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Abstract: We develop a Jacobi-like scheme for computing the generalized Schur form of a regular pencil of matrices 
h B - A. The method starts with a preliminary triangularization of the matrix B and iteratively reduces A to triangular 
form, while maintaining B triangular. The scheme heavily relies on the technique of Stewart for computing the Schur 
form of an arbitrary matrix A. Just as Stewart’s algorithm, this one can efficiently be implemented in parallel on a 
square array of processors. This explains some of its peculiarities, and at the same time yields further insight in 
Stewart’s algorithm. 
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1. Introduction 

The cyclic by rows version of the Jacobi algorithm for computing the eigenvalue decomposi- 
tion of an n x n Hermitian matrix performs iteratively “sweeps” of unitary transformations: 

(1,2)(1,3)(1,4)...(1, n-l)(l,n) 

(2, 3) (2,4) . . . (2, n - 1) (2, n) 
. . . (1) 

(n - 2, n - 1) (n - 2, n) 

(n - 1, n> 

where (i, j) denotes a Givens rotation that only affects rows and columns i and j such that the 
elements (i, j) and ( j, i) are annihilated. For each of these annihilations, there are two possible 
angles from which the smaller (or inner) one is chosen. 

Recently, Brent, Luk and Van Loan have proposed a parallel implementation of this algorithm 
[1,2]. It consists in a reordering of the rotations (1) in order to execute them efficiently on a 
square grid of systolic processors. With such an array of 0( n x n) processors, the diagonalization 
is then achieved in linear, i.e. O(n), time. This striking result is due to the facts that 

(i) several of the rotations in (1) can be performed in parallel, 
(ii) successive “groups” of rotations can be pipelined on the square grid of processors. 
Each of these two factors yields a speedup of the order of n. On the other hand, the 

convergence of the algorithm is such that, in practice, the number of sweeps is almost 
independent of n (see [l]). 
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Various extensions of this basic algorithm were soon presented for related decompositions of a 
matrix A or of a pair of matrices A and B. Those extensions differ mainly by the effect of 
appropriate unitary transformations on the 2 x 2 diagonal blocks of A or of the pair (A, B). 
They include the eigenvalue decomposition algorithm for normal matrices proposed by Goldstine 
and Horwitz [lo]; the Schur decomposition algorithm proposed by Stewart [24], see also [4]; the 
singular value decomposition originally proposed by Kogbetliantz [l&16] and rederived for 
parallel computers by Brent et al. [1,2]; and the generalized singular value decomposition 
algorithm presented by Paige [19]. Other related developments are the QR-decomposition 
algorithm proposed by Luk [17] (which in fact is not iterative but terminates after $n time steps), 
the product singular value decomposition proposed by Heath et al. [13] and by Fernando and 
Hammarling [8], and the construction of the “closest matrix” proposed by Ruhe [22]. 

Among all (standard or generalized) eigenvalue and singular value decompositions involving 
only unitary transformations, there is definitely one that is missing and prevents the picture from 
being complete: the generalized Schur form of a regular (i.e. det( B - A) $0) pencil h B - A with 
A and B arbitrary in $Yxn [ll, p. 2531. It consists in constructing unitary matrices U and V such 
that 

U* = (AB - A)V= (XB, - A,), (2) 
where A, = ( zij) and B, = ( Lii) are upper triangular. On sequential machines, (2) is typically 
computed by the QZ-algorithm of Moler and Stewart [18]. Here we present instead a Jacobi-like 
method for constructing iteratively the matrices A, and B,. Let us introduce it briefly. By 
analogy with the above-mentioned algorithms, U (resp. V) will be approached by successive 
application of Givens rotations Gij(& dk) (resp. Gij( #k, ek)): 

1 . . . 0 . . . 0 . . . 0 

o... * cos & . . . d, sin & . . . 0 

0 . . . -dk sin+,, . . . cos & . . . 0 

+i 

(3) 

‘j 

0 . . . 0 . . . 0 . . . ;. 

t T 
i i 

(k= 1, 2, . . .); dk stands for the complex conjugate of d,, (d, 1 = 1, and it is assumed that, at 
step k, a rotation in the plane (i, j) is performed. Denoting by A, = (a,‘:)) and B, = (bjk’) the 
iterates after execution of the k th step, and writing only the effect on the related diagonal 
blocks, we characterize the method as 

cm +k -d, sin C& 

dk sin Gk cos +k 

cos +k -d, sin +k 

dk sin & cos +k Ii 
@-1’ 

II 
b!k-1’ 

'I 
b(k-1) 
J' 

b(k-1) 
3J 

cos +k ek sin J/k 

- ek sin $k cos +k I 
7 

(4) 

cos +k ek sin qk 1 
-2, sin qk cos +k 

(5) 
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An elementary 2 X 2 generalized Schur decomposition is thus realized at each step. It is easily 
seen that (4)-(5) amounts to two 2 x 2 Schur decompositions since the matrices 

[ 

cos #k -ek sin qk b!k-l) 

Z, sin #k cos 1c/k 
][ b;&rj :;:::I’[ $1:; $:Z] 

X 
i 

cos #k ek sin qk -2, sin Gk cos #k 1 (6) 
and 

i 

cos +k 

c?~ sin r#~ 
-;:si;k+j[ $1; $::][ i;::: ;;:::i’ 

i 

cos @k dk sin $Q 
X 

- dk sin & cos +‘k 1 (7) 
are now triangular. Yet none of these matrices is actually a submatrix of BklAk or A$,‘. In 
this sense this method differs from Stewart’s standard Schur algorithm [24]. Nevertheless, when 
convergence is almost achieved, the matrices A, and Bk are both nearly triangular. If moreover 
j = i + 1, then the 2 X 2 matrices (6) and (7) are near to the corresponding 2 X 2 blocks of BklAk 

and A,B;‘, respectively. This will be further analyzed in the sequel. 
In the next section, we develop preliminary results about “normal pencils”, needed for a better 

understanding of our method. In Section 3 the method and its possible variants are explained in 
more detail and are related to Stewart’s Schur decomposition. Global and asymptotic conver- 
gence are then analyzed in Sections 4 and 5, respectively. In Section 6 we give some test examples 
illustrating the convergence analysis. Finally concluding remarks include comments about the 
possible derivation of a real variant of the Schur algorithm. 

2. Normal pencils 

The standard Schur form of a matrix A is diagonal if and only if A is normal. Similarly, in the 
generalized situation, special forms occur when the pencil is “normal” in some sense. We 
investigate these forms here. For convenience, one of both matrices of the pencil is first assumed 
to be invertible, but it will be argued that this constraint is not crucial. Normality is important 
because it can be associated to fast asymptotic convergence of Jacobi-like methods for comput- 
ing Schur decompositions (see [24] and later sections). 

Theorem 2.1. Let hB - A be a regular pencil with B inuertible. Then there always exist unitary 
transformations U and V yielding a generalized Schur decomposition 

hB,--A,= U*(hB-A)V (8) 

of the form 
(i) X B, - A, = T(A Db - DO), if B-IA is normal, 

(ii) hB, - A, = (AD, - D,)T, if AB-’ is normal, 
(iii) AB, -A, = AD, - D,, if both B-IA and AB-’ are normal, 

where DO and Db are diagonal and T is unit upper triangular. 
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Proof. We start from any generalized Schur decomposition (8) which always exists. Decompose 
then A, as T,D, and B, as TbDb with both T, and Tb unit upper triangular. If B-IA is normal, 
Dil( Tc’T,)D, is normal and upper triangular by construction. Therefore, it must also be 
diagonal. If D, is non-singular, then one has T;‘T, = I and (i) follows with T = To = Tb. If D, is 
singular, then TilTa A T& is the identity matrix except possibly for non-zero elements above the 
diagonal in the columns of Tup corresponding to zero diagonal ele_ments in 0,. Hence Tup D, ; D,. 
But then A, could as well be decomposed as A, = T,D, with T, L T,T&‘. Therefore T;‘T, = I 
and (i) follows now with T = fa = Tb. 

If AB- ’ is normal, a similar reasoning yields (ii). 
Finally, if both B-IA and AB-’ are normal, then we have simultaneously that hB, - A, = 

T,( AD, - Da) = (AD, - 0,) c for some unit upper triangular matrices T, and c. If AD, - Da 
has distinct diagonal elements for Some value of X, then one must have Tl = T, = I since this is 
the only upper triangular matrix commuting with a diagonal matrix with distinct diagonal 
elements, and (iii) follows immediately. On the other hand, if AD, - D, has repeated diagonal 
elements for all values X, then this must also be the case for D, and D, separately. We show 
that (8) can then be updated by performing additional row and column transformations such 
that T, and T, become both the identity matrix. For simplicity of the argument, let us suppose 
there is only one repeated value and the equal diagonal elements in D, and D, are adjacent, say, 

D,=diag{x, ,..., xk,a ,..., a,x! ,..., xn}, 

D,=diag{y,,...,y,, P,...,P, Y,,...,Y,}. 
(9) 

Then it follows that 

T, = T, = diag{ I,, f, I,_,} (10) 

with f unit upper triangular. Let now f = fi2p* be the singular value decomposition of this 
diagonal block. Because of the special form of D, and D,, the factors c and fi can be 
“absorbed” in the matrices U and V and the new diagonal blocks of D, and D, become 
respectively a,$ and p_$. In this updated decomposition one clearly has fr = $ = I and (iii) is 
proved. q 

An annoying detail in this theorem is the condition that B must be invertible. This can be 
avoided as follows. Let hB - A be a regular pencil and pick arbitrary values s and c (with 
s* + c* = 1). Consider the new pencil 

h’(sB-CA)-(cB+sA). 

The eigenvalues of this pencil and those of AB - A are related by 

(11) 

x: = ( csii + &)/( sgii - caii)) xi = a^,i/5ii) 02) 

where a^,, and hii are the diagonal elements of the generalized Schur decomposition (2) of 
X B - A. This follows easily from the fact that if A B, - A, = U * ( AB - A) V is a generalized 
Schur decomposition for X B - A, then X’( sB, - CA,) - ( cB, + sA,) = U * [ X’(sB - CA) - ( CB + 
sA)]V is a generalized Schur decomposition for X’( sB - CA) - (cB + $A). One easily checks then 
that if X B - A is regular, so is X’( sB - CA) - (cB + sA). Moreover, there is always a point s/c 
which is not an eigenvalue of A B - A, and hence sB - CA is then regular. Finally, whenever the 
appropriate matrices are invertible, one easily checks that B-‘A is normal iff (sB - CA)-‘( cB + 
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sA) is normal and that AB-’ is normal iff (cB + sA)( sB - CA)-’ is normal. The transformation 
(11) thus preserves the decompositions of Theorem 2.1 for all pairs (s, c) and these exist if for 
SOme pair (s, c) the matrices (sB - CA)-‘(cB + sA) and/or (cB + sA)(sB - CA)-’ are normal. 
From this we are led to the following definition of what could be called a “normal pencil” 
XB-A. 

Definition 2.2. A regular pencil AB - A is said (i) left normal, (ii) right normal, and (iii) normal, 
iff there exist unitary transformations U and V yielding a generalized Schur decomposition 

hB,-A,= U*(AB-A)V (13) 

respectively of the form 
(i) XB, -A, = T( XD, - D,), 

(ii) AB, -A, = (AD, - D,)T, 
(iii) AB, -A, = hD, - Da, 

where Da and D, are diagonal and T is unit upper triangular. 

Since the invertibility of B is not essential in this anymore, we will suppose in the sequel of 
this paper that B is invertible in order to simplify all discussions. 

3. Description of the method 

Basically, we want to obtain the generalized Schur decomposition of a pencil hB - A by 
applying to it rotations of the type (4)-(5) in an iterative manner. Notice that one of the two 
matrices, say B, can be made triangular in a finite number of steps by a preliminary QR-decom- 
position. We shall see that triangularity is then automatically maintained for the iterates B, in 
the method described below. Although this preprocessing is not essential, it simplifies notations 
and derivations, and also somewhat decreases the complexity of each iteration. Moreover, it can 
be executed systolically in +n time steps 1171. Unless otherwise stated, we thus assume in the 
sequel that B is upper triangular. 

Let then L, be the strictly lower part of A,. A method is said to be convergent when the 
Frobenius norm of L,, i.e. 

tends to 0. Before examining this in further sections, we have to choose a particular ordering of 
the elementary rotations and to specify which angles are to be considered at a given step. 

Remark first that $k and #k are each one of the two solutions of a quadratic equation which 
can be derived from (6) or (7). Let us denote by +o (resp. #o) the solution for which (sin C& ( 
(resp. Jsin Gk I) is the nearest to 1, and by +i (resp. #i) the other solution, at step k. The 
rotations corresponding to +o and Go will be referred to as the “outer” rotations, while those 
corresponding to 4, will be referred to as the “inner” rotations. In both pairs (+k, #k) 
determined according to (4)-(5), inner and outer rotations are not necessarily associated with 
each other. It is not difficult to derive from (6) that the product 1 tan $r . tan Go 1 is given by the 
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ratio of the off-diagonal elements in the 2 x 2 block before rotation: 

b(“-‘)a(k-‘) 

Jtan #t. tan $ol = 
II 11 

j+“-‘)&-1, _ p-ua(+-l) ’ 
JJ ‘I ij JJ 

and, similarly from (7), that 

(15) 

(16) 

These relations are used later on. 
We now describe the method. As it is heavily inspired by the one proposed by Stewart in the 

standard case (B = I), we limit the description to essential features, referring to Stewart’s paper 
[24, particularly Sections 3 and 41 for further developments. The method of Stewart is based on 
the two following choices: 

1. Only rotations in planes (i, i + 1) are performed. At each step, the transfer between the 
lower and the upper triangular parts of the matrix is limited inside the diagonal block, and 
is only due to the annihilation of the element in position (i + 1, i). Other transfers, in 
particular undesirable ones from the upper part to the lower part, are thus ruled out. 

2. According to what precedes, only elements of the first subdiagonal are annihilated. 
Therefore, in order to maximize the “mixing” of the matrix at each step, on& outer rotations 

are considered. This tends to ensure that a significant part of other elements of the lower 
diagonal part move into the first subdiagonal and be subsequently annihilated. Neverthe- 
less, in a number of situations, the outer rotations are close or even equal to the identity 
matrix, and the algorithm may not converge. Attempts to basically improve this behavior 
have failed so far 141. 

Choice 1 is maintained in the generalized case. At step k, we thus have 

II JL II * = II L-1 II 2 - 1 &,f’ I*. (17) 

The norm of L, never increases for increasing values of k. Additional features are that 
(i) B, is then upper triangular as B, _ 1 was, 

(ii) the product of the 2 x 2 diagonal blocks of A, and B;’ is close to the corresponding 
block of A,B,? 
The iterative process is then divided in a number of sweeps, during each of which all the lower 
diagonal elements would be temporarily annihilated. As in the standard case [24], we consider 
here two kinds of sweeps. A forward sweep consists of the following sequence of rotation planes: 

(1,2)(2,3) . ..(n-2. n-l)(n-1, n) 

(1, 2)(2, 3) . . . (II - 2, n - 1) 
, . . (18) 

(La (2, 3) 

(172) 
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and a backward sweep corresponds to the sequence: 

(n-1, n)(n-2, n-l) . . . (2,3)(1,2) 

(n-1, n)(n-2, n-1) . . . (2,3) 
. . . 
(?z - 1, n) (n - 2, n - 1) 

(n-1, n) 

(19) 

In the standard case, if the outer rotations are distant enough from the identity matrix, the 
application of a forward or of a backward sweep of outer rotations essentially reduces to the 
inversion of the order of the lower diagonals. The parallel implementation of these orderings in 
the generalized case is the same as in the standard case, except that two matrices, instead of one, 
are mapped on the array of processors (see [24, Fig. 4.31). In particular a double sweep, consisting 
of a forward and a backward sweep, can efficiently be pipelined on such an array. 

The generalization of choice 2 is less immediate. In contrast to the standard case, two angles 
are to be computed at each step and, since they are not independent, it is not possible in general 
to retain for both the solution corresponding to the outer rotation. Also, to some extent, 
convergence properties depend jointly on two choices: the side (left or right) on which an outer 
rotation is applied, and the type of sweep (forward or backward) which is performed. Anticipat- 
ing on the next sections, we make this a little more precise in the two following points: 

(1) It will be shown (Section 4) that (roughly) the process converges provided that ) sin & 1 is 
large enough at each step of a forward sweep and that (sin +!J~ 1 is large enough at each step of a 
backward sweep. Therefore, we choose the solution for +k (resp. qk) corresponding to the outer 
rotation at any step of a forward (resp. backward) sweep. 

(2) Let us assume first that the process has reached a stage near the convergence, i.e. that 
a!@ r+l,i is close to 0, and secondly that the pencil is right normal, i.e. that A$;’ is normal. 
Applying Theorem 2.1, we thus have ai,:!,b$F) 2: b$iIaii . (k) Hence, except possibly for special 
matrix patterns, the product (15) is close to 0, while (16) takes yet a finite value. Since both inner 
rotations are then close to the identity, the choice of the outer rotation for the transformation on 
the left side (angle +k) seems to be appropriate. Conversely, if the pencil was left normal, the 
outer rotation to the right side (angle $k) would be chosen. Indeed, we shall prove (Section 5) 
that the convergence of the process, when applied to a right (resp. left) normal pencil, is 
“ultimately” quadratic through any forward (resp. backward) sweep if an outer rotation is 
performed on the left (resp. to the right) side at each step. 

Summing up, we propose the following method (its features will be analyzed and tested in the 
rest of the paper): 

Method. Let hB - A be an arbitrary pencil with B upper triangular. Sequences of iterates A, and 
B, (k=l, 2, ..,) are generated by applying to it an alternance of forward sweeps (18) and 
backward sweeps (19), until the Frobenius norm (17) of the strictly lower part of A, is smaller than 
a prescribed value or stagnates. At each step of a forward (resp. backward) sweep, an outer 
rotation is performed on the left side (resp. right side), from which the right side (resp. left side) 
rotation is deduced, such that the elementary decomposition (4)-(5) is obtained. 
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4. Global convergence 

Stewart’s algorithm for computing the standard Schur decomposition of a matrix is not 
convergent in general. The algorithm discussed here for computing the generalized Schur 
decomposition of a pencil is not convergent either, to the same extent: there does not exist any 
neat characterization of the whole class of pencils for which this algorithm converges, and not 
any modification of the method is known which could guarantee convergence. Nevertheless, it is 
possible to derive a nontrivial sufficient condition for convergence. We develop it now. 

Let us apply the algorithm to some pencil XB, - A,, and let us follow its evolution over, say, a 
forward sweep (a similar argument should hold for a backward sweep). For notational conveni- 
ence, the reasoning will be illustrated for matrices of order 5. Such a formal simplification was 
already used by Wilkinson in proving the ultimate quadratic convergence of the standard Jacobi 
method for Hermitian matrices 1261, and, more recently, by Fernando in the global convergence 
proof of a particular implementation of the Kogbetliantz method for computing the singular 
value decomposition of an arbitrary matrix [7]. In some respects, our result is related to 
Fernando’s. 

The pencil XB, - A, is thus transformed by a sequence of ten Givens rotations, with the 
following order of transformation planes: 

(I, 2) (2, 3) (3,4) (4,5) 

(1,2) (293) (39 4) 

(1, 2) (2, 3) 
(20) 

At step k, corresponding to the plane (i, i + l), a pair of rotation angles ( +k, Gk) is computed in 
such a way that the elements (i + 1, i) of A, and B, are set or maintained to 0. Looking at the 
sequence ( Ak}, we aim at bounding )I L,, I] in terms of )I L, 11 (see (14)). 

Let us detail the iterates A,. The first ones are shown below. Each lower element is identified 
by a letter the index of which increases only when the value t of the element is modified; x is 
generic. 

xx xxx 

a, x x x x 

A, = b, e0 x x x 

co fo ho x x 

_do go i. Jo x 

xxxxx 1 
k=3 

(3:) 

a2 x x x x 

b, e3 x x x kG4 

c2 f3 0 x x (4, 5, 

4 g2 i2 jl x ] 

xx xxx xxxxx 

ox xxx 

kG’ b, e, x x x 
(1, 2) 

Cl fi ho x x 

4 a io jo x 

a2 x x x x 
k=2 

(2:) 
b2 0 xxx 

Cl f2 h, x x 

] [dlg2il.hx] 
xxxxx 

a2 x x x x 

b, e3 x x x =A,. (21) 

~3 f4 h, x x 

d2 a i3 0 x_ 
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The elements of the bottom row of A, can be written as 

ax +4 

ii4 sin Q4 - cos qS3 , 

ii4 sin G4 - ii3 sin & . cos G2 I 

(22) 

where part of their history is made explicit from (21). The Euclidean norm of the right-hand side 
vector is readily seen to be equal to (1 - sin2Ga. sin’+, . sin2+2)‘/2. On the other hand, the 
Frobenius norm of the right-hand side matrix equals )I L, 11; indeed the equalities 

I b, I 2 + I ~1 I 2 + I 4 I 2 = I ~2 I 2 + I b3 I 2 + I ~3 I 2 + I 4 I 2T 

Ig212+ If2 12= Ie312+ If4 12+ lg312, l i, ) 2 = (h, 1 2 + Ii, I 2 
(23) 

follow from the fact that, at a given step, the norm of a line is 
is annihilated. Summing up, and taking into account that 
increases, we have from (22) that 

altered only if one of its elements 
)I L, 1) is not increasing when k 

(i,j2+ Ig312+ Id212< )IL,~)2(1-sin2~4~sin2~3~sin2@2) 

= II L, II 2(1 - sin2G2,,) = II Lo II 2(1 - sin2G2,,) 

for SOme angles &4 and +2,4 satisfying 

_ 

(24) 

sin2Q2,4 2 sin2$2,4 2 sin2+4 * sin2+, * sin2+, . (25) 

The norm of the bottom row is not modified by subsequent steps and the expression (24) thus 
remains valid through them. 

A same argument is now applied to the strictly lower triangular part of the (n - 1) x (it - 1) 

leading principal submatrix of A,. The next three steps are 

I- -l xxxxx xxxxx 

0 x xxx a4 x x x x 

k<5 b4 e4 x x x k16 b, 0 x x x 
(17 3 

c4 f5 h, x x (2’3) c4 f6 h, x x 

Ld3 g4 i3 .i2 x_ _d3 a i4 j2 x 

xxxxx 

a4 x x x x 

k<7 b6 e6 x x 
(394) 

X =A.,. 

c5 f7 0 x x 
-4 a i5 .i3 x_ 
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Subsequent steps do not alter the norm of the (n - l)th row, which can be expressed as 

Ic,12+ If7 I 2 G [ II L7 II 2 - II 4 II 2 COS~+,,~] (1 - sin2$, - sin2&) 

< 1) L, 1) 2 sin2+2,4(1 - sin2+, - sin2&) 

= II L, II 2 sin2+,,,(l - sin2&,) 

= II Lo II 2 sin2$,,, (1 - sin2&,) 

with 

sin2& 7 > sin2&, >, sin2+, - sin2&. 

Similarly, after the 9th step: 

xx xxx xx xxx 

oxxxx U6 x x x x 

kl* b, e, x x x k29 b, 0 x x x =A, 

(1,2) 
c6 fs h, x x (2’ 3, c6 fg h, x x 

d4 g6 i, f3 X_ _d4 gl i6 j3 x_ 

(26) 

(27) 

we have 

) b, l 2 G [ ll L, ll 2 - ll L, ll 2 cos2+,,, - II J% II 2 sin2h,4 * COS~CPS.~] (I- sin2b) 

G 1) L, ll 2 sin2G2,, . sin’%,, (1 - sin2$,) 

= II L, II 2 sin2+,,, - sin2&, (1 - sin2q5g,s) 

= II Ll II 2 sin2$,,, - sin2&, (1 - sin2&,) (28) 

with 

sin2&,, > sin2q5,,, > sin2&. (29) 

Finally, the last step 

xxxxx 
0 x xxx 

= A 10 ) yields I a7 (‘= 0. (30) 

Adding the contribution of each row (i.e. (24), (26), (28), and (W)), we can characterize the 

effect of the entire forward sweep by 

2” (1 LIO (1 2 = (1 L, 11 2(cos2&4 + sin’&,, ’ cm 46.7 + sin2+2,, ’ sin2+6,7 ’ cos2&,9) 

< (( Lo 11 2(1 - sin2&,, ’ sin2&7 ’ sin2&$) 

or, in terms of the rotation angles 

(31) 

II L,, II 2 < ll Lo 11 * [ 1 - (sin*& ’ sin243 ’ sin2& ) ( sin246 - sin2&) ( sin2& )] . (32) 

Clearly, t&s relation does not depend in any way on the triangularity of B. In fact, if B is full, 
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the same inequality can be written for the iterates B,!s, with L, redefined accordingly. Also, 
generalization to pencils of arbitrary order is immediate. On the other hand, a similar bound 
holds for a backward sweep: simply, the angles +Lk’s are then to be considered instead of the &‘s. 
As already mentioned, this result, as well as its proof, is formally comparable to one obtained by 
Fernando in another context [7]. Moreover, related bounds have been derived for various 
Jacobi-like diagonalization processes, but both angle sets are involved in general [12,14]. Finally, 
note that (32) is also valid in the standard case (Stewart’s method); the distinction between 
forward and backward sweeps is however not relevant anymore, since both angles are identical at 
each step. 

From (32) and the corresponding inequality for a backward sweep, we can directly infer the 
following sufficient condition for convergence to upper triangular forms: 

Theorem 4.1. Any Jacobi-like method, consisting of forward and backward sweeps of elementary 
rotations (4)-(5) between adjacent rows and columns, is convergent if 

c&@[-E, C] U[IT--r, n+c] throughanyforwardsweep 

and 

#k@ [-C, e] U [T-C, n+r] throughanybackwardsweep, 

where c is a positive constant, independent of k. 

The requirement that E be independent of k is introduced here to rule out limit situations. A 
similar constraint was already considered by Forsythe and Henrici when studying the global 
convergence of the standard Jacobi method for diagonalizing Hermitian matrices [9]. Theorem 
4.1 obviously applies to the method defined in Section 3 and, a fortiori, to Stewart’s method. As 
already mentioned, it remains an open question to characterize the class of pencils for which 
global convergence occurs in the standard as well as in the generalized cases. 

5. Ultimate convergence 

Near the convergence (“ultimately”), most of the Jacobi-like methods (with appropriate 
orderings) converge quadratically. In general, this does not depend on whether they are globally 
convergent or not. Ultimate quadratic convergence means (roughly) that, if the norm of the 
matrix part which is to be annihilated is already smaller than some distance between the diagonal 
elements (or their limit values, e.g. the eigenvalues), then its decrease over a subsequent sweep of 
elementary transformations is quadratic. When proposing his method for computing the stan- 
dard Schur decomposition of an arbitrary matrix, Stewart indicated that its ultimate convergence 
is quadratic for normal matrices having distinct eigenvalues [24, Section 51. He gave a qualitative 
analysis based on continuity arguments. We show here that a similar result holds for the method. 
of Section 2 for computing the generalized Schur decomposition of a (left or right) normal pencil 
(see Definition 2.2), and we develop a quantitative reasoning which in return applies to the 
standard case. The following simple lemma will be useful. 
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Lemm,a 5.1. Let N be a normal matrix. Then, for any partition 

N= 
Nil Nl2 

[ 1 41 N22 
(33) 

with square diagonal blocks, we have 

II Nlz II = II N,, Il. (34) 

Proof. Due to NN * = N *N, one has N,,N,T + NrzN$ = N,TN,, + N,TN,,. The result follows 
from comparing traces in this relation. 0 

We now state the main result. The parameter S stands for the number of elementary 
transformations in a forward or backward sweep: S h :[n(n - l)]. 

Theorem 5.2. Let the pencil XB - A have distinct eigenvalues 

261 min)Xi-Xj) >O. 
i#j 

(35) 

Assume that B is upper triangular and non-singular. Generate the sequence { A,, Bk} by the method 

defined in Se c ton 3. Assume also that a state has been reached when t’ 

(I+ Jn-1) II L, II II B-’ II 2 < :h (36) 
where L, denotes the strictly lower part of A,. Then the iterates A, produced at the subsequent steps 
converge to the upper triangular form according to 

46 II B-l It 2 

lIL+sIl G 6 II Lr II 2 (37) 

over 
- any forward sweep, if A B - A is right normal, 
- any backward sweep, if X B - A is left normal, 
- any (forward or backward) sweep, if h B - A is normal. 

Proof. The proof is inspired, while it is more complex, by those for standard eigenvalue and 
singular value decompositions by Jacobi methods [20,21,26]. We detail the case of a right normal 
pencil, assuming thus that AB-’ is normal. For left normal or normal pencils, the argument is 
quite analogous. 

Consider some step k (k >, r) in a forward sweep, corresponding to the rotation plane 
(i, j = i + 1) and to th e rotation angles (Gk, qk). Denote by a hat the corresponding 2 X 2 
diagonal blocks of A, and B,. At the step, the 2 X 2 matrix 

a,~,1 ~ m;~ mij 
[ 1 mji m.ij (38) 

is implicitly triangularized by the outer rotation of angle & (see (7) and the definition of the 
method in Section 3) or, equivalently, the matrix 

“ii - mji 

-mjj mii 
I 

(3% 
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is implicitly triangularized by the inner rotation of angle ( +k - $r). This angle is easily shown to 
verify 

provided that 

I mij I I mji I 1 
]m;;-mjj]2 G 4 

(41) 

holds. This is directly derived from an analysis of the quadratic equation yielding tan( & - $71) 
or, more generally, follows from a perturbation result of Stewart [23, Theorem 4.111 applied to 
the matrix (39). We verify condition (41) in the following three steps. 
- Denote Nk A A,&’ = (n,,). Remark that Nk is normal and B, is upper triangular at every 

step k. For any block partitioning of the type (33) of Nk, A,, and B,, we have (Nk)21 = 
(Ak)21( Bk)G1. This and Lemma 5.1 gives (k >, r) 

llM** II = INN/d,, II = IIML)20,L;’ II G II L II lI(4L1 II 2 G II L/c II II B-l II 2 

G IILII llB-1112, (42) 

where the invariance of the 2-norm with respect to orthogonal transformations and the 
monotonic decrease of I] L, 11 for increasing values of k are taken into account. 

- It is easily seen that the difference between akficl and the corresponding 2 X 2 block of 
A, Bk’, say X, satisfies 

nii nij 

[ 1 nji 
njj =&c&*+x, with IIXII G IILII IW’II,. (43) 

Note that this bound clearly requires j = i + 1. We thus have 

I mii - nii I) I mjj - njj I G II Lr II II B-’ II 27 (44 

and, using (42), 

Imij19 lmjil ~211LrIl llB-‘l12~ (45) 

- On the other hand, the Gershgorin circle theorem [ll, p. 2001 yields here 

i-l 

IXi-niij < C Ini,I+ 2 Inim) <dFi ‘5 nfm+ 2 
(’ 

l/2 

nym @a 
WI=1 m=i+l ??I=1 m=i+l 

for some eigenvalue hi. Hence 

I Ai - ‘ii I G m II Lr II II B-’ II 2 (47) 
results from the application of Lemma 5.1 to the second sum in (46) and from the fact that the 
Frobemus norm of the strictly lower part of Nk is smaller than (( L, (I (( B-’ II 2. Due to (44) 
and (46), we thus have 

I Ai - mii ( < I Ai - nii ( + ) nii - mii ( < (I+ Jn=-r) I( L, 11 11 B-l II 2. (48) 

Same bounds hold for the distance between njj or mjj and another eigenvalue hj. Therefore, 
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the assumption (36) ensures that every diagonal element is associated 
eigenvalue. Moreover, 

)rniiYFzji) = J(mii-Xi)-(Xi-Xj)-(Xj-m,)I 

>, 1 xi - xj 1 - 1 xi - mii I- 1 xj - mjj 1 

> 2S - 2(1+ 4x) (1 L, 1) I( B-l )I 2 > 8. 

unequivocally to one 

(49) 

Combining (37), (45), and (49), one easily verifies that the condition (41) is satisfied (if 12 2 2). 
The bound (40) is then valid. We obtain 

(tan( Gk - iT) 1 < 411 LrIl i B-1 II 2 . (50) 

By using here the estimation (32), valid over a forward sweep, in the form 
r+S 

G IlLl12 c cos2h7 
k=r 

(51) 

and noting that lcos & I G I tan( $Q + $r) (, we finally have 

‘+’ WlLl1211B-111~ = 16~IlLrl1411B-1112, 
lIL+sl12 =G lILAI c 

k=r 
a2 

CT2 ’ 
(52) 

i.e. (37). Cl 

This result can be commented in several respects: 
(i) According to Theorem 5.2, the ultimate convergence of our method is quadratic during (at 

least) every second sweep if the pencil is right or left normal and during any sweep if the pencil is 
merely normal. The “type of normality” of the current pencil is thus not presumed. On the 
contrary, if a pencil was known to be left (or right) normal, a variant of the method could of 
course be devised where only backward (or forward) sweeps would be performed. These 
situations, as well as the behavior of the method for non-normal pencils, are illustrated in the 
next section. Note however that, as mentioned in Section 3, the most efficient parallel implemen- 
tation is obtained by alternating forward and backward sweeps throughout the iterative process. 

(ii) The main difference between the estimate (37) and other ones valid for standard 
Jacobi-like methods is the presence of 1) BM1J12 in the coefficient. Whether this factor reflects real 
features is also tested in the next section. 

(iii) The assumption that B is upper triangular is not essential. Without it, an inequality of the 
type (37) could still be obtained. But the condition (36) and the coefficient of the quadratic term 
in (37) would then take a (much) more complicated form, due in particular to the harder 
derivation of analogues of (42) and (43). Since moreover triangularity leads to lower computa- 
tional complexity, we do not go deeper into the full case. 

(iv) Clearly, Theorem 5.2 applies to Stewart’s method for computing the standard Schur 
decomposition [24]. It suffices to set B to I in the above statement. Furthermore a factor 2 can 
be saved in (37) by looking closely at the proof. Indeed, in the standard case, we have m,, = n,, 
(X= 0 in (43)). Hence, the inequality ( nij I, 1 nji I < llL,.ll is obtained instead of (45), and (48) 
reduces to (47). Taking this into account, we can write the following slightly sharper result: 
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Theorem 5.3. Let the normal matrix A have distinct eigenvalues 

26; minIXi-Xj) >o. 
i#j 

31 

(53) 

Generate the sequence { A, } by Stewart’s method. Assume that a state has been reached when 

Jn-IIIL,II < 5% (54) 

where L, denotes the strictly lower part of A,. Then the iterates A, produced at the subsequent steps 
converge to the upper triangular form according to 

243 
IILr+sll G ~llU12. (55) 

Again, no distinction has to be made here between forward and backward sweeps since both 
angles are identical at each step. Since the Schur form of a normal matrix is diagonal, Theorem 
5.3 slightly extends a result of Ruhe [21] who proved the ultimate quadratic convergence of the 
Jacobi method for diagonalizing a normal matrix by the “optimal” procedure of Goldstine and 
Horwitz [lo], i.e. by minimizing 

) aif) I 2 + ) a$:’ ) ’ 

at each step k. The Schur method, while not optimal in this sense, exhibits the same convergence 
rate; moreover, the coefficient in the bound (55) is very close to Ruhe’s. 

(v) Theorems 5.2 and 5.3 are valid for pencils having distinct eigenvalues. No attempt was 
made to generalize it for pencils having multiple eigenvalues. Nevertheless, it can be conjectured 
(as Stewart did) that in the latter case ultimate quadratic convergence still holds, provided that 
the diagonal elements associated to the multiple eigenvalues occupy adjacent positions. Indeed, 
under this condition, proofs have been given for a number of Jacobi-like processes (e.g. the 
diagonalization of Hermitian matrices [25] and the singular value decomposition of triangular 
matrices [3]). In particular, the above-mentioned result of Ruhe [21] was originally stated also for 
this situation. 

6. Numerical tests 

We illustrate now the analysis presented in the previous sections. In particular, we focus on 
properties of the method that are not retrieved in the special case B = I where it boils down to 
Stewart’s one. 

As in the standard case, convergence may stagnate when outer angles tend to 0. A typical 
example of this is 

lO...OO Ol...O 0 

0 1 00 00’. 0 0 

A : *_ : - : *.*. *._ : 

00 ‘10 bo 0 1 

-0 0 . . . 0 l_ -1 0 . . . 0 0, 

It is easily seen that all angles of inner and outer rotations 

(56) 

Ire here equal to 0 and hence that the 
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matrix does not change anymore. Yet the pencil is normal (B is the identity and A is unitary) 
and ultimate quadratic convergence will result, provided stagnation does not occur. Clearly the 
recommendation of Stewart to perform a sweep of random rotations applies here too. But such 
examples are pathological and usually are not encountered. 

In the numerical examples detailed below, stagnation was unlikely to occur since a random 
generator was used to construct them. Following Theorem 2.1, we use the respective decomposi- 
tions: 

XB,--A,= U(hD,-QJv*, 

hB,, -A, = U(hD, - D,)TV*, 

XB,,-A,,= UT(XD,-D,)V*, 

XB-A= U[hD,T-D,(T+aE)]V* 

for a normal pencil, right normal pencil, left normal pencil, and arbitrary pencil. Here 0, and D, 
are random diagonal matrices, T is a random unit upper triangular matrix, V is a random 
unitary matrix, and U is a unitary matrix chosen such that B is upper triangular (A, of course, is 
full in general). Finally, E is a random strictly upper triangular matrix (with zero diagonal) 
which makes X B - A non-normal for any value of (Y # 0. Only 10 x 10 real matrices are 
considered. By construction all these pencils clearly have real eigenvalues (namely the elements 
of D,D;‘). All tests were performed on a VAX-3200 with relative precision e = 1.4E-17. 

We first deal with convergence rate for pencils getting closer to a normal one. We apply the 
method of Section 3 to pencils X B - A = U[ h D, - D,( I + a E )] V * for several values of (Y, see 
Table 1. 

Table I 

K lx=1 a = 0.1 a= 0.01 a = 0.001 lx=0 

0 1.33E+OO 
1 4.52E-01 
2 1.75E-01 
3 9.02E-02 
4 6.41E-02 
5 5.04E-02 
6 4.20E-02 
I 3.70E-02 
8 3.29E-02 
9 3.02E-02 
10 2.81E-02 
11 2.64E-02 
12 2.53E-02 
13 2.41E-02 
14 2.34E-02 
15 2.25E-02 
16 2.19E-02 
17 2.12E-02 
18 2.08E-02 
19 2.01E-02 
20 1.98E-02 

6.88E-01 
2.99E-01 
1.40E-01 
3.50E-02 
6.34E-03 
2.29E-03 
4.85E-04 
1.61E-04 
5.78E-05 
1.54E-05 
8.86E-06 
2.14E-06 
1.37E-06 
3.24E-07 
2.12E-07 
4.97E-08 
3.27E-08 
7.66E-09 
5.05E-09 
1.17E-09 
7.77E-10 

6.92E-01 
3.OOE-01 
l.O9E-01 
2.02E-02 
5.52E-04 
7.28E-06 
6.38E-08 
l.l8E-09 
3.08E-13 
7.83E-15 

- 
- 

- 

6.94E-01 6.94E-01 
3.01E-01 3.01E-01 
l.O3E-01 l.O3E-01 
1.45E-02 1.40E-02 
2.01E-04 1.80E-04 
2.66E-07 4.45E-08 
2.98E-10 - 

5.34E-13 - 
- - 

- - 

- - 

- - - 
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Table 2 

xB,-A, 

K Forward Backward Alternate 

XB,, - A,, 

K Forward Backward Alternate 

0 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

6.01E-01 
3.03E-01 
1.61E-01 
7.41E-02 
3.67E-02 
1.36E-02 
3.28E-03 
8.42E-05 
6.11E-08 
2SOE-14 

- 

6.01E-01 
2.60E-01 
1.49E-01 
9.54E-02 
7.06E-02 
5.38E-02 
4.53E-02 
3.8OE-02 
3.31E-02 
2.85E-02 
2.52E-02 
2.2OE-02 

6.01E-01 
3.03E-01 (f) 
9.68E-02 (b) 
2.97E-02 (f) 
1.88E-02 (b) 
4.63E-03 (f) 
3.41E-03 (b) 
3.57E-05 (f) 
3.77E-06 (b) 
4.14E-11 (f) 
2.17E-12 (b) 

0 4.77E-01 
1 2.21E-01 
2 l.lSE-01 
3 8.41E-02 
4 7.16E-02 
5 6.29E-02 
6 5.50E-02 
7 5.01E-02 
8 4.59E-02 
9 4.22E-02 

10 3.88E-02 
11 3.58E-02 

4.77E-01 4.77E-01 
2.04E-01 2.21E-01 (f) 
l.OOE-01 6.67E-02 (b) 
7.39E-02 3.44E-02 (f) 
5.62E-02 7.58E-03 (b) 
3.40E-02 4.09E-03 (f) 
6.11E-03 7.85E-05 (b) 
1.52E-04 4.37E-05 (f) 
3.59E-08 9.83E-09 (b) 
5.00E-15 1.55E-09 (f) 

In this example the gap between any two eigenvalues is 2S = 0.06 and ]]B-‘]]2 = 8. The 
parameter K denotes the index of the sweep. Values smaller than l.E-16 are left out as an 
indication of completed convergence. 

The behavior is very similar to that of the standard case [24]. When a pencil is more distant 
from a normal pencil, one observes gradual deterioration of the quadratic convergence as was 
also reported in [24]. The convergence with (Y = 1 is linear and very slow. For examples with a 
larger gap, a better convergence has been observed. 

The second example involves two pencils AB, - A, and X B,, - A,,. For each of these pencils 
we use three different methods: one involving only forward sweeps, one with only backward 

Table 3 

K Right normal Left normal 

0 4.88E-01 1.54E-01 
1 1.95E-02 6.99E-03 
2 7.26E-03 3.19E-03 
3 3.59E-03 1.89E-03 
4 l.l8E-03 1.29E-03 
5 6.29E-04 8.56E-04 
6 2.87E-04 6.17E-04 
7 8.48E-05 5.27E-04 
8 6.31E-05 6.27E-05 
9 1.60E-05 3.84E-05 

10 1.58E-05 6.08E-06 
11 3.45E-06 5.02E-06 
12 3.44E-06 2.13E-06 
13 1.76E-07 1.82E-06 
14 1.60E-07 7.57E-09 
15 2.37E-10 6.70E-09 
16 2.31E-10 9.40E-14 
17 - 4.2OE-14 
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Table 4 

K 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Normal 

5.37E-01 
2.36E-01 
6.92E-02 
l.O8E-02 
2.65E-04 
7.29E-08 

- 

- 
- 

Right normal Left normal 

5.04E-01 4.11E-01 
1.73E-01 1.81E-01 
5.40E-02 2.93E-02 
7.75E-03 9.31E-03 
1.38E-03 1.78E-03 
2.96E-04 3.90E-04 
2.65E-04 4.948-07 
1.42E-06 9.21E-08 
1.24E-06 3.00E-15 
6.188-12 - 

3.15E-13 - 

sweeps, and one where forward and backward sweeps alternate (i.e. the method we finally 
recommended in Section 3). The eigenvalues of the pencils are the same as in the previous 
example (26 = 0.06) and the “inverse norms” are IIB;rl(, = 11 and IIB;‘llZ = 15, see Table 2. 

One observes that quadratic convergence is indeed only obtained for fonvard sweeps in the 
right normal case and for backward sweeps in the left normal case. Notice that the alternate 
method converges in approximately the same number of sweeps although quadratic convergence 
occurs only every other sweep (the forward and the backward sweeps of the alternate method are 
marked in the last column). The convergence appears to be faster in the beginning of the process, 
which is not explained by our analysis but ties up with Stewart’s remark that one double sweep 
seems to perform better than two forward or two backward sweeps. 

In the third example we apply our method to two pencils X B,, - A, and X B,, - A,, with 
large inverse norms llB;lllz = 1.E + 05 and JIB,1jj, = 1.E + 05, in order to check the convergence 
results of Theorem 5.2. The large inverse norms were obtained by using a badly conditioned T 
matrix. The gap is still 26 = 0.06, see Table 3. 

One observes here that quadratic convergence starts only around steps 14-15 (Theorem 5.2 
guarantees that it occurs after JIL,JJ < LE-07) and that it is significantly attenuated because of 
the factor 4fi()B-‘11,/S (approximately l.E + 08 here). 

The final example deals with close eigenvalues (not adjacent in the final form). We generated 

three pencils X B, - A “, X B, - A,, and X B,, - A In, all having the same eigenvalues. The gap 
is 2S = 0.0008 and the inverse norms are 11B,11j12 2: 50, ~~Br~‘~~2 = 190, and ((B,‘((, = 180; see 
Table 4. 

These last two examples suggest that, while the condition (36) for quadratic convergence seems 
to reflect practical behavior, the coefficient of the bound (37) could be overestimated. In 
particular, further tests and possibly a deeper theoretical analysis are needed to estimate the 
exact influence of 1) B-‘lj2 and 6 on the convergence rate. 

7. Conclusion 

We have presented and analyzed a Jacobi-like method for computing the generalized Schur 
decomposition of a regular pencil. To some extent, this work may seem to be academic. 
Nevertheless, its interest is (at least) threefold: 
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- It fills a gap. The obtention of the generalized Schur form by a Jacobi-like method is the only 

classical decomposition by unitary transformations that has not been investigated yet. Such 
methods have benefited from a renewed attention for a few years due to their high inherent 
parallelism. Moreover, to be complete, it is worthwhile to mention that a generalized 
eigenvalue decomposition algorithm for symmetric-definite pencils, using non-unitary elemen- 
tary congruences, has been proposed by Falk and Langemeyer [5,6] and by Zimmermann [27]. 

- It generalizes and completes previous results. Our method extends the one of Stewart [24] 
from matrices to pencils. Also quantitative results are given for global and ultimate conver- 
gence which are valid for both the standard and the generalized cases, whereas Stewart’s 
convergence results for the standard case are only qualitative. Interestingly, the bounds we 
obtain here are similar to those derived for various decompositions (e.g. [7,12,14,20,21,26]). 

- A class of “normal” pencils is introduced as a natural extension of normal matrices. Our 
method shows ultimate quadratic convergence for these pencils in precisely the same manner 
as Stewart’s method behaves for normal matrices. 

A few questions remain unanswered: 
- The ultimate convergence is proved to be quadratic for pencils having distinct eigenvalues, but 

only conjectured to be so for multiple or clustered eigenvalues, provided they are adjacent on 
the diagonal. 

- The influence of B- ' and of the gap 28 (see Theorem 5.2) on the convergence rate is observed 
up to some extent in our examples, but not completely understood. 

- For (pencils of) real matrices, one could reformulate the method such that only real arithmetic 
is used. This then involves 4 X 4 real orthogonal transformations as basic operations of the 
method. Outer rotations have to be defined appropriately. Their computation requires the 
solution of either a 4 X 4 (generalized) eigenvalue problem, or a (set of) quadratic 2 x 2 matrix 
equation(s). 
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