad thha al D — T wha hnila Anvrn t
L L IC

of th
proper ties of the me rieved in tne oyu,uu case B =1 where it boils down Lo

Stewart’s one.

;-
,.

Ac in the ct ndqrﬂ case., converegence may stagnate whan onter anolag tand ta 0 tyninal
4 B dax AL D LELAL (*S Q=3 €A s WAL 7\116\1“\/\.{ lllu] L’buellul\l YYiliwii wulwld ullél\lo Lwiiv W v.e 42 L Pl\/u.‘»
example of this is
- — - P r - . 1
1 0 0 0
01 0 0 0 0 .
Al . e T (56)
0 0 1 0 0 0 0 1
0 0 ... 0 11 (1 O ... O 0 |

It is easily seen that all angles of inner and outer rotations are here equal to 0 and hence that the
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matrix does not change anymore. Yet the pencil is normai (B is the identity and A4 is unitary)
and ultimate quadratic convergence will result, provided stagnation does not occur. Clearly the
recommendation of Stewart to perform a sweep of random rotations applies here too. But such
examples are pathological and usually are not encountered.
In the numerical examples detailed below, stagnation was u‘linely to occur since a random

generator was used to construct them. Following Theorem 2.1, we use the respective decomposi-
tions:

AB,— A, =U(AD,—D,)V*,

AB,—A_=U(AD,—D,)TV*,

AB,, —A,,=UT(AD,~ D,)V*,
AB—A=U[AD,T-D,(T+aE)|V*

. . .

L n tmmssmnal smamni]l wislt e nssean] sanem il L-J-‘o v o al 2mam il ann A nnleltanamr smna il Il aen NN 4 d N
10Ul a 11Vllll peilivil, 1iglit noliliai PCllb 1, 1ITIL luillal polivil, iU alvlul Yy pCll\/ 1. I1CIC Ua alidl Ub
are random dlagonal matrices, 7 is a random unit upper triangular matrix, V is a random
inita matrm and I ic a “ﬂlfo v matriv ~chn n crich that R ic iimnar trianonlarf{ A Af o~

Lubecu_y lllutlll\, ALl U 10 A4 uiaval _y 111CALL i \/IIUOUII UL vy D 10 uyk)\dl lllmlsulal \[1’ v \J\Jul D\/, 10

full in general). Finally, E is a random strictly upper triangular matrix (with zero diagonal)

which makes AB — 4 non-normal for anv value of a# 0. Onlv 10 % 10 real matrices are

vhich makes ) non-normal for any value of Only eal matrice
considered. By construction all these pencils clearly have real eigenvalues (namely the elements
of D,D, 1\ All tests were performed on a VAX-3200 with relative precision ¢ = 1.4E-17.

We f1rst deal with convergence rate for pencils getting closer to a normal one. We apply the
method of Section 3 to pencils AB—A = U[AD, — D,(I+ aE)IV* for several values of a, see
Table 1.

Table 1
K a=1 a=0.1 a=0.01 a=0.001 a=0

0 1.33E400 6.88E_01 6.92E-01 6.94E-01 6.94E-01

1 4.52E-01 2.99E-01 3.00E-01 3.01E-01 3.01E-01

2 1.75E-01 1.40E-01 1.09E-01 1.03E-01 1.03E-01

3 9.02E-02 3.50E-02 2.02E-02 1.45E-02 1.40E-02

4 6.41E-02 6.34E-03 5.52E-04 2.01E-04 1.80E-04

5 5.04E-02 2.29E-03 7.28E-06 2.66E--07 445E_08

6 4.20E-02 4.85E-04 6.38E-08 2.98E-10 -

7 3.70E-02 1.61E-04 1.18E-09 5.34E-13 -

8 3.29E-02 5.78E-05 3.08E-13 - -

9 3.02E-02 1.54E-05 7.83E-15 - -
10 2.81E-02 8.86E-06 - - -
11 2.64E-02 2.14E-06 - - -
12 2.53E-02 1.37E-06 - - -
13 2.41E-02 3.24E-07 - - -
14 2.34E-02 2.12E-07 - - -
15 2.25E-02 4.97E-08 - - -
16 2.19E-02 3.27E-08 - - -
17 2.12E-02 7.66E-09 - - -
18 2.08E-02 5.05E-09 - - -
19 2.01E-02 1.17E-09 - - -
20 1.98E-02 7.77E-10 - - -
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Table 2

}‘Bm—Am ABln_Aln

K Forward Backward Alternate K Forward Backward Alternate
0 6.01E-01 6.01E-01 0 4.77E-01 477E-01 4.77E-01
1 3.03E-01 2.60E-01 3.03E-01 (f) 1 2.21E-01 2.04E-01 2.21E-01 (f)
2 1.61E-01 1.49E-01 9.68E-02 (b) 2 1.15E-01 1.00E-01 6.67E--02 (b)
3 7.41E-02 9.54E-02 2.97E-02 (f) 3 8.41E-02 7.395E-02 3.44E-02 ()
4 3.67E-02 7.06E-02 1.88E-02 (b) 4 7.16E-02 5.62E-02 7.58E-03 (b)
5 1.36E-02 5.38E-02 4.63E-03 (f) 5 6.29E-02 3.40E-02 4.09E-03 (f)
6 3.28E-03 4.53E-02 3.41E-03 (b) 6 5.50E-02 6.11E-03 7.85E-05 (b)
7 8.42E-05 3.80E-02 3.57E-05 (f) 7 5.01E-02 1.52E-04 4.37E-05 (f)
8 6.11E-08 3.31E-02 3.77E-06 (b) 8 4.59E-02 3.59E-08 9.83E-09 (b)
9 2.50E-14 2.85E-02 4.14E-11 (f) 9 4.22E-02 5.00E-15 1.55E-09 (f)

10 - 2.52E-02 2.17E-12 (b) 10 3.88E-02 - -

11 - 2.20E-02 11 3.58E-02 - -

In this example the gap between any two eigenvalues is 28 = 0.06 and ||B™!||,~8. The
parameter K denotes the index of the sweep. Values smaller than 1.E-16 are left out as an

indication of completed convergence.

The behavior is very similar to that of the standard case [24]. When a pencil is more distant
from a normal pencil, one observes gradual deterioration of the quadratic convergence as was
also reported in [24]. The convergence with a =1 is linear and very slow. For examples with a

larger gap, a better convergence has been observed.

The second example involves two pencils AB,, — A4, and AB,, — A4,,. For each of these pencils
we use three different methods: one involving only forward sweeps, one with only backward

Table 3
K Right normal Left normal

0 4.88E-01 1.54E-01
H 1 1.95E-02 6.99E-03
(b) 2 7.26E-03 3.19E-03
® 3 3.59E-03 1.89E-03
(b) 4 1.18E-03 1.29E-03
) 5 6.29E-04 8.56E-04
(b) 6 2.87E-04 6.17E-04
() 7 8.48E-05 5.27E-04
) 8 6.31E-05 6.27E-05
(0 9 1.60E-05 3.84E-05
(b) 10 1.58E-05 6.08E-06
® 11 3.45E-06 5.02E-06
(b) iz 3.44E-06 2.13E-06
® 13 1.76E-07 1.82E-06
(b) 14 1.60E-07 7.57E-09
) 15 2.37E-10 6.70E-09
(b) 16 2.31E-10 9.40E-14
(0 17 - 4.20E-14
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Tabie 4
K Normal Right normal Left normal

0 5.37E-01 5.04E-01 411E-01
) 1 2.36E~01 1.73E-01 1.81E-01
(b) 2 6.92E~02 5.40E-02 2.93E-02
® 3 1.08E~02 7.75E-03 9.31E-03
(b) 4 2.65E-04 1.38E-03 1.78E-03
® 5 7.29E~-08 2.96E-04 3.90E-04
(b) 6 - 2.65E-04 4.94E-07
® 7 - 1.42E-06 9.21E-08
(b) 8 - 1.24E-06 3.00E-15
() 9 - 6.18E-12 -
(b) 10 - 3.15E-13 -

sweeps, and one where forward and backward sweeps alternate (i.e. the method we finally
recommended in Section 3). The eigenvalues of the pencils are the same as in the previous
example (28 = 0.06) and the “inverse norms” are ||B..'||, = 11 and || B} '||, = 15, see Table 2.

One observes that quadratic convergence is indeed only obtained for forward sweeps in the
right normal case and for backward sweeps in the left normal case. Notice that the alternate
method converges in approximately the same number of sweeps although quadratic convergence
occurs only every other sweep (the forward and the backward sweeps of the alternate method are
marked in the last column). The convergence appears to be faster in the beginning of the process,
which is not explained by our analysis but ties up with Stewart’s remark that one double sweep
seems to perform better than two forward or two backward sweeps. ‘

In the third example we apply our method to two pencils AB,, — A,, and AB,, — A,, with
large inverse norms ||B Y|, = 1.E + 05 and || B;,'}j, = 1.E + 05, in order to check the convergence
results of Theorem 5.2. The large inverse norms were obtained by using a badly conditioned T
matrix. The gap is still 26 = 0.06, see Table 3.

One observes here that quadratic convergence starts only around steps 14-15 (Theorem 5.2
guarantees that it occurs after ||L,|| < 1.E-07) and that it is significantly attenuated because of
the factor 4/S||B~!||,/8 (approximately 1.E + 08 here).

The final example deals with closp elgenvalues (not adjacent in the final form). We generated
three pencils AB, — 4,., AB,, and AB,, Aln, all having the same eigenvalues. The gap
is 28 ~ 0.0008 and the inverse norms are (B U, =50, {|Bol, =190, and ||B;.!||, = 180; see

Table 4.

These last two examples suggest that, while the condition (36) for quadratic convergence seems
to reflect practical behav10r, the coefficient of the bound (37) could be overestimated. In
particular, further tests and possibly a deeper theoretical analysis are needed to estimate the

exact influence of ||B™!||, and 8 on the convergence rate.

7. Conclusion

We have presented and analyzed a Jacobi-like method for computing the generalized Schur
decomposition of a regular pencil. To some extent, this work may seem to be academic.
Nevertheless, its interest is (at least) threefold:
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~ It fills a gap. The obtention of the generalized Schur form by a Jacobi-like method is the only
classical decomposition by unitary transformations that has not been investigated yet. Such
methods have benefited from a renewed attention for a few years due to their high inherent
parallelism. Moreover, to be complete, it is worthwhile to mention that a generalized
eigenvalue decomposition aigorithm for symmetric-definite pencils, using non-unitary elemen-
tary congruences, has been proposed by Falk and Langemeyer [5,6] and by Zimmermann [27].

- It generalizes and completes previous results. Our method extends the one of Stewart [24]
from matrices to pencils Also quantitative results are given for global and ultimate conver-
gence which are valid for both the standard and the g,cucxauLcu cases, whereas Stewart’s
convergence results for the standard case are only qualitative. Interestingly, the bounds w

1t h 1 +tn th a A F
obtain here are similar to those derived for various decompositions (e.g. [7,12,14,20,21, 26])

— A class of “normal” pencils is introduced as a natural extension of normal matrices. Our

method shows ultimate quadratic convergence for these pencils in precisely the same manner
as Stewart’s method behaves for normal matrices.
A few guestions remain unanswered:

FaN Losliolls 106D

— The ultimate convergence is
only conijectured to be so fo
the diagonal.

— The influence of B~ ! and of the gap 28 (see Theorem 5.2) on the convergence rate is observed
up to some extent in our examples, but not completely understood.

— For (pencils of) real matrices, one could reformulate the method such that only real arithmetic
is used. This then involves 4 X 4 real orthogonal transformations as basic operations of the
method. Outer rotations have to be defined appropriately. Their computation requires the
solution of either a 4 X 4 (generalized) eigenvalue problem, or a (set of) quadratic 2 X 2 matrix

equation(s).

proved to be quadratlc for pencils having distinct eigenvalues, but
or multiple or clustered eigenvalues, provided they are adjacent on
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