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Let IF be an ordered field, and let B denote the family of all convex polytopes in 
the d-dimensional vector space V over IF. The universal abelian group 17 corre- 
sponding to the translation invariant valuations on B has generators [P] for P E 9 
(with [a] =O), satisfying the relations (V) [Pu Q] + [Pn Q] = [P] + [Q] 
whenever P, Q, P u Q E 9, and (T) [P + Z] = [P] for P E B and t E V. With multi- 
plication induced by (M) [P] [Q] = [P + Q], II is almost a graded commutative 
algebra over IF, in that II= @:=a Z,, with = 5 E, 8, a vector space over IF (r 2 l), MO= 
and Zr.Zs=.S,+, (r,s>O, .Fr= {0} for r > d). The dilatation (D) d(l)[P] = [AP] 
for P E B and 1 E IF is such that d(A)x = I’x for x E Z, and 12 0. Negative dilata- 
tions arise from the Euler map (E) [P] H [P]* :=I.,( -l)dimF [F] (the sum 
extending over all faces F of P). since d(l)x = A’x* for x E 8, and A< 0. Separating 
group homomorphisms for 17 are the frame functionals, which give the volumes of 
the faces of polytopes determined by successive support hyperplanes in sequences of 
directions. Two isomorphisms on I7 are described: one related to cones of outer 
normal vectors, and the other to the polytope groups, obtained from I7 by discard- 
ing polytopes of dimension less than d. Various applications of the polytope algebra 
are given, including a theory of mixed polytopes, which has implications for mixed 
valuations. 0 1989 Academic Press, Inc. 
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1. INTRODUCTION 

As we should always remember, the very word “geometry” suggests com- 
parison of measurements such as area and perimeter of different figures. An 
old question, mentioned by Gauss and crystallized by Hilbert in his Third 
Problem, is whether a satisfactory theory of volume of polytopes can be 
formulated in terms of equidissectability (or equicomplementability). It has 
been known from at least the time of Archimedes that the problem could 
be dealt with by the “method of exhaustion.” (Here, as elsewhere, we shall 
not give the original historical references, but instead refer the reader to the 
works we do cite, and in particular to the survey article [9].) In the precise 
terms in which Hilbert phrased it, Dehn had already found the required 
counterexample before the problem had been published. Nevertheless, the 
problem itself provoked investigations into equidissectability under various 
groups of motions, which culminated in the complete solution of the trans- 
lation case by Jessen and Thorup [4] and, independently, by Sah [12]. 
(When the full group of isometries is allowed, the problem remains open 
in five or more dimensions.) 

Volume, and functions such as surface area and the Euler characteristic, 
are examples of valuations, and their investigation provides another strand 
to the story. Indeed, the close connexion between valuations and dissec- 
tions was already used by Dehn to provide his counterexample, although 
the formal development of the theory undoubtedly owes most to Hadwiger 
[3]. (Hadwiger, incidentally, showed that, in a somewhat different sense 
from that of Hilbert and Dehn-in essence by imposing the weakest form 
of the assumption made by Archimedes-valuations and dissectability can 
lead to a satisfactory treatment of volume.) 

Jessen and Thorup, and Sah, built on Hadwiger’s work by considering 
the universal group corresponding to translation invariant simple valua- 
tions (simple here refers to those valuations which vanish on polytopes of 
less than the full dimension; we shall give precise definitions of the terms 
we use in Section 2 below). They deal with polytopes in a finite dimen- 
sional affine space over an arbitrary ordered field, and show (among other 
things) that the corresponding polytope group is a vector space over that 
field. A crucial feature of their treatments is that they also describe a family 
of homomorphisms (into the base field) which separates the group. 
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In this paper, we shall describe the corresponding universal group for the 
translation invariant valuations which are not necessarily simple; in other 
words, we no longer work strictly with dissections, because we do not dis- 
card lower dimensional polytopes. The name polytope algebra which we 
give this group indicates that it has a richer structure than that of the 
polytope group of the previous paragraph; indeed, it fails to be a genuine 
graded commutative algebra over the base field in just one trivial respect. 
The grading arises from scaling, or dilatation, by non-negative elements of 
the field; negative dilatations involve Euler-type relations. 

We shall construct two group isomorphisms between the polytope 
algebra and other groups, one strongly reminiscent of the intrinsic volumes 
(or quermassintegrals), and the other related to the polytope group. We 
shall also discuss other groups connected with the polytope algebra, and 
develop a theory of mixed polytopes, which generalize mixed valuations. 

For convenience, we collect the statements of the basic definitions and 
the live main theorems in Section 2. The numbering of these theorems 
corresponds to an orderly description of the structure of the polytope 
algebra, and bears little relationship to the order in which they are proved. 

Some of the results are just universalized versions of theorems on valua- 
tions which have been proved elsewhere, and so little purpose would be 
served by reproducing their proofs with obvious changes of language. But 
details of most of the proofs of the main theorems are given, even though 
in a number of respects they strongly resemble the corresponding theory of 
the polytope group. In part, this is because some of the differences are a 
little subtle, and in pointing out how the earlier proofs can be modified we 
find that not much can be omitted. Also, however, while largely following 
[4], we have chosen in some places to follow [ 121. Another distinguishing 
feature is the presence of a genuine multiplication. This permits a different 
line of attack, and also allows us to introduce at an early stage the useful 
concept of the logarithm of a polytope. 

An early draft of this paper was written in 1984/1985; in that, the base 
field was just the real field R, multiplication only appeared as an 
afterthought, and the rest of Theorems 1 and 2 was established by means 
of an inductive proof of Theorem 4. The present approach has enabled us 
to mimic much of the corresponding parts of [4, 121, and so construct a 
parallel theory from which most of the earlier results can be deduced. 

2. BASIC DEFINITIONS AND MAIN THEOREMS 

As we said above, in this section we shall state the basic definitions and 
main theorems. 

Let [F be an ordered, but not necessarily archimedean, field, and let V be 
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a d-dimensional vector space over iF, which is, of course, isomorphic to the 
coordinate vector space Ed. In many ways, though, it is the affine structure 
of V which is of interest. The topology of V is that induced by the order 
topology of IF. 

Though it could be avoided, we shall find it convenient to endow V 
with a (positive definite) inner product ( .,. ), and orthogonality will 
always refer to this. In many cases, the orthogonality is only used to set 
up an isomorphism between V and its dual space. However, since the 
Gram-Schmidt process will turn an arbitrary basis of a (linear) subspace 
L of V into an orthogonal basis, orthogonal projection onto L can be 
defined. 

We shall mostly deal with convex subsets of I’, where, as usual, CE V 
is conuex if (1 - A)u + Iw E C whenever u, w  E C and 0 d 2 d 1 (with 2 E ff, of 
course, but this will be a general assumption about scalars unless specified 
otherwise). This purely algebraic definition ensures that all the standard 
results about convex sets, which are usually established in R”, carry over 
to convex sets in V. 

Two families of convex sets are of importance here. A pofytope is the 
convex hull conv S of a finite set S in V. The empty set @ is a particular 
example of a polytope. The family of all polytopes in V is denoted 
9 = P( V). The dimension dim P of a polytope P is the (algebraic) dimen- 
sion of its affine hull aff P; a k-dimensional polytope is called briefly a 
k-polytope. (Here, and elsewhere when it is relevant, we follow the notation 
and terminology of [2].) 

A (polyhedral) cone is the positive hull pos S of a finite subset S of V, 
so that the origin o of V is always an apex of a cone. The family of cones 
in V is denoted ‘49 = V(V). 

Observe that a polytope is just a bounded intersection of finitely many 
closed half-spaces, while a cone is an intersection of finitely many closed 
half-spaces whose bounding hyperplanes contain o. 

Let 9 = 9 or %. A function 4 on 9, taking values in some abelian 
group, is called a oaluation if q5(P u Q) + q5(P n Q) = d(P) + 4(Q) whenever 
P, QEF are such that Pu QEF also (note that Pn QE~ always). 
Further, q5 is said to be translation invariant if q%(P + t) = d(P) for each 
P E P and translation vector t E V (this definition has no force if P = ‘3, 
but for convenience will be allowed to stand in definitions or results 
which otherwise apply to both classes, as immediately below). Here, the 
Minkowski or vector sum of two subsets S, T of V is defined by 

and S+ t := S+ {t}. By convention, d(o) = 0 for every valuation 4. 
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If L is a (linear) subspace of V, we write 

S(L)= {PEF(P~L+~ for some tE V>. 

A valuation 4 on F(L) is called L-simple if 4(P) = 0 for all P E F(L) with 
dim P < dim L. 

The polytope algebra Z7= n( V) is (initially) the abelian group with a 
generator [P] for each PE 9 (and [a] = 0); these generators satisfy the 
relations: 

(V) [Pu Q] + [Pn Q] = [P] + [Q], whenever P, Q E.GY are such 
that P v Q E .Y also; 

(T) [P+ t] = [P], for each PE9 and tE V. 

We shall refer to [P] as the class of P in ZZ. 
We shall make the obvious connexion between the definition of a trans- 

lation invariant valuation on 9 and the relations (V) and (T) explicit in 
Lemma 1 (Section 3 below). 

We immediately turn l7 into a ring. The multiplication is defined on the 
generators of 17 by: 

(M) [PI. [Q] = [P + Q], for all P, Q E 8, 

with the Minkowski sum P+ Q as above. Lemma 7 (Section 4) will show 
that (M) indeed induces a multiplication on n. 

For R E F, the dilatation d(l) is defined on the generators of n by: 

(D) A(A)[P] = [API, for PEG, 

where for S a subset of V 

AS= {IlU~OES} 

is the scalar multiple or dilatate of S by 1. In Section 5 (Corollary 2 to 
Theorem 6), we shall see that d(1) is a ring endomorphism of Z7. 

We can now state the main structure theorems. 

THEOREM 1. The polytope algebra I7 is almost a graded commutative 
algebra over F, in the following sense: 

(a) as an abelian group, IT admits a direct sum decomposition 

17= 6 zr; 
i-=0 

(b) under multiplication, 

‘-; .3 3 -r -s =-r+s, 

for r, s = 0, . . . . d (E, = { 0} for r > d); 
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(cl Z. z Z, and for r = 1, . . . . d, &, is a vector space over IF (with 
Ed s IF); 

(d) ifx, y~2, := Of=, Zr, and I. E IF, then (ix)y = x(Ay) ( = ,I(xy)); 

(e) the dilatations A(A) are algebra endomorphisms of IIT, and for 
r=O ,..., d, if xEZ, andIZ>O, then 

where 1’ = 1. 

A(I)x = A’x, 

The Euler map * is defined on the generators of Il by: 

(E) [P]*=-&(-l)d’mF [F], for PECP, where the sum (here and 
elsewhere) extends over all faces F of P. 

THEOREM 2. The Euler map is an involutory automorphism of II. 
Moreover, for r = 0, . . . . d, if x E 3, and A < 0, then 

A(;l)x = ,I’.~*. 

We next describe the separating group homomorphisms on ZL If u is a 
non-zero vector in V and P E 9, then the face of P in direction u is defined 
to be 

P*=(vEPI(v,u)=h(P,u)}, 

where 

h(P, u)=max((w, u)lw6P) 

is the support fitnctional of P in direction u. Thus P, is the intersection of 
P with its support hyperplane with outer normal u. If U = (u,, . . . . uk) is 
a k-frame, that is, an ordered orthogonal set of k vectors, we define 
recursively 

P,=(P 1 (Ul....,Uk-,) Ukr 

starting with P, = P (we allow @ as a frame). 
We shall identify the highest grade term Zd in Theorem 1 with volume 

(see Section 7). More generally, every subspace L of V admits a (within 
scaling) unique volume functional vol,: 9(L) -+ ff. If U is a (d - r)-frame, 
we write vol, := vol, if 

L=U+={vEVJ( v,u)=Oforeach UEU) 
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is the orthogonal complement of U in V, and we call the mapping 
fU: B + 5 defined by 

fuu? = vol.Pu 

a frame functional of type r. Frame functionals induce homomorphisms on 
Z7 (see Section 5, Theorem 7), and we have: 

THEOREM 3. The frame functionals separate 17; that is, if x E I7 is such 
that fJx) = 0 for every frame U, then x = 0. 

Let 9 = 9 or Q? as before, and let L be a subspace of V. The abelian 
group with a generator (P) for each PER(L), satisfying the relations (V), 
(T) (for 9 = 9”) and 

(S) (P) =O, for PEY(L) with dim P<dim L, 

is the polytope group Z?(L) or the cone group z(L), respectively. The full 
polytope group I? and the full cone group 2 are defined by 

z?= @ z?(L), .2= @ f(L), 
L L 

the direct sums in each case extending over all subspaces L of V, including 
(o} and V itself. 

The first isomorphism theorem for 17 is 

THEOREM 4. l7~l?. 

For the second, we begin by defining the outer (or normal) cone N(F, P) 
to a polytope or cone P at its non-empty face F by 

N(F, P)= {UE VI (v, u)=h(P, u) for every VEF]. 

That is, N(F, P) is the set of outer normal vectors to support hyperplanes 
of P which contain F (allowing o as such a vector also). The subspace L 
of V parallel to aff F, written L 1) F, is the orthogonal complement of 
N(F, P), and we write vol F := vol, F. We denote by n(F, P) := (N(F, P)) 
the intrinsic class of N(F, P), meaning its class in J?(lin N(F, P)). The 
mapping 0: Y + lF 0 J? defined by 

a(P) :=I vol F@n(F, P) 
F 

induces a homomorphism on ZZ (see Section 12, Lemma 37), and we have 

THEOREM 5. The mapping IS: II -+ [F @ J? is injective. 
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3. PRELIMINARY REMARKS 

Before we embark on the main part of the proofs of the theorems, we 
make some general remarks about valuations and their extensions, and 
about particular classes of polytopes. 

We first make explicit the relationship between valuations and the 
polytope algebra. A fact which we shall often use without much comment 
is 

LEMMA 1. Let Y be an abelian group. A mapping 4: 9’ + 59 is a transla- 
tion invariant valuation of and on/y if q4 induces a (group) homomorphism 
from II to 3. 

We shall invariably denote this homomorphism by the same symbol, and 
not distinguish between it and the translation invariant valuation to which 
it corresponds; that is, we write #([PI) = b(P). Lemma 1 enables us to lift 
known results about translation invariant valuations to & observe, in 
particular, that the mapping PH [Z’] is a translation invariant valuation. 

Note that there is an exactly analogous relationship between L-simple 
translation invariant valuations on Y(L) and homomorphisms on the 
polytope group Z?(L), and similarly for g(L) and ,Y?( L). 

A useful variant of the idea of valuation is the following. We call a 
mapping C$ on 9 (into some abelian group) a weak valuation if 
~(p)+~(pnH)=~(PnH-)+~(PnH+) whenever PEP and H is a 
hyperplane in V which bounds the two closed half-spaces H ~ and H +. It 
was shown by Sallee [14] that 

LEMMA 2. A mapping on 9 is a valuation if and only if it is a weak 
valuation. 

This lemma implies that we can replace the condition (V) in the detini- 
tion of I7 by 

(W) [P]+[PnH]=[PnH-]+[PnH+], for PEP and Ha 
hyperplane bounding the closed half-spaces H ~ and H +. 

A modification of an approach due to Groemer [ 1 ] yields many results 
concerning extensions of valuations, or suitable restrictions of their domain 
of definition. The characteristic function St of a subset S of V is defined (in 
the usual way) by 

s+(v)= ; L 
if VES, 
if u#S. 

The subgroup of functions on V taking values in Z which is generated by 
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the functions Pt with P E 9 is denoted by X(q). The crucial observation of 
Groemer [l] is: 

LEMMA 3. A mapping on 9 (into some abelian group) is a valuation if 
and only if it induces a homomorphism on X(Y). 

Since a homomorphism on X(P) is defined uniquely on any charac- 
teristic function (of some subset of V) which happens to lie in X(P), we 
deduce certain important consequences. As in [9], we denote by U(P) the 
family of finite unions of polytopes in 9; further, we write 

o(S)= {A\BI A, BE U(Y)}. 

LEMMA 4. A valuation on S admits a unique extension to a valuation 
on O(Y). 

With D(g) replaced by U(P), this result is due to Volland [ 173. It is of 
interest to sketch a proof of this important lemma. First observe that, if 
A, BE V, then 

(A n B)+ = A+B+. 

Since the relationship for complements is 

(v\s)+ = 1 - s+, 

or, more generally, 

(A\B)+=A+(l-B+)=A+-A+B+, 

that for unions is 

1-(A,u .QJA~)+=(~-A~)...(~-A,~). 

The proof of Lemma 4 is now straightforward. The formula for the charac- 
teristic function of a general element of U(P) follows at once from this last 
expression for the union (note that 1 = Vt, which, of course, is not in 
X(P), occurs on both sides of the expression). The expansion of this 
formula gives the familiar inclusion-exclusion principle for valuations (see 
c9, (l-2)1). 

For our purposes, we must note two consequences of Lemma 4. As men- 
tioned above, a polytope is a bounded intersection of finitely many closed 
half-spaces. On occasions, though, it is more convenient to work with 
bounded intersections of finitely many half-spaces, which are either closed 
or open; we call these partly open polytopes, and denote the family of them 
by &,. Recalling that a decomposition of a set is an expression of that set 
as a disjoint union of subsets, our first consequence of Lemma 4 is: 
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COROLLARY. A valuation 4 on 9 admits a unique extension to S$,. 
Moreover, if Q, , . . . . Qk E 9&, decompose Q E .c!$‘,,, then 

4(Q)= 2 d(Qj>. 
j= I 

We shall discuss the even more special case of relatively open polytopes 
in Section 19. 

A simplex is the convex hull conv(vO, . . . . vk} of an aflinely independent 
set (uO, . . . . vk} in V; more specifically, this is a k-simplex, since it has 
dimension k. A result admitting many proofs (see, for example, [9, Sect. 61, 
which uses [ 181; for a nice proof, see [ 161) is: 

LEMMA 5. If PE 9, then there is a simplicial complex in V whose 
underlying point-set is P. 

Combining this with Lemma 4, we have: 

COROLLARY. The group IT is generated by the classes of the simplices 
in 9. 

4. MULTIPLICATION 

An important role in our treatment is played by the multiplication on 17 
induced by Minkowski addition. In [4, 121 a product structure is also 
introduced, but it only gives a product mapping from D(L)@ Z?(M) to 
fi(L + M), when L and M are supplementary (linear) subspaces of V. (The 
product discussed in [ 11, however, does correspond to ours.) Initially, we 
shall use our multiplication in a very similar way, but we shall soon see 
examples of its greater power and generality. 

Of course, we must first establish that our definition does lead to a mul- 
tiplication on IZ; we do that here. 

LEMMA 6. With addition satisfying (V) and (T), and multiplication 
defined by (M) and extended by linearity, IT is a commutative ring with 
unity. 

All the properties of a commutative ring with unity are easily verified, 
except those which we now discuss. We first observe that (M) is compatible 
with the translation invariance (T). Next, note that @ + P= @ for every 
P E 9, from which we conclude that 0. [P] = [a] . [P] = [12/ + P] = 
[@I = 0, and hence 0. x = 0 for every x E 17. (By the way, this is what 
would oblige us to adopt the convention [a] =O, if it were not otherwise 
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obvious.) Then we define 1 := [o] to be the class of a point (we write [t] 
for [{t}] if tE I’; from (T), [t] = [o] f or each TV V), which gives the unity 
of 17. 

The only real problem is caused by the extension of multiplication to n 
by linearity, so that the distributive law x(y + z) = xy+ xz holds for all 
x, y, z E I7. In other words, we must check that (M) is compatible with the 
valuation property (V). Now, if P, Qi, Qz E 9, then 

Pf(QluQ,,=(P+Ql,u(P+Q,>, 

while if Q, u Q2 ~9’ also, then, as shown in [3, 1.2.21, 

P+(Q,nQ,)=(P+Ql,n(P+Q,,. 

In this latter case, 

CU. [Q, u Q,l + [PI. [QI n QJ 

= CP+ (Q, u Qdl + CP+ (Q, A Qdl 

=C(P+Q,,u(P+Q~)l+C(P+Q,)n(P+Q~,l 

=CP+QII+CP+QJ 

= [PI. [Qll + CU. CQA 

as required. This completes the proof of the lemma. 
In view of Lemma 6, the multiplication on I7 extends to classes of 

elements of O(P)), and, in particular, to classes of partly open polytopes. 
However, while in general this extension does not correspond in a natural 
way to the geometric Minkowski sum, there is one important exception. 

LEMMA 7. Let L and M be supplementary subspaces of V, let 
A, BE O(Y) be such that A z L and B G M, and let a, b be their classes in 
II. Then the class of A + B is ab. 

The important observation here is that, if A E L and B, C G A4 satisfy 
B n C = @, then (A + B) n (A + C) = 0 (this is clearly not generally true 
for arbitrary subsets A, B, C of V). The proof of Lemma 4 will now easily 
show that the extension from .?? to D(P) and Minkowski addition are 
compatible in this special case, and Lemma 7 then follows. 

We end this section with a remark. In view of the existence of multiplica- 
tion, the condition (T) for translation invariance can be expressed as 

CPXCtl- I)=0 

for all P E 9 and t E V. It follows that we can replace (T) by 

(T’) [t] = [o], for every t E V. 
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5. HOMOMORPHISMS AND ENDOMORPHISMS 

We recall that, if A, B are two algebras over the same field IF, then a 
mapping Y? A + B is called a homomorphism if it satisfies 

(Al) !P(x+J,)= Yx+ uly, 

(A21 ul(xy) = (Yx)( YY), 
(A3) Y( lx) = A( Yx), 

whenever x, y E A and 1* E [F. In our case, we shall have A = Z7( V) and 
B = Z7( W) for two finite dimensional vector spaces V, W over [F, and then 
(A3 ) only applies for x E Z,( V). Further, then, if Y only satisfies (Al ), it is 
a group homomorphism, while if it satisfies (Al) and (A2), it is a ring 
homomorphism. If A = B (or V= W), we refer to Y as an endomorphism, 
and an invertible endomorphism is an automorphism. 

Two kinds of endomorphism of 17 are of particular importance. Since we 
have yet to introduce the full algebra structure of I7, in the following two 
theorems we only prove the ring endomorphism (or homomorphism) 
properties; the remainder of the proofs will be postponed to the end of 
Section 11. 

THEOREM 6. Let V, W he vector spaces over IF, and let @: V -+ W be an 
affine mapping. Then @ induces a homomorphism from ZI( V) to IT(W), 
which is also denoted @, by @[PI = [@PI for P E 9. Moreover, @ 
commutes with the dilatations. 

Since an afline mapping is just a linear mapping followed by a transla- 
tion, in view of (T) we can suppose @ to be linear. In addition, since 
@(P + t) = @P + @t for P E 9 and t E V, the action of @ is compatible 
with (T). For compatibility with (V), if P, Q ~9, then trivially 
@(P u Q) = @P u @Q, while if P u Q E 9’ also, then @(P n Q) = @P n @Q 
(consider the intersection of P and Q with C ‘w, for WE W). Thus @ 
preserves (V), and so extends by linearity to Z7. Finally, if P, Q E 9, then 
@(P + Q) = COP + @Q, and hence @ respects (M) also, and thus preserves 
products, by the way (M) extends to 17. 

For the last part, since @(IP) = A(@P) for PE 9 and 1 E iF, @ commutes 
(in the obvious sense) with dilatations. 

For our purposes, two consequences of Theorem 6 are usually more 
important. 

COROLLARY 1. An affine mapping @: V -+ V induces an endomorphism 
@: Zi’( V) + Z7( V), which commutes with the dilatations. 

COROLLARY 2. The dilatations A(A) induce endomorphisms of 17. 

The other kind of endomorphism arises in quite a different way. 
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THEOREM I. Let U be a frame in V. Then the mapping PH P, on 9 
induces an endomorphism XH xu of II, defined on the generators by 
[P] u := CPU], which commutes with non-negative dilatations. 

Let us remark here that the mapping PH P, only depends on the direc- 
tions of the vectors in U, so that, if U= (ul, . . . . uk), then we can replace U 
by (P ,ul, . . . . PLUS) with pi>0 (i= 1, . . . . k), to obtain the same mapping. 

It is clear that we need only prove Theorem 7 for the special case 
P H P,, with u # o a single vector. The translation invariance (T) is trivial, 
since (P+ t), = P, + t. For (V), let P, Q E 9 be such that Pu Q E 9” also. 
There are two possibilities. If the support hyperplane H to Pu Q with 
outer normal u meets both P and Q, then 

WJQL=OJQ~~ (pnQL=pUnQU. 

If, say, H meets P alone, then 

(P u QL = P,, U’nQL=Q,. 

In either case, (V) is preserved. Further (see [2, 15.1.1]), 

(P+Q),=Pu+Q,, (W, = AP,, 

for P, Q E B and 1 z 0. Arguments exactly analogous to those used 
to prove Theorem 6 now show that [P] H [PI, induces a ring 
endomorphism of 17 which commutes with non-negative dilatations. Thus 
we have Theorem 7 (again, except for the algebra property). 

Observe that we cannot allow negative dilatations in Theorem 7. Indeed, 
we have 

(A( - 1)x), = d( - 1)(x-,). 

6. THE RATIONAL STRUCTURE 

In this section, we begin the proof of Theorem 1 by establishing a weaker 
version, with our given field lF replaced by the rational field Q in various 
places. 

It is clear from the statement of Theorem 1 that the subgroup (actually 
subring) 8, of 17 generated by the class 1 of a point plays a somewhat 
anomalous role. We could get around the problem by replacing E,, z Z (the 
integers) by the tensor product [F@& E [F (tensor products are always over 
Z). Although we should then obtain a genuine algebra over IF, the 
geometric meaning of E0 would be blurred. So, we shall pursue an alter- 
native course, and begin by hiving off &,. 
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As our notation 1 for [o] suggests, we shall identify E0 with Z by writing 

i 

l+ .‘. +l (n times), n > 0, 
n= 

-(l+ ... +l) (-n times), n<O, 

where, in these expressions, 1 = [o]. 
Let Z, denote the subgroup of 17 generated by all elements of the form 

[P] - 1, with PEP\{@}. 

LEMMA 8. As an abelian group, II has a direct sum decomposition 

The projection from II onto E,, is the dilatation A(0). Further, Z, is an ideal 
in II, and FEZ, if and only if A(O)z=O. 

A general element of 17 can be expressed as a sum 

x= i &,[Pj], 
j= I 

where cl= + 1 and P,E.!?\(@} (j= 1, . . . . k). Writing this as 

x=j$,c~+ i Ej(Cp,l-l) 
j=l 

expresses x as a member of E0 + Z,. Further, XE Z, if and only if 
xi”=, &j = 0, and so the sum is direct. 

It is almost obvious that A(O)[P] = 1 for every PEP\{@}. To confirm 
this, we argue as follows. Since every two k-simplices are afIinely 
equivalent, we see from Theorem 6 that the value of A(0)[Tk] for a 
k-simplex Tk depends only on the dimension k. But for k > 1, a k-simplex 
Tk can be split into two k-simplices by a hyperplane H which separates 
two vertices of Tk and contains the remaining k - 1. Since Tk- ’ := H n Tk 
is a (k - 1)-simplex, the weak valuation property (W) shows that 
A(0)[Tk] = A(0)[TkP ‘1. We conclude that A(O)[T] = A(0) 1 = 1 for every 
non-empty simplex T. Then the mapping [P] H 1, which clearly induces 
an endomorphism of Z7, coincides with [P] + A(O)[P] on the generators 
of 17 (see Lemma 5) and so is given by A(0). 

The characterization of Z, follows immediately. Finally, if ZE Z, and 
XE Z7, then A(O)(xz) = A(O)x A(O)z = 0, so that XZE Z,, and hence Z, is 
an ideal (this can be seen in several other ways as well). This completes the 
proof of the lemma. 

Care does need to be taken over the behavior of A(0). Just because 
0. S= {o} for every non-empty subset S of V, it does not mean that 
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d(O)[S] = 1 for every non-empty S in O(S) (the proof of Lemma 8 makes 
this very clear). Various other ways of seeing that d(O)[P] = 1 for 
P E P\ { 12/ > will become clear below (in Lemmas 10 and 11, for instance); 
we may observe that d(O)[P] = d(O)[2P] = d(O)[P]’ = (LI(O)[PJ)~ 
already implies that d(O)[P] =0 or 1. 

A pivotal role in our treatment is played by the analogues of the canoni- 
cal simplex dissections of [3]. The presence of these analogues enables us 
to mimic many of the proofs of [4] or [12], after a suitable change of 
language. 

Suppose that ao, a,, . . . . USE I’ are such that {a,, . . . . uk} is linearly 
independent. We write 

T(u ,,..., uk)=conv{ao,uo+u, ,..., a,+ ... +a,}, 

which is a k-simplex, and define 

S(Ql 7 . . . . ~,)=C~(~,,.~.,~,)l-C~(~,,...,~,~,)l, 

with s(0) = 1. This is the class of a partly open simplex (lacking one facet), 
and plays the role of [a,, . . . . uk] in [4] or /ui/.../uJ in [12]. Of course, 
condition (T) ensures that $(a,, . . . . uk) does not depend on a,, which 
justifies our not mentioning it. Indeed, it is usually convenient to assume 
that a, = o. 

An obvious first remark is: 

LEMMA 9. The various classes s(u, , . . . . uk) (with {a,, . . . . ak} E V linearly 
independent) generate l7; the classes with k > 1 generate 2,. 

By the corollary to Lemma 5, the classes of the simplices generate Ii’. 
But, from the definition, 

CT(a,, . . . . %)I = i da19 ..., a,), 
j=O 

and this and Lemma 8 yield the lemma. 
The first canonical simplex dissection is 

LEMMA 10. For A, p 3 0, 

The discussion of Section 3 helps us to visualize what is happening here. 
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The jth term of the sum is just the class of the partly open polytope 

and the disjoint union of these is the original partly open simplex 

whose class is d(1+ p)s(a,, . . . . uk). Lemmas 4 and 7 then apply. 
Lemma 10 and an induction argument yield the analogue of the second 

canonical simplex dissection. 

LEMMA 11. For k 2 1 and integer n 2 0, 

k n 
d(n)s(a,? . . . . uk) = c 

0 
z,, 

r=l r 

where 

z, = c Ij d"j(iL I ) + 13 ...9 uj(i,) 

o=j(o)<j(l)< <j(r)=k i=l 

is independent of n. 

An alternative proof applies the corollary to Lemma 4 to the decomposi- 
tion of the partly open simplex 

by the half-open strips 

{i <jUJWl-1 <CjGm} 

i= I 

for j = 1, . . . . k and m = 1, . . . . n. 
As a consequence of Lemma 11, we have 

LEMMA 12. Let x E II. Then there are unique y, E So and y,, . . . . yd~ Z1, 
such that, for all integers n > 0, 

d(n)x= : n y,. 
0 r=O r 
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The existence of the expression follows from Lemma 11, and the fact 
that, by Lemma 9, the classes ~(a,, . . . . uk) generate Z7. For uniqueness, we 
note that the y, can be calculated from various dilatates of x. Indeed, for 
any integer n 20, the (n + 1) x (n + 1) matrix with (i, j)-entry (j), for 
i = 0, . . . . n and j = 0, . . . . n, is invertible over Z, since it is triangular with 
diagonal entries 1. The inverse matrix is easily calculated, and we then 
obtain 

y,= i (-I)‘-” 0)x, 
?i=O 

which is the required expression for y,. This proves the lemma. 
We can put y, = 0 for r > d in the expression of Lemma 12, and deduce 

COROLLARY. For r>d, 

Now let PEG\{@}. If we compare the expression 

A(n)[P]=[nP]=[P]“=(l+([P]-l))“=l+ i ’ 
0 

(LPI-1)’ 
r=l r 

with Lemma 12 and its proof (compare the corollary), we deduce 

LEMMA 13. I~PEcY\{@}, then ([PI- l)‘=Ofor r>d. 

Let Z, be the subgroup of Z, generated by all elements of the form 
( [P] - 1 y‘, with P E S\ { a} and j > r. Writing Z, = ZZ, from the definition 
we have the filtration 

z,zz,2 ... 3Zd2Zd+,= (0). 

Because A(l)([P]- l)j=([nP]-l)‘, we conclude 

LEMMA 14. Zf,l~ IF, then A(L)Z,sZ,. 

If we rewrite the expression above as 

A(n)(CPl-I)= i ;I 
0 

(L-PI - lIkv 
k=l 

take jth powers of both sides, and again use the fact that A(n) is a ring 
endomorphism, we obtain 

LEMMA 15. Z~XEZ,, then A(n)x-tfxEZ,+,. 
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This holds for the generators ([PI - 1 )j (j >, r) of Z,, and so it holds 
generally. 

We are now in a position to show that Z, is a vector space over Q. Since 
Z, is an abelian group, it suffices to prove that Z, is uniquely divisible, 
meaning that, given any x E Z, and any integer m 3 2, there exists a unique 
y E Z,, such that x = my. 

LEMMA 16. Z, is torsion free. 

Let x E Z, be a torsion element, say nx = 0 with n > 2 an integer. We 
show by induction that x E Z, for all r. Indeed, if x E Z,, then 

by Lemma 15. Thus x E A(n - ’ ) Z, + I = Z, + i, by Lemma 14, and since 
Z d+, = {0}, the lemma follows. 

LEMMA 17. Z, is divisible. 

Let x E Z, and m 3 2 an integer. If x E Z,, then by Lemmas 14 and 15, 

x=A(m)A(m-‘)x=m.md-’ A(m-‘)x, 

so that m ~ ‘X exists (and is unique by Lemma 16). We now use backward 
induction on r. If x E Z,, then 

so that m-‘y E Z, + , exists, and thus 

m -Ix=,,-1 A(m-‘)x+m-‘yEZ, 

exists also. The lemma follows at once. 
At this stage, we could now follow [4] or [12] in expanding the 

binomial coefficients (F) in Lemma 12 as polynomials in n with rational 
coefficients, and collecting together the terms in nr for each r = 0, . . . . d. 
However, an alternative approach using the rational algebra structure is 
quicker and yields more information. 

From Lemma 8, Z, is closed under multiplication; further, if x, y E Z, 
and 2 = m/n E Q, then (Ax)y = I(xy), since both sides are the unique solu- 
tion z to the equation nz= (mx)y=m(xy). Since Z, is generated by the 
nilpotent elements [P] - 1 (with PEP\{ @}), every element of Z, is 
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nilpotent; that is, Z, is a nil ideal of Z7. It follows that we can define the 
logarithm and exponential mappings in the usual way by 

expz= 1 Lzk 
k,CI k !  

(with z” = 1 ), for every z E Z, . The ordinary properties of log and exp carry 
over, namely 

LEMMA 18. The mappings log and exp are inverse mappings, and satisfy 

(a) log(x,x,) = log xi + log x2, when A(O)x, = A(O)x, = 1; 

(b) exp(z,+z,)=expz,.expz,, when z,,z,~Z,. 

In particular, log[P] is defined for every PE B\{ @}; for brevity (but 
see also Section 8 below), we write log P := log[P]. Putting z = [P] - 1, 
we recognize log P as the coefficient of n in the expansion of [nP] = [PI” 
given by Lemma 12. 

Indeed, since log[nP] = log[P]” = n log[P], and d(A) log P = log(lP) 
for 1 E Q, we deduce at once 

LEMMA 19. For P E ??\{ 0) and rational 3, > 0, A(l) log P = 1 log P. 

We now invert this relation. If P E Y\(@}, let p = log PE Z,, and 
suppose that A > 0 is rational. Since A(;l) is a ring endomorphism of ZZ, we 
have 

[IP] = A(l)[P] = A(1) exp p= exp(A(l) p) 

= exp(Ap) = i 1’ .A pr. 
r=O . 

The sum terminates at r = d, because the expression for p = log P and 
(CPI-1) d+ ’ = 0 imply pd+ ’ = 0 also. 

For r = 1, . . . . d, we define the rth weight space .Yc, to be the subgroup of 
l7 generated by all the elements p’ (or (l/r!) p’), with p = log P for some 
PEG\{@}. Then 

LEMMA 20. II = @ f= o 8,. Moreover, x E z, if and only if, for any single 
rational I > 0 with 1# 1, A(l)x = l’x. 

From the definition, if x E 8, and A 2 0 is rational, we have A(l)x = I’x. 
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Again from the definition, I7 is the sum of the Er. If x, E Er (r = 0, . . . . d) are 
such that Cl=, x, = 0, then 

d d 

0=/l(A) c x,= c l”‘X, 

r=O r=O 

for every rational number 2 2 0, and so, since Z7 = E. @Z, is the sum of a 
copy of Z and a rational vector space, x, = 0 for each r; that is, the sum 
is direct. 

If x E ZZ and 2 = m/n > 0 (m #n) are such that d(l)x = ;l’x, then express 
x as x = C;f=, xk, with xk E Ek (k = 0, . . . . d). Applying d(J), we have 

%‘x = d(i)x = ; AkXk. 
k=O 

Multiply the first expression by mr and the second by n’, and subtract one 
from the other, to obtain 

k:r (mr - n’lk) xk = 0. 

But mr - n’ilk # 0 for k # r, so that xk = 0 for k # r, and hence x = x, E Z,, 
as claimed. This proves the lemma. 

In fact, in the notation introduced above, we can easily see that 
z,= @;=,z, for each s=O, . . . . d. If ~~17, let x=C:‘=, x, with x,E.?, 
(r = 0, . . . . d); we call x, the r-component of x. 

If r, s = 0, . . . . d, and x E .Yr, y E E,s, then taking i = 2 (say) in Lemma 20, 
we see that 

42)(xy) = (42)x)(42) y) = 2*x. 2”y = 2’+sxy, 

so that xy~s,.+,. Since E’r+s is generated by the elements p’+‘, with 
PEP\{@}, andp’EE-,, ~‘EE-,, it follows that Er.Es=Er+S. 

Thus we have now established all of Theorem 1, with the scalars or 
dilatations restricted to rationals, except for the characterization of Ed, 
which will be considered in Section 7. 

We end this section by remarking on some implications of these results 
for valuations. We say that a valuation 4 on ~3’ is homogeneous of degree 
r if &nP) = n’&P) for all P E 9 and all integers n 2 0. Then we have (com- 
pare Section 6): 

THEOREM 8. Let 4 be a translation invariant valuation on 9. Then 4 
admits a unique decomposition 4 = Cf=, d,, where 4, is a translation 
invariant valuation on ~7 which is homogeneous of degree r. 

hn7’7wi 
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The proof is immediate; we just define c$, to be the restriction of 4 to Er, 
so that 4,(P) = &( [PI,), where [P] is the r-component of [P] for P E B. 
(The usual conventions of Lemma 1 apply.) Then for integer n > 0, 

f4W) = d( Cm,) = WCPI,) = nr4( CPI,) = n’$4(Ph 

as claimed. 
Note; in fact, that we actually have c$J,IP) = lrq5,(P) for all rational 

12 0, with the implication that the image of ZI under 4, is a divisible 
subgroup of the target group for r > 1. 

The uniqueness part of Theorem 8 has a useful consequence. 

COROLLARY. Let 4 be a translation invariant valuation on 9 which is 
homogeneous of degree r. Zf s # r, then 4 vanishes on ES. 

We shall particularly want to apply this corollary to the frame func- 
tionals. As is clear, and will be made even clearer after the discussion of 
volume in Section 7, a frame functional of type r is homogeneous of 
degree r. 

7. VOLUME 

In this section, we shall verify the isomorphism Zd z IF of Theorem 1 (c). 
The isomorphism is given by volume; this important notion turns up as 
well as in the main Theorems 3 and 5. 

LEMMA 21. As an abelian group, 5, S’ IF. 

The definition of Zd as the set of d-components of elements of l7, the fact 
that these d-components are the coefficients of nd in the polynomial expan- 
sions of the d(n)x for x E IZ, and the second canonical simplex dissection 
Lemma 11, show that the only generators s(a,, . . . . ak) of i7 which can con- 
tribute to 8, are those for which k = d. The corresponding d-component is 

$s(a,)-.-s(a,). 

Now s(al) ... s(ad) is the class of the half-open parallelotope 

The order of the terms s(a,) is immaterial, and we can clearly replace any 
a, by - ai, since s(a,) = s( -a,) from the translation invariance (T). Finally, 
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if i#j and 1 E IF, we can replace ai by ai+ laj. To see this, note that the 
previous remark shows that we can assume that A > 0. If q is the class of 

the decompositions of the latter by the two open half-planes 

yield the equations 

q = S(Ui)s(uj) + S(aj, AUj) 

= s(a,, hi) + S(Uj + E”aj)s(uj). 

whence s(a,)s(a,) = s(a, + lu,)s(a,). 
If a fixed basis (e,, . . . . ed} of V is now chosen, then the theory of elemen- 

tary row operations on matrices shows that the above operations suffice to 
transform ~(a,) . . ..~(a~) into s(pe,)... s(ed), where p= Idet(a,, . . . . a,)/, the 
determinant being relative to the given basis. Since s((p + v) e,) = 
s(pe,) +s(ve,) for p, v 20, we conclude immediately that the corre- 
spondence 

da1 1 . ..~(a~)+-+ Idet(a,, . . . . ad)1 

induces an isomorphism between the abelian groups Ed and F. 
This isomorphism on Ed, the homomorphism it induces on ZZ, and the 

corresponding translation invariant valuation on P are all called oolume, 
which is denoted vol. 

There is clearly a scaling factor involved in the delinition of volume, 
arising from the choice of basis of V. However, apart from this, volume is 
unique. The characterization of volume by Hadwiger [3, Sect. 2.1.31, is 
only available if [F is archimedean, but we can modify it as follows. 

LEMMA 22. Let I$: 9 -+ F be a translation invariant valuation, which is 
homogeneous of degree d, and is such that 4(P) > 0 for all P E 9. Then 4 is 
a non-negative multiple of volume. 

If L is a linear subspace of V, of dimension k > 1, then Theorem 6 shows 
that the subring Z7( L) of 17 is isomorphic to Z7( lF“), with Fk the usual coor- 
dinate vector space. Thus Zk(L) r F also, and the isomorphism yields a 
volume vol, on 17(L) or g(L), which is an L-simple translation invariant 
valuation, homogeneous of degree k. If L = {o} is the trivial subspace, we 
scale naturally by defining vol i0j 1 = 1. 
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We sometimes wish to have a volume vol, for each subspace L of V. To 
avoid needing to appeal to the axiom of choice, to specify a particular 
scaling of vol, for each L, we can proceed as follows. Let Q be a fixed 
polytope in V with o E int Q, for example, Q = conv{eO, ei, . . . . ed}, where 

{e 1, . . . . ed} is any basis of V, and e, = - (e, + . . . + ed). Then Q n L is a 
polytope of dimension dim L for every subspace L of V, and so we can 
choose the scaling so that vol,(Q n L) = 1 for every L. We call this the 
scaling induced by Q. 

8. THE FIRST WEIGHT SPACE 

While it is not necessary at this stage, it is helpful to give an alternative 
description of the first weight space sl. By definition, 8, is generated by 
the elements log P, with PE S\(@ >. S’ mce log P is just the l-component 
of P, we deduce 

LEMMA 23. The mapping log induces a translation invariant valuation 
on 9. 

However, we shall not define log 12/, allowing the conflict between 
writing log 0 = 0 on the basis of Lemma 23 and the “natural” definition 
log Q! =logO= -co (whatever this might mean!) to remain unresolved. 
We note that the property log(P + Q) = log P + log Q (obtained by setting 
xi = [PI, x2 = [Q] in Lemma 18) and the valuation property (V) ensure 
that, if P, QEY\{@} are such that P u Q E 9 also, then 

log((f’u Q, + (p n Q,) = log(p + Q,. 

In fact, this is also a consequence of a result of Sallee [ 131: 

LEMMA 24. Let P, Q E 9 satisfy P u Q E 9 also. Then 

(PuQ,+(PnQ,=P+Q. 

Compare also with Section 15 below, whose results do not depend on 
those of this section. 

We next have (compare [2, Sect. 15.11): 

LEMMA 25. LetP,QI,Q2~9\{@}besuchthatP+Q,=P+Q2.Then 

Q, = Q2. 

In fact, we observe that 

Qi= {VE VIP+VGP+Q~}. 
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Now let YT denote the equivalence classes of pairs (P, Q), with 
P, Q E Y\{ @}, under the relation 

(P,Q,-(P',Q')-=P+Q'=P'+Q+t 

for some translation vector t E V. Then 

LEMMA 26. 9T is an abelian group, under the addition 

(P, Q) + (P’, Q’, = (P + P’, Q + Q’,. 

The cancellation law of Lemma 25 ensures that - is an equivalence 
relation. The identity in YT is (IO>, {o}), and the inverse is given by 
- (P, Q, = (Q, P). 

We now have the following isomorphism theorem. 

THEOREM 9. The mapping log: 9\{ 0} -+ Z, induces an isomorphism 
between YT and Z,. 

We extend log to YT by defining 

log(P, Q)=log P-log Q, 

for (P, Q) E PT. The extension is well defined, because if (P, Q) - (P', Q'), 
say P+Q’=P’+Q+t with tEV, then 

log P+logQ’=log(P+Q’) 

=log( P'+ Q, 

= log P’ + log Q, 

so that log P - log Q = log P’ - log Q’, as required. 
On the other hand, in view of Lemma 24 and the definition of addition 

in CYT, the mapping 4: p\ { @;I> + S: defined by d(P) = (P, (0) ) is a transla- 
tion invariant valuation, and so induces a homomorphism 4: 17 -+ PT. But 

d(nP)=(nP, {o})=n(P, {o})=w+(P) 

for integral n 3 0, so that 4 is homogeneous of degree 1, and hence, by the 
corollary to Theorem 8, acts effectively on ZI. Therefore, on the generators 
[P] (PEL?\{@}) of II, we have 

It follows that log and 4 are inverse homomorphisms, and this is the 
theorem. 
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9. THE ALGEBRA STRUCTURE I 

We now embark on the process of extending the range of the scalars 
occurring in Theorem 1 from Q to (F. This will be done over the next three 
sections; Section 10 will contain the proof of the separation Theorem 3. 

Our first step is straightforward. 

LEMMA 27. Zl is a vector space over IF. 

We present two proofs. The first employs Theorem 9. There is a natural 
scalar multiplication on the group &, namely 

if 120, 

if 1~0. 

With the given (vector) addition on Y=, the axioms of a vector space are 
easily checked. In fact, the only problem is caused by scalar multiplication 
by I +p when 1~ ~0. If il+ p 20 (the other case is similar), with, say, 
1>0, p<O, then 

A(& Q, + P(P, Q, = W, AQ) + ( -PQ, -@I 

= W - PQ, AQ - PP) 

=((~+P)P-PL(P+Q), (~+P)Q-P(P+Q)) 

=(U+PL)P, U+P)Q) 

= (A + PL)(P, QL 

where we have cancelled the terms -p(P + Q) using the definition of PT 
(note that -p > 0). We now appeal to Theorem 9. 

Alternatively, we can start from the first canonical simplex dissection 
Lemma 10. In that, all the terms for j = 1, . . . . k - 1 (k > 1; that is, excepting 
the first and last) lie in Z,, since each class s(b,, . . . . bj) (j> 1) of a partly 
open simplex lies in Z, = Of=, ET. Writing s1 = s,(a,, . . . . ak) for the 
l-component of s(al, . . . . a,), we therefore deduce that, for A, ~12 0, 

Clearly also, 

for all ;1, p E IF. Since the classes s1 generate 8,) we conclude that the same 
relations hold, with a general x E s”, replacing si. 
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The scalar multiplication on zI is now defined by 

lx= 4~b, 

i 

if 2 > 0, 
* 

-A( -A)x, if i CO, 

for XE s, and ,J E F. Again, all the axioms of a vector space over IF are 
easily verified, with scalar multiplication by a + p with 11~ < 0 causing the 
only problem. We have to approach this indirectly. This time, let us take 
L+p<O, with L<O, PLO. Then for all XE~,, 

Ax= -A(-2)x 

= -A(-(A+p)+pL)x 

= -A( -(A+p))X-A(p)x 

or (I + p)x = Ax + px, as we require. 
We may observe that the isomorphism of Theorem 9 is compatible with 

the definition of scalar multiplication in PT and z-I, and so becomes one of 
vector spaces over F. 

As we shall remark in Section 11, it is the case (d) of Theorem 1 with 
x, y E 3, which enables us to impose the full vector space structure on Z, 
(or on each 3, with r b 2). To prove this case, we shall need to adapt 
the geometric construction of Thorup in [4]. A somewhat paradoxical 
situation arises. The argument of [4] directly applied would only 
prove (1x)y = x(Ly) for 2~ IF, in case XE~~(L) and y~8~(M) for some 
supplementary subspaces L and A4 of V, which is insufficient (but see 
Section 10 below). We shall get around this problem, as we have hinted 
earlier, by proving the separation Theorem 3 before we have completed the 
proof of Theorem 1. Curiously, we shall then find that we need an even less 
general case of (d) than that just mentioned; it is enough to take L and M 
a hyperplane and complementary line. 

So, let H be a hyperplane in V (passing through the origin o), and let 
E be a line segment in a line complementary to H. We write 

e=logE= [El-l. 

LEMMA 28. if x E .Zl( H) and 1> 0, then (Ae)x = e(Ax). 

The idea of the proof of this lemma is to establish it first for (the l-com- 
ponents of classes of) certain special polytopes x, and then to show that 
these x generate the simplex classes in Z”,(H). 

We can appeal to induction on k, and so remark that we need only 
prove the lemma for the x =sl(ur, . . . . ok) in Zl(H) with k = d- 1. (The case 
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k = 1 is particularly easy, because this is a consequence of the discussion of 
area ( = volume) when d= 2; see Section 7.) 

The construction which we generalize from [4] is perhaps clarified by a 
little extra notation. Let (b,, . . . . bd) be a fixed basis of V, and for 
j = 1, . . . . d- 1 and v a positive rational number, let Qi(v) be the 
endomorphism of 17 induced by the linear mapping 

bi++ bi, if i6 j, 

Vbi, if i>j. 

Further, define 

Qj(V) = I- v-‘i2j(v), 

!Pj(v)=r-Qj(v), 

where Z is the identity endomorphism. These Qj(v) and Y’j(v), for different 
values ofj and v, are mutually commuting group endomorphisms of Z7. 

For k=l , . . . . d- 1, let L=lin{b,, . . . . bk}, M=lin{b,+,, . . . . bd}, and 
y E B,(L), z E B,(M). Then we can easily see that 

if j-ck, 

if j=k, 

if j > k. 

If y, z E .!?i, we write 

y * z = (iYY)Z - Y(lZ), 

so that we must show that x * e =O. Choosing, as we may, (b,, . . . . b,- 1} 
as a basis of H and E= conv{o, bd}, and applying Lemma 10 to the 
2-component of 

d2 + pb(b,, . . . . bd) - d(p + A)s(b,, . . . . bd) = 0 

with p = 1, we see that 

d-1 

,c, s,(b, 3 ..-, hc) * s,(b,+ I, . ..> bd) = 0. 

Letting v,, . . . . vdez be any positive rationals, applying @,(v,), . . . . 
@&~(v&~) to this relation, and using the remarks above, we deduce that 
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since e = s,(b,). Thus Lemma 28 holds for the special classes of the form 

x= Y,(v,)-.- yd-,(v,-,b,(b,, . . . . b,- 1). 

In fact, we shall only need to consider the cases where vi = n,-‘, with ni a 
positive integer for i = 1, . . . . d- 2. 

We must now show how to recover a general class ~,(a,, . . . . ad- ,) (with 

{a 1, ..., ad- ,} G H linearly independent) from these special classes. Once 
again, we generalize the ideas of [4]. If L is a subspace of V, Q s L a 
partly open polytope, v $ L a point, and n > 2 an integer, then 

{(~-/J)v+PvIMJEQ, l/n<&l} 

is called a stump with base Q, or over Q. A k-fold stump is a stump over 
a (k - 1 )-fold stump. A stump over a point is a half-open line segment; then 
x (as above) is the l-component of the class of a pyramid (with missing 
apex), whose base is a (d - 1 )-fold stump over a point. 

To avoid constant repetition, let us take the phrase “the l-component of 
the class of” as read in what follows. Moreover, a simplex will always lack 
a facet (so that its class is an s(a,, . . . . ak)). The construction of a simplex 
from stumps proceeds by induction, in the following way: if we have all 
stumps over (k - 1 )-simplices, then we have all (stumps over) k-simplices. 
We thus work backwards, “unstumping” the last stumped base. 

The argument of [4] is easily modified, if we replace the dissections 
which occur there by decompositions into partly open polytopes. The class 
S(CI, ..., ck) of a k-simplex is-represented by 

t22 ... 2&>O 

We now define, for m = 0, . . . . k, 

and, for n = 2, . . . . k, 

s;= i ~;ciES”,,llI(,-,<(,-l . 
{ i= 1 I 

Effectively, we have here m + n <k + 1. We further write 

t,= i cj, 
;= 1 
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for n = 1, . . . . k. We can easily check the decompositions 

X+1 =(S:+t,)LLs”,+’ 

for n < k, while 

Sk+1 =g+t,. 

Now each union Sj v ... u Sk is a stump over a (k - 1 )-simplex, and so 
we can construct each individual S!,, (m 2 1) from stumps. We then obtain 
successively all the Sk with m > 1. But for n = k, we therefore have Si, and 
reversing all the steps with m = 0, we eventually obtain SA = S. This, and 
the induction argument outlined above, complete the proof of Lemma 28. 

In stating the following consequence of Lemma 28, we make the induc- 
tive assumption that Theorem 1 has been established for n(H). Implicit 
also is a forward reference to Section 11, for the details of extending the 
vector space structure to Z? for r > 2. 

COROLLARY. With e, H as above, if y E Z,(H) and 1 E F, then 

W)y = e(dy2y). 

10. SEPARATION 

We now depart more radically from the pattern of proof of [4]. In order 
to complete the proof of the structure Theorem 1, we shall first prove the 
separation Theorem 3. However, the method of proof of Theorem 3 still 
follows quite closely the corresponding part of [4]. 

Let H be a hyperplane and L the orthogonal line in V, both containing 
the origin o, let E be a line segment in L, and let e = log E. We denote by 
A the subgroup of 17 generated by all elements of the form (le)y, with 1 E IF 
and y E IT(H). The first step in proving Theorem 3 is to show that, if x E I7 
is such that fu(x) = 0 for all frame functionals fu, then x E /i. 

Let u be any non-zero vector in V, and let H, be the (linear) hyperplane 
orthogonal to u. The mapping xw x, is a ring endomorphism of n 
(Theorem 7). Using frames U= (ul, . . . . z+) with u1 = u, the inductive 
assumption that Theorem 3 holds in 17(H,) shows that, iff,(x) = 0 for all 
frames U, then x, = 0. 

The quotient map l7 + l7/A has the following description. Suppose that 
L=lin{b), and let H+ be that half-space bounded by N which contains b. 
If u # H and Q E P(H,), then suppose Q translated so that Q E H +, let 
Q, be the image of Q under orthogonal projection on to H, and write 
Q = conv(Q u Q,). Then [Q] is determined by Q up to an element of A, 
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and so the class [&I,, of Q in ZZ/A depends only upon [Q], and deter- 
mines a homomorphism y H y, of Z7(H,) into l7/,4. 

Now let P E 9. From P, we obtain two elements of U(Y), namely, its 
upper and lower boundaries P, and P- , defined by 

P, = {oEP(v+pb$P for all p>O}, 

P~={v~P~u+~b~Pforall~~O}. 

Using Lemma 4 (or the inclusionexclusion principle), we see that the three 
classes [P,], [P-l, and [P-I are all well defined (assuming P translated 
so that PrH+)), and 

[P]=[P+]-[P-l+[P-I 

We now factor out by A. We decompose x E ZZ into three terms X + , X _, 
and x_ , corresponding to the decomposition of [P] above, so that 
x=x+ -5 +x-. If x,=0 for each u$H, then x- =0 anyway. Modulo 
A, we must also have X + = 0 = X _ , so that x, = 0, or x E A, as required. 
This completes the first step. 

We can thus express x in the form 

x=&e+ f (Ljie)yj, 

j= 1 

where A,,, . . . . &,,E IF and yi, . . . . y, E Z,(H). The corollary to Lemma 26 
shows that we can write this in the form x=&e+ ey, where 
~=Cim_l ljYjEZl(H). 

We now apply the frame functionals fu, with U E H. From fu(x) = 0 for 
any single such fu of type 1 follows I, = 0. Now let fi/ be such a functional 
of type r > 2. We can always rescale volumes, if necessary, so that, for each 
subspace A4 of H, 

vol 
L+dE+Q)=vol,Q 

for Q E Y(M). The frame U also gives rise to a frame functional f; on 
17(H), this time of type r - 1, and our choice of scaling shows that 

for each y E 17(H). But now, if x = ey is such that fu(x) = 0 for each such 
frame U G H, we have f’,(y) = 0, and again the inductive assumption that 
Theorem 3 holds in Z7( H) yields y = 0, and hence x = 0, as claimed. This 
completes the proof of Theorem 3. 

In view of the fact that, by the corollary to Theorem 8 (and the following 
remark), frame functionals of type r vanish identically on ZS unless r = s, 
we deduce 
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COROLLARY. For each r = 0, . . . . d, the frame functionah of type r 
separate E?. 

The separating frame functionals fU are not, in fact, independent. A 
syzygy is a non-trivial linear relationship 2, uUfU = 0 between them. We 
do not insist on such syzygies involving only finitely many terms; indeed, 
in all but one trivial case, we shall see that they generally do not. 

We can obviously confine our attention to syzygies between frame func- 
tionals of the same type. If U is a d-frame, then fu(x) = d(O)x is actually 
independent of U, and hence 

LEMMA 29. For every two d-frames U, u’, fu = fu. 

Since f@ = vol is the only frame functional of type d, we henceforth con- 
sider frame functionals of some type r, with 1 < r d d- 1. We know of two 
further kinds of syzygy, which correspond naturally to syzygies between the 
Hadwiger functionals h, (see [12, Chap. S] and Section 17 below). 

The next kind derives from the analogue of Minkowski’s theorem 
relating the areas and normal vectors of facets of polytopes (see [2, 
Sect. 15.31). Let L, M be two subspaces of I’ of the same dimension, with 
corresponding volumes vol,, vol,, and let Gr denote orthogonal projec- 
tion on to L. By the essential uniqueness of volume (Lemma 22) there is 
a non-negative scalar B(L, M), such that 

vol,(@,P) = QL, M) vol,P 

for each P E P(M). If U is a fixed frame, and v, w  are vectors orthogonal 
to U, write L, = (U, v)’ and 

z(U,v, w)=sign(v, w)B(L,, L,,). 

By considering the areas of the projections of the facets of a polytope in 
9( U ‘) on to L,, we obtain 

LEMMA 30. For each frame U and fixed v E U 

We observe that the sum in Lemma 30 is infinite (if we exclude (d- l)- 
frames U, according to our remarks above). Now general infinite linear 
combinations of frame functionals are not permitted, in contrast to the 
situation for Hadwiger functionals h,; the latter vanish on polytopes of less 
than full dimension anyway, and if P E 9 is d-dimensional, then h,(P) # 0 
for only finitely many frames U. However, if U is a fixed frame as in 
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Lemma 30, then again for a given polytope P, we have f(U,,V)( P) # 0 for 
only finitely many w  E U. 

Similar considerations must be borne in mind in constructing the third 
kind of syzygy. If P E 9, then for only finitely many frames (v, w) spanning 
a fixed plane L is it true that P,, W., # P,, _ w) (consider the orthogonal 
projection BLP, which is a polygon, line segment, or point). Moreover, if 
we choose a fixed orientation (u, u>) in L, and rotate v according to this 
orientation, then for two successive values ui, v2 of u for which inequality 
does prevail, we have Pcu,,W,,= Pct,2,-,2,. Applying this to polytopes P,, 
with L&(U’)l, and looking at faces in direction a further frame 
U” G (U’, L) ‘, we obtain 

LEMMA 31. Let (U’, U”) be a frame in V, and let L be a plane in V with 
Ls(U’, U”) I. Then 

where the sum extends over all frames (v, w) in L of a given orientation. 

Note, by the way, that the summation above is really only over v E L, 
since the orientation and (v, w  ) = 0 determine w  (and, as usual in talking 
about frames, only the directions of the vectors are significant). 

We refer to the syzygies of Lemmas 29, 30, and 31 as syzygies of the first, 
second, and third kind, respectively. We wish to propose: 

Conjecture 1. Every syzygy between frame functionals is a consequence 
of syzygies of these three kinds. 

The syzygies of the first kind need no further comment. For the rest, we 
have: 

THEOREM 10. The only syzygies between frame functionals fu of type 
r < d- 1, where U = U(v) depends on a single vector v, are those of the 
second and third kind. 

We sketch the proof. If U depends just on u, it is of the form 
U = (U,, U,(v), U,), with U,, U, fixed frames, and U,(v) varying over 
frames in some fixed subspace L E U: n U $. We clearly lose no generality 
if we take UI = @ (alternatively, we work in Z7( U: )). We consider 
separately the cases dim L = 1, 2 or dim L k 3. For dim L = 1 and d > 2, for 
suitable P E 9 there is no relationship between P, and P_,, which thus 
excludes this case. For dim L = 2, we necessarily have the relationships 
P IL’,.“‘,) = P ,L,2. ~ “,>, (with u’i E v,’ for i = 1,2) as above, when the general 
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equation Pcv,wJ = P,, -,,,) fails (see also Section 13 below), but again 
suitable choices of P show that we have no others; this yields the third kind 
of syzygy. Finally, if dim L > 3, suitable simplices yield Minkowski’s 
theorem (that is, Lemma 30), but deny other relationships. The theorem 
follows. 

11. THE ALGEBRA STRUCTURE II 

We are now in a position to complete the proof of Theorem 1. We first 
need a special case of Theorem l(d). 

LEMMA 32. If d= 2, and x, y E EI, 1 E [F, then (h)y = x(Ay). 

Let P, Q be two fixed polygons or line segments in the plane, and let 
A, p 2 0 be variable scalars. An application of the lifting theorem of Walkup 
and Wets [ 181 shows that IP + ,uQ admits a dissection (up to translation) 
into AP, PQ and sets of the form AE +pF, where E is an edge of P and F 
an edge of Q. Considering the 2-component of 

where p = log P, q = log Q, using Lemma 4 (or the inclusionexclusion 
principle), and noting that the 2-components (areas) of points and line 
segments vanish, we deduce that 

(@P)(w) = C (AeUf), 
E.F 

where E, F are as above, and e = log E, f = log F. But the analysis in 
Section 7 shows that the area term (de)(/& depends only on (e, f and) the 
product 1~. The same is therefore true of (Ap)(pq). 

In particular, (1p)q = p(lq) for all A > 0. But the definition of scalar mul- 
tiplication in 8, shows that we need only consider this case (this remark 
holds good below as well). Thus the lemma holds for the generators of Er, 
and so it holds for all x, y E 8,) which proves the lemma. 

Theorem l(d) for general dimension d and x, y E E, now follows. As 
above, it is enough to prove that (1p)q = p(Aq), whenever p = log P, 
q=logQ for some P,QE~\{@} and 120. In turn, the corollary to 
the separation Theorem 3 shows that we need only show that 
((Ap)q - p(lq)), = 0 for each (d- 2)-frame U. But recalling that the map- 
ping XHX~ is a ring endomorphism of IZ which commutes with non- 
negative dilatations (by those parts of Theorem 7 which we have proved so 



THE POLYTOPE ALGEBRA 109 

far), and that, by definition, 1p = d(L)p since p E Z, (and similarly for q), 
we have 

((Gkl)u = (4JP)LN” = (&u)4u 
= P&q,) = PC/(Q),= MQ))U. 

Thus (+)q = p(iq), and consequently we have this more general case of 
Theorem 1 (d). 

All that remains of Theorem 1 is the rest of (d), and the extensions of the 
scalar multiplication of (c) and the dilatation of (e) from Q to [F. We do 
all these together. 

A typical generator of Er (r > 2) is of the form x1 . . . x,, where xi E 8, for 
i = 1, . . . . r. (In fact, we could take it to be of the form pr, where p = log P 
for some PE CP\{ a}, but this is needlessly specialized.) We define the 
scalar multiplication by 

4x, . ..x.)=(Ax1)x*...x, 

for J. E [F. Induction on r, starting with the case r = 2 (that part of 
Theorem l(d) proved above), shows that it is irrelevant to which factor xi 
the scalar 2 is attached. This remark, applied to the generators of Z,, also 
establishes (d) in full generality. 

Now, all the properties of a vector space over IF are easily verified, except 
for the distributivity property 

A( y + z) = Ay + AZ, 

for JE[F and y,zEZr, in other words, that scalar multiplication by 1 is a 
group endomorphism of EC,. But for our generator x, . . . x, and ,4 >, 0, we 
have 

d(l)(x, “.X,) = (/4(2)x,). . . (d(A)x,) 

= (Ax,) +. . (Ax,) 

= A’(x, . . .x,). 

This, then, is Theorem l(e). 
Finally, we can write 2 > 0 as a rational linear combination 

A= c cYk(n+k)r 
k=O 
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for some clO, . . . . CI,E Q (valid for all A). Since each d(1 +k) is a group 
endomorphism of the rational vector space Zr”,, so is EL=0 ak d(l + k). But 

(x,...x,) 

= 

= A(x, . . .x,), 

and this yields Theorem l(c), and completes the proof. 
Note that we must now have Z”,r [F as a vector space over [F, in a 

natural way that was perhaps already apparent in Section 7. 
Let us make one final remark about the corollary to Lemma 28. There, 

we can now assume that y E EJH) for some r > 1, say a basic y = y, . . . y,, 
with Y~EE”,(H) for i= 1, . . . . r. Then for 12 0 (as usual sufficient), we have 

(le)y = (le)y, . . . yr = e(Ayyl )y2-. y, = e(O), 

by the definition of scalar multiplication in Z,(H). 
We left the proofs of Theorems 6 and 7 incomplete, in that we could not, 

in Section 5, prove that the two kinds of homomorphism occurring there 
were full algebra homomorphisms. As an obvious first remark: 

LEMMA 33. The homomorphisms of Theorems 6 and 7 act as group 
homomorphisms on each weight space Er. 

This follows directly from Lemma 20 (with, say, 2 = 2), and the fact that 
these homomorphisms commute with non-negative dilatations. 

The full algebra properties 

@(ix) = mx; (lx), = IX” 

now follow at once, if we bear in mind the definition of scalar multiplica- 
tion in E, for r 2 1, and the proof of the last parts of Theorem 1 just above. 

We conclude the discussion of Theorem 1 with an observation. 

THEOREM 11. Let O,<r<d-1, andlet xc.?, with x#O. Then there isa 
y E 8,) such that xy # 0. 

The case r = 0 is trivial, since any y E Er with y # 0 will do (bear in mind 
Lemma 16); we may thus suppose that r 3 1, and hence that da 2. We first 
consider the case r = d- 1. For each direction U, x, is a pure (d- l)- 
volume term, and since x #O, there is at least one, and at most finitely 
many directions ui, such that CX~ := x,, # 0 (we take CL~ E [F here). There are 
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constants K, > 0, such that, if PE 9 has support function h(P, u) = 
max { (0, u ) 1 o E P}, as in Section 2, then for p = log P, we have 

px = c lqh(P, UJ c1, 

(this is the usual calculation of mixed volume, with the constant ~~ 
depending on the normalization of the (d- 1)-volume cr,; see also 
Section 15 below). 

We now pick any a, 6~ V with a# b, such that (a, u) = (h, u) for 
exactly one U= ui (among those ui above). For i >O, write Y, = 
conv{ o, la, b >, and let yl = log Y,. By direct calculation, for 1 sufficiently 
near 1, we have 

i 
0, 

XYi.-X-Vl =W)+ K(& *)(a 
if A<l, 

u)cc > > if Aa 1, 

where $(A) is some linear function, and K = K,, CI = IX;. Thus .~y;, cannot be 
constant, and so for some y = y,, we have xy # 0. 

Now let r<d-1. If .YEE~ with x #O, then from the separation 
Theorem 3, we can find a vector u # o such that x, # 0. Since x, E X”,(H,), 
with H, as usual the hyperplane orthogonal to u, by induction on d we can 
find a y E Z, (H,) such that x,y # 0. But we have (my), = x, y, = x, y, and 
consequently xy # 0, as we wished to show. 

12. THE CONE GROUP 

The definitions of the cone groups f’(L) and 2 were given in Section 2, 
but for convenience we repeat them here. 

Let L be a subspace of V, and let W(L) denote the family of all cones 
(that is, polyhedral cones with apex o) in L. The cone group f(L) is the 
abelian group with generators (K) for K E g(L), which satisfy the relations 

(V) (K,uK,)+(K,nK,)=(K,)+(K,), whenever K,,K,EW(L) 
are such that K, u K, E V(L) also; 

(S) (K) =O, if KEG??(L) satisfies dim K<dim L. 

The fill cone group 2 is defined to be 2 = @ L f(L), the direct sum 
extending over all subspaces L of V, including {o} and v itself. We also 
write Zk = @ dim L =k f(L), so that f= @,“=,f’. 

Two cones are associated with a polyhedral set P (in our case, a member 
of 9 or ‘8) and a non-empty face F of P. The first is the inner (or angle) 
cone 

A(F, P) = pos(P- F), 

h07’7X’L8 
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which is, after translation of its apex to u, the cone generated by P from 
any relatively interior point of F. The other is the outer (or normal) cone 
N(F, P), which is (as defined in Section 2) the cone of outer normal vectors 
to support hyperplanes of P which contain F. 

If the polar cone K” of a cone K is defined (in the usual way) by 

so that K”” = K again, then we have: 

LEMMA 34. Zf P is a polyhedral set and F a non-empty face of P, then 

N(F, P) = A(F, P)“; A(F, P) = N(F, P)“. 

In all that follows, the class of a cone KE% is taken intrinsically; in 
other words, (K) is the class of K in T(L), where L = lin K is the smallest 
subspace containing K. Thus, (K) # 0. 

The classes of A(F, P) and N(F, P) in ,?? are denoted a(F, P) and n(F, P), 
respectively. In [S], we proved the following result (with IF = R, but the 
proof carries over directly): 

LEMMA 35. (a) Let KE %‘. Then 

(b) Let PE 9 with dim P > 0. Then 

; ( - 1 )dim F a( F, P) = 0. 

Such sums always extend over all non-empty faces F (of K or P). These 
relations are abstract versions of theorems of Sommerville and Brianchon 
and Gram, respectively. Note the occurrence of the opposite cone -K on 
the right side of the first relation. 

One case of Lemma 35(a) is of particular importance (see Section 14). 
Bearing in mind Lemma 34, we easily see that, if G is a face of P which 
contains F, then the inner cone of N(F, P) at its face N(G, P) is just 
N(F, G). We therefore deduce 

LEMMA 36. Let P be a polyhedral set in V, and let F be a non-empty face 
of P. Then 

,,~ip(-l)dimGn(F,G)=(-l)dimFn(-F, -P). 
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We next repeat more results from [S] (which were actually proved in 
a concrete form in [S] with [F = R, but again the essential geometry 
translates). As before, if Q is a polyhedral set and L a subspace of V, we 
write Q )I L to mean that aff Q is a translate of L. 

LEMMA 31. Let 3 he an abelian group, andfor each subspace L of V, let 
t+GL : F(L) + 9 be an L-simple translation invariant valuation, where F = 9 
or +Z. If $: 9 + 9 is defined by $(P) = *L(p) if P 11 L, then the mapping 
4:9+YQfgiven by 

4(P) = C W)Q n(F, P) 

is a translation invariant valuation. 

Of course, here ’ and in the next lemma, translation invariance is 
irrelevant if F = V. 

LEMMA 38. Let 9 be an abelian group, and let 4: B + 9 be a translation 
invariant valuation, where 9 = S or W. Then for each subspace L of V, the 
mapping $,:~(L)--+YQi‘defined by 

C,~(~;)o(-l)dimP-dimFa(F, P), if PllL, 
otherwise, 

is an L-simpie translation invariant valuation. 

We shall use more concrete versions of these lemmas in Sections 16 
and 17. 

13. THE SECOND ISOMORPHISM THEOREM 

In this section, we shall establish the second isomorphism Theorem 5. 
For convenience, and bearing in mind Theorem 8, we shall restate the 
result in a rather stronger form. We suppose, as in Section 7, that we have 
picked a volume vol, for each subspace L of V, and that, as usual, 
vol P = vol, P, where P 11 L. 

LEMMA 39. For each r = 0, . . . . d, the mapping a, : 9 + (F 0 2 defined by 

tr:(p’, = c vol F’@ n(F’, P), 
F’ 

where the sum extends over the r-faces F’ of P, induces an injective (vector 
space) homomorphism from Er into IF @ c”- r. 
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[F 02 inherits its structure as a vector space over IF from its first 
component. Of course, Z0 g Z, and so lacks a vector space structure. It is 
convenient to treat this case first. Each vertex F” of P is a point, with 
volume vol F” = 1. The outer cones N(F”, P) to P at these vertices form a 
dissection of V, and hence 

for each P~9\{f21}. Th e isomorphism k H k @ ( l’) shows that co is an 
injection. 

In general, by Lemma 37, er is a translation invariant valuation, and 
since er is homogeneous of degree r (since each volume occurring is also), 
we see that (T, maps Er into [F 0 fdMr. The case r = d is also easy, since 
f”= Z is generated by the class of the subspace {o}, so that every element 
of IF@f’O is uniquely representable in the form A @ ( (o} ), for some 1 E IF. 

So, now let us suppose that 16 r Q d- 1. We shall show how a,(P) 
determines f u (P) for each frame functional fLi of type r, and the separating 
property of these fu will show that (T, is injective. If U= (u,, . . . . U&,) is a 
(d - r)-frame, and if we write F, = P and Fj = P,, ,..,,. u,‘I) for j = 1, . . . . d- r, 
then f,(P) = vol, Fd--r, where L = U’ is the r-dimensional subspace 
orthogonal to U. Now the condition F, = (Fj- I)u, says that 

u, E relint N(F,, Fj- ,) 

= relint(N(Fj, P) - N(F,- 1, P)), 

the latter relation holding since iV(F, G) = N(F, P) - N(G, P) is the inner 
cone to N(F, P) at its face N(G, P), as mentioned in Section 12 above. 
Conversely, if these conditions hold for some chain 

P=F,zF,z ... zF,p,=F 

of faces of P, then F = P,. 
This motivates the following definition. We say that the (d-r)- 

dimensional cone K is adapted to the (d- r)-frame U= (u,, . . . . rider) if 
KslinU, and K has a chain of faces (o>=K,GK,G ... EK~-~, with 
uj~relint(Kj- Kj- i) forj= 1, . . . . d-r. Suppose now that x~Z~ is such that 

c,(x) = c PKO (0, 
K 

where the sum extends over a finite set of (d- r)-dimensional cones K. 
Then the above discussion shows that, for each (d- r)-frame U, 

fu(x) = c {pK 1 K is adapted to U}. 
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In particular, if a,(x) = 0, then fU(x) = 0 for every frame functional fU of 
type r, and hence, by the corollary to Theorem 3, x = 0. That is, 6, is 
injective, as claimed. 

The a,(P) are, in some sense, the abstract analogues of the intrinsic 
r-volumes V,(P) (or (d- r)th quermassintegrals W,_.(P); see [ 51 or [9, 
Sect. 31). Theorem 5 itself can also be regarded as an abstract version of 
the main Theorem 2 of [7], since the identity map from n into itself is 
obviously dilatation continuous in the sense of that paper. 

We conclude this section with a few remarks about the image of the 
mapping 0. We observe first that the range of definition of the frame func- 
tionals can be extended to F@c, as the concept of “adapted” shows. 
Indeed, if we denote by G the vector space over F generated by the frame 
functionals (of course, only finite linear combinations are allowed here), 
then F @ 2 and G are easily seen to be dual vector spaces. 

The image space im 0 and the syzygies between the frame functionals are 
clearly closely related. On im C, the syzygies of the first kind are trivial, but 
on F 02 they are not. Neither, naturally, are the syzygies of the second 
kind trivial. However, it is not hard to see that the syzygies of the third 
kind also hold on the whole of F 0 2. It is therefore natural to pose: 

Conjecture 2. (a) im co = Z 0 ( V), and is determined by the syzygies 
qf the first kind, and the conditions f”(x) E Z. 

(b) For r = 1, . . . . d- 1, im IT, is determined solely by the syzygies of 
the second kind. 

(c) im crd= [F@ (lo}) (Zff). 

In fact, (a) and (c) are true, as we know. 

14. THE EULER MAP AND NEGATIVE DILATATIONS 

We recall from Section 2 that the Euler map *: 17 -+ 17 is defined on the 
generators [P] of Z7 (P E 9) by: 

(E) [P]*=CF(-l)d’m”[F]. 

The first stage in proving Theorem 2 is a universalized form of a result of 
Sallee [ 141: 

LEMMA 40. The Euler map induces a group endomorphism of II, and, 
indeed, of each weight space .Z3. 

The first assertion is proved using Lemma 2; we shall not reproduce the 
details. The second then follows easily from Lemma 20. 

If we apply the Euler map to 1 = [o], we obtain 1* = 1. But, by 
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Lemma 8, the O-component of [P] is also 1, for every PE S\{@}. 
Lemma 40 thus yields: 

LEMMA 41. Each PEP\{ a} satisfies the Euler relation 

I(-l)d’“Ll. 
F 

It should be noted that this is not the most straightforward proof of 
Euler’s theorem. 

The connexion between Euler-type relations and negative dilatations was 
first observed by Sallee [14]; subsequently, many Euler-type relations were 
discovered (see [6, Sect. 61 or [9, Sect. 121 for details), and the general 
relationship was elucidated in [6]. 

If x E I7, we write for brevity in what follows X = A( - 1)x. The mapping 
x H 2 is obviously involutory, and, by the corollary to Theorem 6, is an 
algebra automorphism of Z7. The core of Theorem 2 is contained in: 

LEMMA 42. Let r = 0, . . . . d. Zf x E s”,, then X = ( - 1)’ x*. 

It is enough to verify this for the r-component of a generator [P] of IZ. 
We employ the injection (r,: Zr + F @ fdP r (see Lemma 39). Then, with F’ 
in the sums below running over the r-faces of P, and using Lemma 36, we 
have 

= G!p ( - 1 )dim G 
{ 

c ~01 F’@n(F’, G) 

i vo~Fr@{ 

F’c_G 

= 1 

F’EP F’EGSP 

(-l)dimGn(Fr,G)} 

= c vol(-I;‘)@{(-l)‘n(-F’, -P)} 
F’cP 

= or(( - 1)’ [ - Plr). 

Thus [ - P], = ( - 1)’ [PI:, as we wished to show. 
More generally, for I < 0, write A = (-A)( - 1); if XEZ~-,, there then 

follows, using Lemma 42 and Theorem l(e), that d(A)x = Arx*, as required. 
The rest of Theorem 2 follows easily as well. Since the mapping 

x b (- l)lx for x E 8, (r = 0, . . . . d) trivially induces an involutory algebra 
automorphism of l7, Lemma 42 and the remark before it show that x H x* 
is also an involutory algebra automorphism. 
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The relationships of Lemma 42 can be stated in a more picturesque way. 
The invertible elements of 17 are clearly just those of the form + (1 + z), 
with z E Z,. In particular, if P E Y\{ @}, then [P] is invertible. Now, if 
p = log P, then obviously [P] ~’ = exp( - p). But Lemma 42 for r = 1 
implies that -p = p*, in the notation used there. Exponentiating, and 
using the fact that x H X and xt-, x* are algebra automorphisms, we 
deduce: 

THEOREM 12. Let PEG\. Then [PI-‘= [-PI*. 

Theorems 2 and 6 also immediately yield: 

THEOREM 13. The homomorphism CD: ZI( V) + I7( W) induced by an affine 
mapping @: V -+ W commutes with the Euler map. 

From a geometric point of view this is curious, since if rank @<dim V, 
then for PEP, the facial structures of P and @P are not particularly 
closely related. 

We sometimes write the O-component d(O)x of XE 17 as x(x)=x(x) 1, 
and call x(x) the Euler characteristic of x. Then x can be characterized in 
the following way: 

THEOREM 14. Let R be any ring without nilpotent elements (for example, 
an integral domain), and let 1+4: II + R be a non-trivial ring homomorphism. 
Then there is an idempotent ie R, such that d(x) = x(x)i for all x E II. 

If XEZ,, then xd+’ =O, and hence 0= $(xd”) =d(~)~+l, so that 
&x)=0 also. Thus i=#(l)#O, and i’=~(l)‘=&l’)=~(l)=i, so that i 
is an idempotent. There follows at once d(x) = x(x)i, as claimed. 

15. MIXED POLYTOPES 

If X is a rational vector space, and 4: .P + X a translation invariant 
valuation, then it is known (see [6] and the Appendix to [9]) that, for 
P,, . . . . P, E B and rationals A,, . . . . A, B 0, there is a polynomial expansion 

m, p, + ... +&P,) 

=( rl + ... +r, zz 
> 

2:’ . ..Iz.ik&P,, r,; . . . . Pk, rk), 
r, 3 0 r, ... rk 

where 

( rl + ... +r, 

> 

= (r, + ... + r,)! 
r, ... rk r,! . ..rk! 
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is the multinomial coefficient. The coefficient &Pi, r, ; . . . ; Pk, rk) is a trans- 
lation invariant valuation which is homogeneous in Pi of degree ri 
(i= 1, . . . . k); it is called a mixed valuation. If P, = .. . = Pk = P, say, and 
r=r,+ ... + rk, then, in the notation of Theorem 8, d(P,, rl ; . . . ; P,, rk) = 
#r(P) is the rth homogeneous component of b(P). 

We shall shortly see that this result is a consequence of our general 
theory. One approach to it has been to develop a corresponding theory of 
mixed polytopes; this was attempted by Meier [lo], though his argument 
appears at one point to be flawed. In [9], an alternative approach was out- 
lined, though there only within the context of the polytope group Z?(V). 

However, working with the polytope algebra makes it clear what we 
must do. The general mixed valuation is of the form &P, , . . . . P,), where we 
suppress the mention of ri= 1, since 

where Pi is repeated ri times (and omitted if ri= 0). If 2 $ r Q d, let 
P 1, -**, P,E~‘\(@} (but not necessarily distinct), and let pi=log Pi 
(i= 1, . . . . r). Then the mixed polytope (class) of P,, . . . . P, is defined to be 

WI, . . . . P*)=iPI ..*P,. 

In particular, if P, = . .. = P, = P, then m(P, . . . . P) = [PI, is the r-compo- 
nent of P. 

Expanding [Ai P, + “- +AkPk] =exp(llpl + “’ +lkpk) as a polyno- 
mial in the rational numbers Li 3 0, and applying the valuation 4: 9 + X, 
then yields the result above. Of course, the general mixed valuation is 
4(P , , . . . . P,) = $(m(P1, . . . . P,)). 

This approach to mixed valuations (and, in particular, in case r = d to 
mixed volumes) clarifies a number of previously known results. We give a 
few examples. 

The first concerns an observation made originally about mixed volumes 
by Groemer [ 11; there it was stated for convex bodies in case IF = R, but 
its essence is algebraic. A neater proof was given in [9], and what follows 
is an abstract version of this. 

THEOREM 15. Let P,QEc??\((ZI} b e such that X = P u Q E 9 also, let 
Y = P n Q, and write p = log P, and so on. Then pq = xy. 

Equating r-components of the valuation property equation (V) and 
multiplying by r! yields 

pr + qr = xr + y’ (r = 0, . . . . d). 
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Hence 

P4 = i((P + s)* - (P2 + s2)) 
= #x + y)* - (x2 + y2)) = xy, 

as we wished to show. 
Observe also that the equations p + q = x + y and pq = xy imply that 

p’+q’=x’+y’ for each r=O,..., d. Exponentiating p + q = x + y also 
yields [P + Q] = [X+ Y], which is a weaker version of Lemma 24. 

Another example involves summands of polytopes (see [2, Chapt. 151). 
Let P,Q~p\{lzr} b e such that there exists a rational X>O, with the 
property that, for each (rational) ,I satisfying O< i d 2, there is a P,E~ 
with P= P, + IQ (it is enough, in fact, to take I = 1 here). Writing 
p = log P, and so on, we have p = pn + Aq, or pi. = p - Aq. The r-component 
of [P,] is thus 

Now let 3 be a rational vector space, as before. We conclude from our 
discussion the following 

THEOREM 16. Let 4: 9 + X be a translation invariant valuation which is 
homogeneous of degree r. With the above notation, for rational A with 
0<16& ~(Pn)=C:=o(-I)S(:)~(P,r-s;Q,,). 

The traditional proof of this involves expressing PA as PA = P, + (I- A) Q, 
expanding &Pi) as a polynomial in I- 1, and comparing coefficients with 
those of d( P + pQ) for p > 0 and J. < 0. 

These two results admitted proofs within existing valuation theory. The 
last, in contrast, uses the multiplicative structure in an essential way. 

THEOREM 17. Let 4 be a translation invariant valuation on 9’ which is 
homogeneous of degree r. Then for fixed P, , . . . . P, E S\ { a} and variable 
A 1, . . . . I, > 0, the value of the mixed valuation &A, P,, . . . . A,P,) depends only 
on the product A, . . .A,. 

The reason is simple: the corresponding mixed polytope is 

m(A, Ply . . . . ~,P,)=~(L,p,)...(l.,p,) 

= (21 . . . A,) .A Pl . . . Pr, 

where pi = log Pi (i = 1, . . . . r), and the theorem follows at once. 

h07.‘7R,‘I-9 
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16. INNER AND OUTER ANGLES 

In preparation for discussing the isomorphism between 17 and the full 
polytope group I?, we must return to the topic of cones. A homomorphism 
o on the full cone group 2 is identified with a family of L-simple valua- 
tions wL on g(L), one for each subspace L of V (including {o} and V 
itself). We call w  an angle (functional) if o takes values in 5, with w(L) 
( = oL(L)) = 1 for each subspace L. 

As has been pointed out by Betke (private communication): 

LEMMA 43. Angle functionals on 2 exist. 

We refer back to Section 7, where we chose a volume vol, in each 
subspace L, whose scaling was induced by a polytope Q with o E int Q. We 
now define the angle wL on V(L) by 

uL(K) = vol,(Kn Q) 

for KE V(L). This clearly gives an L-simple valuation, with wL(L) = 1, 
since the scaling of vol, is induced by Q. 

It should be noted, however, that angles do not necessarily arise in this 
way. As a variant on this construction, any polytope QL in L with 
dim Q, = dim L will give rise to an angle on W(L) as above, even if 
o 4 relint QL. Our choice of Q in Section 7 shows that angles need not be 
centrally symmetric. There is no reason for them to be non-negative either; 
for example, pick Q,, Q, in L which are strictly separated by a hyperplane 
through o, whose positive volumes satisfy vol, Q, # vol, Q2, and define 

mL(K) = W,Wn QJ -voLWn QMv& Ql -voL Qd 

Denoting by a(F, G) and rz(F, G) the classes of the inner and outer cones 
to a polyhedral set G at its face F, we define inner and outer angles to G 
at Fby 

M’, G) = u(@‘, G)), 

VP’, G) = MW’, G)), 

where o is some angle functional, not necessarily the same at each 
occurrence. We call inner and outer angles CI and v inverse if 

C (-l)dimJ-dimF 
W’, J)W, G) = W’, Gh 

where 

d(F, G) = 
1, if F=G, 
0, if F# G. 
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It is convenient here to adopt the language of the incidence algebra of 
functions on the faces of polyhedral sets (see [ 11 I). The incidence algebra 
consists of functions K on ordered pairs (F, G) of faces, taking values in 
some ring (in our case, IF). These are such that K(F, G) = 0 unless F is a face 
of G. Addition and multiplication of such functions are defined by 

(ic + l)(F, G) = K(F, G) + A(F, G), 

(icA)(F, G)=c rc(F, J)A(J, G). 
J 

The values K(F, G) can be thought of as entries in a triangular matrix, and 
the defining condition then implies: 

LEMMA 44. Zf c1 and v are inverse inner and outer angles, then 

C(-l)dimG-dmJ v(F, J) a(J, G) = 6(F, G). 

An obvious result to which we shall often wish to appeal when we pass 
from Lemmas 37 and 38, involving inner and outer cone classes, to their 
concrete versions involving inner and outer angles, is: 

LEMMA 45. Let X be a vector space over [F, and let w be an angle on .f. 
Then the mapping z: X @ ,I? + X defined by x(x@ c) = O(C)X (x E X, c E .f) 
is a homomorphism. 

The crucial result of this section is: 

LEMMA 46. Zf v is an outer angle, then there exists an inverse inner angle 
x, and conversely. 

The inverse c1 of v certainly exists in the incidence algebra, since v 
corresponds to a triangular matrix with diagonal entries v(F, F) = 1. 
However, this does not immediately ensure that a is an inner angle. 

We therefore proceed as follows. We first construct an auxiliary inner 
angle Cc, which will be such that &!(F, G) = a( -F, -G), and to do this, we 
need to find a corresponding angle functional o. We do this by induction 
on the dimension of the subspace L of I’, beginning with w( {o}) = 1. 

So, suppose that we have constructed o (and the corresponding inner 
angle 01) in such a way that, whenever K is a cone with dim K < dim L, then 

c o(F)v(F, K) = 1 
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(here, o(F) = &(A, F), where A is the face of apices of K). We now define 
wL on V(L) by 

OL(K)=l- 1 4F)v(F, a. 
dim F-z dim L 

The mapping KH 1 is certainly a valuation on 9? (though not simple; 
bear in mind that all cones are non-empty and convex), and so is the 
mapping 

Kct c w(F) VW, K), 
dim Fe dim L 

by Lemmas 37 and 45, since the condition dim F-c dim L ensures that o(F) 
is already defined. Thus wL is a valuation on W(L); it is simple by the 
inductive assumption made above, and wJL) = 1 since L is the only face 
of itself. 

We next set a(F, G)=i( -F, -G) (=w( -A(F, G))). From the Euler 
relation for cones (see [ 51 or [8]), and Lemma 35(a) (with a replacing a), 
we deduce 

W,G)= c (- 1) 
dimK-dimF 

FsKSG 

=,-F_,‘- 
1) dimK-dimF 

c c i 
cct(-K, -J)v(J,G) 
J i 

=T{,G;,J(-l)dim*-dim%-K, -J)}v(l,G) 

=~(-l)d'm'-dimF~(F,J)~(J,G), 

as required. 
The proof with a and v interchanged is similar, or can be deduced from 

the first case by polarity. 

17. THE POLYTOPE GROUPS 

The polytope group l?'(L) is derived from the subalgebra D(L) of I7 by 
imposing the extra conditions (S) which correspond to simple valuations; 
in other words, as a group, I?(L) is a quotient of 17(L). Before we prove 
the first isomorphism Theorem 4, we shall derive the structure theorem for 
l?(L) of [4] or [I23 from that of I7 in Theorem 1. 
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We begin by recalling that, up to isomorphism, Z?(L) only depends on 
dim L, because of Theorem 6. So, we need only consider fid = fi( V) itself. 
We have: 

THEOREM 18. (a) Z?‘z E. 

(b) For d > 1, fi“ admits a direct sum decomposition 

fid= & 2:’ 
r=l 

into vector spaces Sf over [F (r = 1, . . . . d). Moreover, dilatations act on I?” by 

Part (a) is obvious, since fro is generated by the class 1 of a point ( {o} ). 
In fact, we can (and shall) identify Z?” with n( { o}) in the natural way. 

So, now suppose that d> 1. Let ZZ’ be the additive subgroup of IZ 
generated by the polytope classes [P] with P E 9 and dim P < d. Then the 
dilatations clearly act as group endomorphisms of ZZ’, and so fls also 
admits a direct sum decomposition 

where .Yi = ,Zo z Z, and ,ZT is a vector subspace of Zr for r = 1, . . . . d. In fact, 
,Zz = {0), since volume vanishes on Es. Taking quotients yields the direct 
sum decomposition for fid; note that 2’:: z 8, z E again gives us volume. 

The action of the dilatation d(A) on 3:’ for J. 20 is directly inherited 
from its action on E,. For A < 0, the action involves the Euler map. But in 
ri”, we have (F) = 0 if F is a face of P with dim F < d. In other words, 
(P)* = ( -l)d (P) for all PEG, and so if xEBf and A<O, then 

Ll(A)x=A’x* = (-1)9X, 

as claimed. This proves the theorem. 
Let us remark that, although the assumption ( -P) = ( - 1)” (P) was 

made in [4], it can be seen here to be unnecessary (contrast [12, Proposi- 
tion 2.551). 

While we are considering polytope groups, we shall establish a repre- 
sentation theorem analogous to Theorem 5. We must first quote the 
separation theorem for fid. 
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If u= (U,) . ..) uk) is a k-frame, and E = (aI, . . . . EJ with .si= f 1 
(i= 1, . . . . k), we write EU= (a, ul, . . . . skuk) and sgn E= E, ..+. Then a 
Hadwiger functional of type r is a mapping of the form 

h,=~wE.f,,, 
E 

where U is a (d- r)-frame and f,, is the corresponding frame functional. 
The case U= @ just gives volume. 

The Hadwiger functionals are simple translation invariant valuations, 
and so induce homomorphisms on fid (we shall say more about this 
below). In fact, we have (see [4] or [12]): 

LEMMA 47. The Hadwiger functionals separate II?“. 

It is convenient, and not too confusing, to identify a homomorphism on 
fid with the corresponding homomorphism on ZZ which vanishes on 17’ (so 
that we suppress the quotient map from I7 to l7/I7”~ ad). Hence, in 
particular, the Hadwiger functionals are regarded indiscriminately as 
homomorphisms on 17 or on fid. 

Let f denote the subgroup of 2 generated by the classes of cones in %? 
which contain a line, and so have faces of apices of positive dimension. The 
important step in our discussion is: 

LEMMA 48. Let IJ: II+ IF 02 be the injection of Theorem 5, and let 
x E II Then x E i7’ if and only if a(x) E IF 0 f. 

Since the face of apices of the outer cone N(F, P) has dimension 
d-dim P, we see that n(F, P) E f whenever dim P < d, and so XE l7’ 
implies (T(X) E 5 0 i: 

For the converse, we consider in more detail the effect of a Hadwiger 
functional. The volume term in l7 corresponds to the subgroup [F @ J?‘O, so 
that G(X) E IF 0 f implies that vol x = 0. So, let h, be a Hadwiger functional 
of type r < d, and consider h,(P) for P E 9\ { 0 >. Now h,(P) = 0 anyway 
unless dim P,, = r for some E= (E,, . . . . a,). On the other hand, if (for 
simplicity) dim P, = r but dim P < d, then the decreasing sequence 

Fj = p(~l....,~,) (j= 0, . . . . d-r) 

of faces of P is such that, for some minimal j, Fjel = F,. With 
E= (cl, . . . . E &r) such that sj = - 1 and si = 1 for i #j, the terms f,(P) and 
fEu(P) of h,(P) cancel. We conclude that h,(P) = 0 if dim P < d. But con- 
versely, referring back to the proof of Theorem 5, we can see that if U is 
adapted to a cone K whose class lies in f, then so is EU for some such E 
of the kind just mentioned, with j minimal such that Kj= Kjp, (in the 
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notation of that theorem). We conclude that, if a(x) E [F @ i: then h,(x) = 0 
for every Hadwiger functional h,, and so, by Lemma 47, x E ns. This 
proves the lemma. 

If we write C for the image of c under the quotient map from 2 to f/f, 
then there immediately follows from Lemma 48 the promised isomorphism 
theorem for fid. 

THEOREM 19. The map 8: 9 -+ IF 0 (T/f’), given by 

f.?(P) = 1 vol F@ n(F, P), 
F 

induces an injective homomorphism on fid. 

First, 0 induces a homomorphism on n, using Theorem 5 and the fact 
that p @ c + p @ Z is a homomorphism from [F 0 2 onto [F @ (z/f). Second, 
Lemma 48 shows that, if x E Z7, then C(x) = 0 if and only if x E 17’. Thus 0 
indeed induces an injective homomorphism on fid, as claimed. 

We end this section with a remark. In [12] (see p. 40), Sah uses 
logarithms and exponentials as an accounting device to investigate the 
relationship between 2; and rid. We can now see these as the shadows of 
the genuine log and exp, under the projection from 17 on to Z?“. 

18. THE FIRST ISOMORPHISM THEOREM 

As in Section 2, the full polytope group is defined to be d = @ L Z?(L). 
To prove the isomorphism IZr i? of Theorem 4, we employ any pair of 
inverse inner and outer angles c( and v of Lemma 46. We construct 
homomorphisms 4: Z7 + fi and $: fi + n as follows. 

First, we define the mapping 4: 9 + fi by 

where (F) is now the intrinsic class of F (in Z?(L), with L such that FIJ L). 
It might appear that we run into trouble with the vertices F” of P, since 
2:~ Z is not a vector space over lF, but note that CFO v(F’, P) = 1, because 
the outer cones to the vertices of P dissect V, and v is an outer angle. By 
Lemmas 37 and 45, 4 is a translation invariant valuation on 9, and so ^ 
induces a homomorphism 4: Il + IZ. 

Next, for each subspace L of V, we define the mapping I,$~ : P(L) -+ IZ by 

dlmP-d’mFa(F, P)[F], if PI(L, 
otherwise. 
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Again, we might appear to have problems with the O-components of the 
classes [F], but we observe that Lemmas 35(b) and 45 ensure that the 
corresponding contribution is 1 if dim P = 0, and 0 otherwise. Then 
Lemmas 38 and 45 show that eL is an L-simple valuation for each L, and 
so these eL induce a homomorphism II/: l?+ l7. 

The definition of inverse inner and outer angles and Lemma 44 easily 
show that 4 and I(/ are inverse homomorphisms. Thus, 17~~ Z?, which is 
Theorem 4. 

This proof closely parallels the proof in [6] of the relationship between 
general and simple valuations. However, there it had to be assumed 
that the valuations were real-valued (in the case considered, F = R); this 
treatment removes that special assumption. Note that the isomorphism 
constructed above is obviously compatible with dilatations. 

19. RELATIVELY OPEN POLYTOPEZS 

In [15], Schneider has shown how to obtain a theory of translation 
equidecomposability of unions of polytopes in R’, based on relatively open 
polytopes. The analogous theory is valid over any archimedean field 5, 
although Schneider’s argument will still need real-valued functionals. 
However, for non-archimedean fields, standard examples show that here we 
must allow complementation. We shall briefly outline Schneider’s theory, 
and provide a simpler separation theorem. 

With 9 having its usual meaning, let fi be the abelian group, with a 
generator [Pj for each P E B (and [@a = 0), and with relations 

(8) [PJ=[rPnH+J+[PnHpI)+[PnHj,wheneverPE9andH 
is a hyperplane bounding the closed half-spaces H+ and H -, which cuts 
P properly (so that P @ H + and P e H -), 

and the translation invariance property (T). 
The intuitive picture is that [PI is the class of relint P, the relative 

interior of P. Thus, in fact, (8) is really the analogue of the weak valuation 
property (W). 

The basis of our discussion is a remark made in [9] in the context of 
Euler-type relations for valuations. Recall that in Section 3 we defined the 
family PPO of partly open polytopes, and observed that valuations on 9 
extend to PPO. Then we have: 

LEMMA 49. For P E 8, [relint P] = ( - 1 )dim ’ [P] *. 

Since P is the disjoint union of the relative interiors of its faces, we have 

[P] = c [relint F]. 
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Mobius inversion (see [ 111) then leads to 

[relint P] = C (- l)dimP pdimF [F] 

= ;- 1)d’mP [PI*, 

since the Mobius function on the lattice of faces of a polytope (or of a 
cone) is p(F, G) = (- l)dimG-dimF. This is the lemma. 

Now, the condition (0) (and our intuitive picture) gives an isomorphism 
between il and Z7, namely [Pa tf ( - 1 )dimP [P] *. In view of Theorem 2, a 
less natural, but more convenient formulation is: 

THEOREM 20. ii and Il are isomorphic, under the correspondence 
[rP] 4-b ( - 1)d’“P [P] between their generators. 

In hindsight, we can also see this by comparing (v) and (W). 
The separation criterion is now easily obtained. The modified frame 

functional yU is defined by TU(P) = ( - l)dimPfu(P). These induce 
homomorphisms on fi, and from Theorem 3 we deduce: 

THEOREM 21. The modified frame functionals separate fi. 

We refer to [ 151 for the details of the equidecomposability over an 
archimedean field. 

20. INVARIANCE WITH RESPECT TO OTHER GROUPS 

Let G be any group of affinities of I’ which contains the group T of 
translations (Tr I’, as abelian groups). We can define a new group 
17, = Z7( I’; G) by taking, as before, a generator [PIG for each P E 9 
( [@I6 = 0), with these generators satisfying the relations (V) and 

(G) [@PIG= [PIG whenever PEP and @EG. 

Thus ZZ= IZT. 
If G # T, we now only have an abelian group structure, since Minkowski 

addition will not be compatible with the group operations in G. However, 
as an abelian group: 

THEOREM 22. 17, is a quotient group of II, and admits a direct sum 
decomposition 
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such that EOz Z, andfor r = 1, . . . . d, 8, is a vector space over IF. Moreover, 
the dilatations act on .Zr by 

4)x = 
i 

/lrx, for R 20, 
Jrx* 

9 for I. CO, 

ifXE$ where x H x* is the Euler map. 

We obtain the direct sum decomposition by virtue of Theorem 6, whose 
Corollary 1 says that endomorphisms of 17 induced by affinities commute 
with dilatations. 

For most groups G, we can at present say no more than this about 17,. 
However, there are two special cases. 

THEOREM 23. Let G contain a dilatation by some 1# + 1. Then II, z h. 

If 1< 0, we replace I by 12; thus we can assume that 1> 0. The action 
of the dilatations implies that, if XEZ, with r > 0, then I’x= A(A)x = x, 
and so, since J # 1, we have x = 0. Thus Er = (0) for r > 0, and the theorem 
follows. 

Let A denote the group of all affinities of V, and EA the subgroup of 
equiaffinities, that is, the mappings of the form v I+ @v + t, where @ is a 
linear mapping with det @ = f 1. First, as a consequence of Theorem 23, 
we have: 

COROLLARY. 17,gZ. 

Then we have: 

THEOREM 24. For d z 1, l7,, z Z 0 IF. 

On each proper subspace L of V, EA induces a dilatation by some 1> 1, 
and we conclude at once that the subgroup Z7& of 17, generated by the 
polytopes of dimension lower than d is isomorphic to Z, generated by 1. 
Since two d-simplices are EA-equivalent if and only if they have the same 
volume, we see that the corresponding polytope group fi”,, is such that 
Z7,,/I7$ z I?“, E IF. Thus the only terms of the direct sum decomposition 
of nL4 which survive are $, 2 Z and Ed% IF, and the theorem follows at 
once. 

If G contains a linear mapping @ with det @ # f 1, then certainly 
Ed= {0}, since Ed possesses the automorphism x H ldet @I x. However, 
this does not necessarily mean that ,Zr = (0) for each r = 1, . . . . d. For 
example, if G consists of all mappings of the form 
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with I > 0 and t E V = Fd, then Z7,z rr( Fd- ‘), under the projection induced 
by (a,, az, . . . . ad) ++ (UZ, . . . . ad). 

The most interesting special cases are when IF = R and G is a group of 
isometries (with respect to the metric derived from some inner product). 
Then G, = G/T is a group of orthogonal mappings, and G is a subdirect 
product of G, and T. We confine our attention to such cases for the rest 
of the section. 

We write f.G for the quotient group of 2, obtained by imposing on 2 the 
additional relations 

(G,) (@K)G= (K)c for all KE% and @EGO. 

Writing n,(F, P) for the class of N(F, P) in f‘c, we see that, if vol is now 
a G-invariant volume (for example, ordinary volume of the appropriate 
dimension), then the mapping cc: S + IQ! 0 c,, defined by 

00(P) = c vol FO n&F, P), 
F 

is a G-invariant valuation, and so induces a homomorphism on nc. In 
view of the ‘fact that the action of G, on 2 is compatible with the action 
of G on Z7, the following is very plausible. 

Conjecture 3. The mapping gG is an injection. 

The groups fi”, have received much attention in recent years, because of 
their connexion with Hilbert’s Third Problem (particularly when G is the 
full group of isometries). We denote by f, the subgroup of ,??‘c generated 
by the classes of cones which contain a line, and write C for the image 
of c under the quotient mapping from f.G to fJfG. The mapping 
5,: ?? + R 0 (fJPG) is defined by 

Co(P) = C vol F@ n,(F, P). 

As a natural generalization of Theorem 19, we pose: 

Conjecture 4. The mapping 6, induces an injection from fiG into 
R 0 (&/f.G ). 

Of course, 0, is a G-invariant simple valuation. Equivalently (compare 
Lemma 48) one would conjecture that, for x E ZZc, if C&X) E II% 0 f,, then 
XEIg, the subgroup of I7, generated by the classes of polytopes of dimen- 
sion less than d. 

The mapping 6, differs from the (classical total) Dehn invariant, as 
defined in [12], only in that it is defined in terms of outer cone classes 
rather than (intrinsic) inner cone classes. But the existence of the antipodal 
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map on fG/fG, which is an involutory automorphism closely related to 
polarity (see [12]), shows that our formulation is actually equivalent. 
However, our approach perhaps suggests that the use of outer rather than 
inner cone classes may be more natural. 
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