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Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits,
with the exception of Carlin-type deposits and rare intrusion-related gold systems, there has been
continuing debate on their genesis. Early syngenetic models and hydrothermal models dominated by
meteoric fluids are now clearly unacceptable. Magmatic-hydrothermal models fail to explain the genesis
of orogenic gold deposits because of the lack of consistent spatially e associated granitic intrusions and
inconsistent temporal relationships. The most plausible, and widely accepted, models involve meta-
morphic fluids, but the source of these fluids is hotly debated. Sources within deeper segments of the
supracrustal successions hosting the deposits, the underlying continental crust, and subducted oceanic
lithosphere and its overlying sediment wedge all have their proponents. The orogenic gold deposits of
the giant Jiaodong gold province of China, in the delaminated North China Craton, contain ca. 120 Ma
gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold
mineralization. The only realistic source of fluid and gold is a subducted oceanic slab with its overlying
sulfide-rich sedimentary package, or the associated mantle wedge. This could be viewed as an exception
to a general metamorphic model where orogenic gold has been derived during greenschist- to
amphibolite-facies metamorphism of supracrustal rocks: basaltic rocks in the Precambrian and sedi-
mentary rocks in the Phanerozoic. Alternatively, if a holistic view is taken, Jiaodong can be considered the
key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic
devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history. The latter
model satisfies all geological, geochronological, isotopic and geochemical constraints but the precise
mechanisms of auriferous fluid release, like many other subduction-related processes, are model-driven
and remain uncertain.

� 2015, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Groves et al. (1998), following Gebre-Mariam et al. (1995),
defined the term orogenic gold deposit to obviate the necessity to
refer to a wide variety of terms for a coherent group of commonly
vertically-extensive, gold-only deposits that formed in broad
thermal equilibrium with their wallrocks from low-salinity H2O-
CO2 ore fluids at depths from 2 to 15 km, and arguably 20 km in the
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crust (Groves, 1993; Kolb et al., 2015). This term has been widely
accepted (e.g., Goldfarb et al., 2001, 2005, 2014; Bierlein et al.,
2006), although there is still some discussion on terminology
(e.g., Phillips and Powell, 2015), and a heated debate on the genesis
of orogenic gold deposits is ongoing. Goldfarb and Groves (2015)
provided an exhaustive review of these genetic models and the
various geological, geochemical, isotopic and fluid-inclusion con-
straints on these models. This review is used, comprehensively, to
briefly summarize these models with a view to provide a holistic,
coherent and unifiedmodel for orogenic gold deposits of all ages, in
a similar way to development of coherent minerals-system models
for other mineral deposit groups. The deposits of the giant Jiaodong
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orogenic gold provinces are emphasized as the key to development
of the all-embracing model for ore fluid and metal source.

It is recognized that (reduced) intrusion-related gold systems or
(R)IRGDs (e.g., Thompson et al., 1999; Lang et al., 2000; Baker, 2002)
formed from a similar ore fluid to the orogenic gold deposits, but
that they differ in that the ore systems are zoned around causative
intrusions due to thermal disequilibrium with the wall rocks (e.g.,
Hart et al., 2002). They are, however, a rare group of largely un-
economic deposits (e.g., Goldfarb et al., 2005; Goldfarb and Groves,
2015), and are not discussed further here. Furthermore, although
the Carlin gold deposits also formed from low-salinity H2O-CO2
fluids (e.g., Cline et al., 2005), they are quite distinctive from
orogenic gold deposits in a number of features (Goldfarb and
Groves, 2015; Groves et al., 2016), and are not discussed below.

2. Potential fluid and metal sources for orogenic gold
deposits

Kerrich (1983) was arguably the first to assess the various
models for what are now termed orogenic gold deposits, listing
syngenetic-exhalative, magmatic-hydrothermal (tonalite-, lamp-
rophyre- or oxidised magma-associated), and metamorphic
(regional metamorphic devolatilization, lateral secretion, mantle/
granulitization) models as themajor suggested genetic concepts for
fluid and metal generation. A meteoric fluid model was added by
Nesbitt (1991). All of thesemodels are shown schematically in Fig.1.
Figure 1. Schematic representation of the variety of previously proposed (mostly non-
viable) models for gold and fluid sources in the crust: from meteoric water circulation
and lateral secretion, magmatic-hydrothermal fluid exsolution from various granite
types, to granulitization and metamorphic devolatilization processes. Syngenetic-
exhalative model is not shown, but could be represented by the hot springs at sur-
face in the figure. Figures from Groves et al. (1998) and Goldfarb et al. (2005) used as a
base for this figure.
Goldfarb and Groves (2015) discussed each of these models in
detail with exhaustive references to individual examples in places.
The following brief discussion of the less-viable models is adapted
from Goldfarb and Groves (2015), and then followed by a more
thorough discussion of the more-viable, more generally-accepted
models.

Early syngenetic-exhalative models (e.g., Hutchinson and
Burlington, 1984; Hutchinson, 1987) were shown to be inconsis-
tent with field evidence that demonstrated the deposits were
structurally-controlled, syn- to late-metamorphic deposits with
stratiform BIF-hosted deposits formed by sulfidation of magnetite
(e.g., Phillips et al., 1984). Similarly, meteoric fluid models have
been shown to be based on invalid calculations and interpretations
of stable isotope data largely derived from fluid inclusions, as
summarized by Goldfarb and Groves (2015).

Various magmatic-hydrothermal models were in vogue for a
variety of mineral deposits from about 1900 to 1960, and have been
proposed for orogenic gold deposits over the past 40 years or so by
a number of authors, most recently including Mueller (1992),
Walshe et al. (2003), Wall et al. (2004), Hall and Wall (2007),
Neumayr et al. (2007), Bath et al. (2013) and Helt et al. (2014).
Goldfarb and Groves (2015, and references therein) discussed these
models at length for a number of specific examples and rejected the
magmatic-hydrothermal concept as a viable unifying model for
orogenic gold deposits. In general, granitic intrusions may be pre-,
syn- or post-gold in the same terranes (e.g., Hughes et al., 1997;
Goldfarb et al., 2008), or even absent in some, for example in the
Otago gold province of New Zealand. In most cases where robust
geochronological studies have been conducted, the gold deposits
and proposed fertile granitic intrusions are not the same age (e.g.,
Goldfarb et al., 2005; Goldfarb and Groves, 2015; and references
therein; Vielreicher et al., 2015). Furthermore, the proposed parent
granitic rocks have no consistent composition or oxidation state
within or between terranes. In some cases, lamprophyres and other
more mafic intrusions are close in age to the gold deposits (e.g.,
Vielreicher et al., 2010), but are volumetrically minor and could not
have provided the large volumes of fluids required to form the gold
deposits. Although stable isotope data are broadly permissive of a
magmatic-hydrothermal fluid, they, combined with the occurrence
of some deposits that formed at over 15 km depth and conflicting
radiogenic isotope ratios, are indicative of long fluid pathways (e.g.,
Kontak and Kerrich, 1995; Ridley and Diamond, 2000) that effec-
tively exclude exsolution of ore fluids from granitic intrusions at
any reasonable crustal depth. Redox changes, commonly invoked in
fluid mixing models (e.g., Walshe et al., 2003; Neumayr et al., 2007)
can occur via rock reaction (e.g., Evans et al., 2006) or even during
episodic fault rupturing along fluid channelways (e.g., Yamaguchi
et al., 2011). It can be concluded that magmatic-hydrothermal
processes cannot explain the genesis of individual deposits
let alone provide a universal model for orogenic gold formation.
Hybrid magmatism with a mixed metasomatized sub-continental
lithospheric mantle (SCLM) and crustal source is interpreted to
provide the source of fluid and metals for other gold and gold-
copper deposit types (e.g., Groves et al., 2010; Mair et al., 2011;
Hronsky et al., 2012; Griffin et al., 2013), but cannot have been
responsible for formation of economic orogenic gold deposits on
the basis of age considerations, lack of volumetrically significant
intrusions from this source, and lack of underlying SCLM in some
cases (e.g., Goldfarb and Groves, 2015; Groves and Santosh, 2015).
Similarly, models involving devolatilization related to emplace-
ment of mantle plumes into the lower crust (e.g., Bierlein and
Pisarevsky, 2008; de Boorder, 2012; Webber et al., 2013) lack
credible supporting evidence.

This effectively leaves metamorphic models as the only viable
possibilities if a universal or near-universal model is sought for the
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genesis of orogenic gold deposits. Lateral secretion models (e.g.,
Boyle, 1979; Saager et al., 1982) are almost certainly invalid due to
the limited volume of metamorphic fluid and metals available to
produce high-tonnage or high-grade gold deposits (e.g., Glasson
and Keays, 1978) even if lateral flow was dominant, which ap-
pears unlikely (e.g., Ord and Oliver, 1997). Similarly, a model in
whichmantle CO2 was advected through the lower crust to produce
granulites and a CO2-rich pseudo-metamorphic fluid (e.g., Fyon
et al., 1984; Cameron, 1988; Santosh and Omori, 1988; Touret and
Huizenga, 2012; Fu and Touret, 2014) are not supported by asso-
ciations between granulites and gold nor by CO2 contents of fluid
inclusions, available carbon isotope data, or theoretical consider-
ations, as originally discussed by Kerrich (1989).

Such considerations have led to general acceptance of a meta-
morphic model for orogenic gold that promotes metamorphic
devolatilization of supracrustal/intrabasinal rocks under greens-
chist- to amphibolite-facies conditions, with upwards advection of
resultant metamorphic fluid and released metals to the site of
formation of orogenic gold mineralization at higher crustal levels
(e.g., Kerrich and Fyfe, 1981; Phillips and Groves, 1983; Colvine
et al., 1984; Goldfarb et al., 1986, 1988; Groves et al., 1987; Cox
et al., 1991; Powell et al., 1991; Bierlein and Crowe, 2000;
Goldfarb et al., 2001, 2005; Phillips and Powell, 2010; Tomkins,
2010; among many others). This model and its potential limita-
tions are outlined below, as synthesised from the references above
and the exhaustive review of Goldfarb and Groves (2015).

3. Supracrustal metamorphic model: strengths and
weaknesses

The supracrustal or intrabasinal metamorphic model for
orogenic gold deposits is the only one of those discussed above that
has the potential to provide a universal model to explain the
extraordinary longevity of the deposit type throughout Earth his-
tory (Goldfarb et al., 2001). Its strengths are that it requires no
specific associations with host rock types, as most lithologies are
mineralized in gold provinces globally, nor any associationwith any
specific type of intrusion. It is also consistent with the broadly late-
metamorphic and late-deformational timing of gold deposition,
and the stable and radiogenic isotope data that are internally
ambiguous but collectively suggest long and complex fluid path-
ways that intersected a variety of rock types (Ridley and Diamond,
2000). The typical low-salinity H2O-CO2 (� CH4, N2) fluid is also
that expected from metamorphic devolatilization of supracrustal
rocks.

Proponents of the model suggest that auriferous aqueous-
carbonic fluids (Phillips and Powell, 2010) are released during
greenschist- to amphibolite-facies metamorphism of supracrustal
rocks in themid crust (e.g., Powell et al., 1991). Calculations indicate
that up to 5 vol.% of both pelitic and mafic volcanic rocks can be
converted to such fluid (e.g., Fyfe et al., 1978; Elmer et al., 2006),
providing an adequate fluid flux for even giant deposits (e.g.,
Phillips and Powell, 2010). Such fluids are envisaged to have had
migrated to regional fault systems, with which all major deposits
are spatially associated, and moved upwards at supralithostatic
pressures to deposit gold plus related elements and silica during
pressure fluctuations related to seismic events along the fault
networks (e.g., Cox et al., 1991). Although such deposition appears
to have preferentially occurred in rheologically favourable rocks
close to the ductile-brittle transition, deposits formed over a total
crustal range from 3 to 15 km and possibly deeper (e.g., Groves,
1993). Both sulfidation reactions and phase separation were
involved in gold deposition from a normally reduced, near-neutral
fluid carrying gold as a thiosulfide complex. From a tectonic
viewpoint, orogenic gold deposits may occur in terranes where
metamorphism was caused by a variety of crustal- to mantle-
related processes (Goldfarb et al., 1998). However, gold deposition
was broadly coincident with a change in far field stress with
resultant transition in deformation from compression to trans-
pression, more rarely transtension, during accretion (e.g., Goldfarb
et al., 1988) with concomitant uplift and lowering of lithostatic
pressure (e.g., Groves et al., 1987; White et al., 2015).

In a supracrustal metamorphic model, the source rocks for fluid
and metals must have changed with time, as discussed in detail by
Goldfarb and Groves (2015). In the Phanerozoic, host basins are
dominated by sedimentary rocks, commonly turbidite sequences,
which host the gold deposits. Mafic volcanic rocks are present in
some gold provinces but are not ubiquitous. Hence, metamorphism
of a sedimentary source rock is most likely to have produced the ore
fluid in the metamorphic model. In contrast, most Precambrian
terranes that host orogenic gold deposits, particularly those of
Archean age, are dominated by ultramafic to felsic volcanic rock
sequences below the crustal level of gold deposition, with ubiqui-
tous mafic rocks the most likely source of auriferous fluid in this
model. Specific gold-enriched source rocks have been suggested for
both Phanerozoic and Precambrian gold provinces (e.g., Glasson
and Keays, 1978; Tomkins, 2010; Large et al., 2011; Steadman
et al., 2013), but these are not common to all orogenic gold prov-
inces, are commonly volumetrically insignificant, and cannot be an
important factor in any holistic metamorphic model for orogenic
gold.

Despite the obvious strengths of the supracrustal metamorphic
model, there are some weaknesses, particularly for the Precam-
brian deposits. These are discussed below, first for Phanerozoic
deposits and then for Precambrian examples.

The Phanerozoic deposits fit the model well in that all signifi-
cant deposits are in greenschist-facies domains (Goldfarb et al.,
2005), and research by Pitcairn et al. (2006) on the Otago Schists
of New Zealand shows that it is feasible to release significant Au, As,
Bi, Sb, Te and W during greenschist- to amphibolite-facies meta-
morphism of thick turbidite sequences. However, it is still not clear
how such fluids can migrate laterally on a kilometre scale into the
regional-scale faults that control gold mineralization at the first-
order structural scale. Authors such as Ferry (1994) showed that
such lateral flow is possible, particularly if induced by external
tectonic perturbations such as drainage caused by dilatant fault
zones (e.g., Sibson, 1992), but most authors such as Ord and Oliver
(1997) suggested that vertical advectionwould be dominant. Hence
there may be a mass balance problem in terms of the amount of
gold transported via lateral flow. Furthermore, Ridley (1993) sug-
gested that the high fluid pressure in the regional-scale faults
promotes outward flow down pressure gradients into subsidiary
faults that host the gold ores. Hence, the mechanism that could
promote fluid flow from the metamorphic belt into the regional-
scale faults at depth and then back into the rock sequences at
higher crustal levels is unclear. The fact that gold mineralization
normally postdates regional metamorphism in host sequences, that
is it is retrogressive (e.g., Wilson et al., 2013), in some instances by
several million years (e.g., Perring et al., 1987; Nesbitt, 1991), is
another potential problem for both Phanerozoic and Precambrian
deposits. This problem is generally overcome by models that sug-
gest that peak metamorphism is attained earlier at deeper crustal
levels than at the crustal level of gold deposition (deeper-later
model of Stuwe, 1998). However, this does not completely explain
why early greenschist-facies metamorphism involves grain-
boundary fluid migration with pervasive metamorphic fabrics
and assemblages and ubiquitous, totally barren, quartz veins in
contrast to the focussed fluid flux that can produce high-grade gold
shoots later in the metamorphic history. A possible solution is
provided by Goldfarb et al. (1988) who suggested that a change in
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far-field stress from compression to transpression might have
unlocked metamorphic fluid reservoirs stored in the mid to upper
crust as the overlying greenschist-facies domains with their
deformational fabrics cooled. This does not completely explainwhy
the fluid was suddenly capable of depositing large quantities of
gold when there is no recorded evidence that the earlier fluid was
gold-bearing from studies of ubiquitous metamorphic rocks.

As noted above, the metamorphic model for Precambrian de-
posits has similar problems to its Phanerozoic equivalents. In
addition, it is not so clear that ore components can be derived from
greenschist- to amphibolite-facies metamorphism of mafic volca-
nic rocks as it is from turbidites. For example, Pitcairn et al. (2015)
demonstrated that, although gold can be liberated in similar con-
centrations from basalt, in the examples studied fromNew Zealand,
arsenic, the most common associated element in Precambrian
orogenic gold deposits, is not liberated during amphibolite-facies
metamorphism. A potentially insurmountable problem for the
supracrustal model is the occurrence of a significant number of
deposits, including the giant Hutti and Kolar deposits in India (e.g.,
Sarma et al., 2011), in mid- to upper-amphibolite facies domains
that have alteration assemblages that formed under similar P-T
conditions to the metamorphosed host rocks (Colvine et al., 1988;
Groves, 1993; Knight et al., 1993; McCuaig et al., 1993; Neumayr
et al., 1993; Bloem et al., 1994; Miller and Adams, 2013). Several
proponents of the metamorphic model have argued that these
deposits formed under lower P-Tconditions and were subsequently
metamorphosed under amphibolite-facies conditions (e.g.,
Tomkins and Mavrogenes, 2002; Tomkins et al., 2004; Tomkins and
Grundy, 2009; Phillips and Powell, 2009). However, recent research
by Kolb et al. (2015) has demonstrated that a number of these
deposits clearly formed under broadly amphibolite-facies condi-
tions, except where they were overprinted during a later, unrelated
orogenic event. Hence, the fluid sourcemust have been deeper than
the 15 km (possibly up to 20 km) depth of deepest deposit for-
mation. Additional evidence for a deep source, below the supra-
crustal sequences hosting the gold deposits, is provided by lead
isotope evidence from the Neoarchean gold province of Western
Australia. Importantly, Neoarchean greenstone belts can givemore-
meaningful source area data than for Phanerozoic terranes because
much of the lead in the oresmay be dominated by the relatively low
concentration of lead that is being carried in the ore fluids (e.g.,
Goldfarb et al., 2005). Browning et al. (1987) and McNaughton et al.
(1993), among others, showed that the lead isotope ratios from the
giant Eastern Goldfields Province of the Yilgarn Craton reflect the
age and composition of the basement rocks to the supracrustal
greenstone belts, implicating a deeper source for the auriferous ore
fluids. In confirmation that this is not an isolated instance, orogenic
gold deposits throughout the Paleozoic of Ireland (Standish et al.,
2014) are characterized by highly variable lead signatures, reflect-
ing many different lithologies, including the basement.

In summary, although the supracrustal metamorphic model
satisfies the majority of constraints from geological, geochrono-
logical, geochemical, isotopic and fluid inclusion data, there are a
number of weaknesses in terms of a unified model. The Precam-
brian examples provide the greatest problems, with evidence that
ore fluids were derived from below 15 km depth and carry com-
ponents that must have been derived from the basement to the
gold-hosting greenstone belts. Furthermore, there is doubt that all
metal components can be derived from greenschist- to
amphibolite-facies metamorphism of a basaltic rock, the only
volumetrically viable source in the greenstone belts, in contrast to
evidence suggesting that such components can be derived from
sedimentary sources. There is also the problem of definition of the
precise mechanism by which ore fluid migrated laterally on a kil-
ometre scale into the regional-scale faults that clearly control the
location of gold districts and provinces. Finally, the model does not
adequately explain the conjunction of apparent late- to post-
metamorphic timing in host sequences precisely at the time that
a change in far-field stresses promoted a change from compression,
represented by the metamorphic fabrics in the host rocks, to
transpression or transtension, demonstrated by the geometry of
the orogenic gold ore bodies.

The ore fluid is clearly a metamorphic fluid but the evidence
above suggests a source below the supracrustal sequences that host
the gold deposits. As argued above, this cannot be the lower crust,
nor the metasomatized lithosphere, nor a mantle plume and
associated granulitization. Similarly, the ore fluid is unlikely to be
exactly the same fluid that caused regional metamorphism of
supracrustal rocks and related quartz veins with no evidence of any
gold enrichment. This specific metamorphic ore fluid appears to
have been liberated at a unique time in the orogenic cycle during a
change in far-field stress. As orogenic gold deposits are inevitably
formed in accretionary or, less commonly, collisional tectonic en-
vironments related to subduction (Goldfarb et al., 2001, 2005), and
not in other types of metamorphic belts, this suggests a funda-
mental relationship to a change in plate motion.

In seeking an explanation and a unified model, it is important to
view those deposits that cannot have formed from a metamorphic
fluid derived from within the host supracrustal sequences because
they had been metamorphosed to at least the amphibolites-facies
hundreds to thousands of million years previously. Such Tertiary
deposits occur along the Megashear Zone in the Proter-
ozoicePhanerozoic terranes of northern Mexico (Iriondo, 2001;
Goldfarb et al., 2007) and Cretaceous deposits occur in the Arche-
aneProterozoic terranes of the North China block. The giant Jiao-
dong gold province of the latter (e.g., Wang et al., 1998; Goldfarb
et al., 2007; Goldfarb and Santosh, 2014; Yang et al., 2014) is dis-
cussed below in an attempt to solve the problems discussed above
and seek to develop a unified model that can explain the origin of
all orogenic gold deposits of all ages.

4. The giant Jiaodong gold province: the exception or the key
to a unified model

The giant Jiaodong gold province in the eastern half of the North
China block (Li et al., 2015a; Song et al., 2015; Yang and Santosh,
2015; Yang et al., 2016a) represents a region of major lithospheric
erosion of originally thick buoyant Archean sub-continental litho-
spheric mantle or SCLM (Griffin et al., 1998; Santosh, 2010), caused
by anomalously complex Mesozoic slab subduction from the north,
south, and east. This led to slab devolatilization, subsequent
melting, and voluminous granitic magmatism (Windley et al.,
2010). The associated Yanshanian orogeny, that occurred within
the decratonized North China block, was typified by basement
uplift, regional extension, ca. 165e90 Ma granite intrusion, and ca.
130e120 Ma gold formation within the eastern margins of this
highly modified cratonic basement (Goldfarb and Santosh, 2014;
Yang and Santosh, 2015). The structural control and more pro-
tracted period of gold mineralization argue against a magmatic-
hydrothermal fluid model, and the Precambrian high-grade meta-
morphism of the basement rocks clearly invalidates a supracrustal
metamorphic-devolatilization fluid model for the gold event.
Despite this, the widespread gold episode correlates with changing
far-field stresses and plate reorganizations as interpreted for other
orogenic gold provinces.

For these reasons, the Jiaodong deposits have generally been
classified as orogenic gold deposits (Wanget al.,1998; Goldfarb et al.,
2001, 2005; Yang et al., 2016a). Although they are commonly hosted
by older granites, they show no close spatial relationship to granitic
intrusions of the same age, nor evidence ofmetal zonation related to



Figure 3. Schematic illustration of the slab devolatilization model for the formation of
orogenic gold deposits of the giant Jiaodong gold province as described in the text.
Adapted from Goldfarb and Santosh (2014) and Goldfarb and Groves (2015).
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thermal gradients around hot intrusions. However, they do show a
clear structural control along regional faults, and ore and wallrock-
alteration mineralogy, fluid inclusion compositions and stable
isotope chemistry are similar tomore typical orogenic gold deposits,
particularly of epizonal type (Yang et al., 2016b).

As noted above, however, in contrast to the normal situation
where orogenic gold deposits formed within 50e200 my of the
deposition of their host supracrustal sequence (Goldfarb et al.,
2001), the Jiaodong deposits formed at ca. 126e120 Ma, some 2
Ga after the oldest host rocks in the North China block were
deposited and experienced high P-T metamorphism (Yang et al.,
2014; see review in Goldfarb and Santosh (2014)). Importantly,
prograde metamorphism of supracrustal host rocks cannot have
provided auriferous fluids and a sub-crustal source must have
provided the fluid and metals that are interpreted to have advected
up the Tan Lu and other crustal-scale fault systems (Fig. 2) in the
province (Goldfarb et al., 2007). Deep crustal-basement sources are
highly unlikely, as discussed more generally above, implicating a
sub-crustal source. Although the metasomatized SCLM may be
gold-enriched (e.g., Griffin et al., 2013) and may be the source of
magmas and fluids for some gold and gold-copper deposits (e.g.,
Hronsky et al., 2012), this magmatic-hydrothermal model can
effectively be ruled out for orogenic gold formation generally
(Groves and Santosh, 2015), as discussed above. However, direct
devolatilization of an overlying frozen mantle wedge cannot be
completely ruled out as a fluid source under specific conditions
(e.g., Wyman et al., 2008).

This leaves the subducted oceanic crust and overlying sediment
wedge as the most viable fluid and metal source. Goldfarb and
Santosh (2014) and Goldfarb and Groves (2015) evaluated how
these could have provided the source of the Jiaodong ore fluids,
with Fig. 3 adapted from their model. Basically, devolatilization of a
subducted slab can result in extensive upward fluid-flux along slab-
mantle boundaries (e.g., Sibson, 2004; Peacock et al., 2011) into
fore-arc or accreting terrane margins. Such metamorphic fluid
release occurs when the base of the fore-arc mantle wedge be-
comes fully hydrated (Katayama et al., 2012). At this stage, the
oceanic slab will devolatilize, together with its overlying pyrite-
bearing oceanic sediment wedge. The latter is important as most
proponents of specific source rocks for formation of orogenic gold
Figure 2. Tectonic framework of the North China Craton showing the distribution of gold d
North China Orogen and Jiao-Liao-Ji Belt) along which the crustal blocks amalgamated at the
Groves and Santosh (2014).
deposits stress the importance of gold-enriched pyrite in sediments
or sedimentary rocks, as gold and related elements can be released
to the fluid via breakdown of pyrite to pyrrhotite (e.g., Large et al.,
2009, 2011; Steadman et al., 2013). The highly sheared serpenti-
nized layer at the bottom of the corner of the mantle wedge may
provide a particularly permeable zone for slab dewatering at slab
depths of less than 100 km and temperatures of 650 �C (Kawano
et al., 2011). Over-pressured fluids (e.g., Sibson, 2013) could then
migrate up-dip, channelling into crustal-scale fault zones at higher
crustal levels to eventually deposit orogenic gold deposits at even
shallower levels in lower-order structures (e.g., Breeding and Ague,
2002; Hyndaman et al., 2015).

Goldfarb and Santosh (2014) applied this model to the giant
Jiaodong orogenic gold province, suggesting that the Tan Lu fault
system carried the auriferous fluid derived from slab devolatiliza-
tion up to higher crustal levels to deposit gold in the numerous
deposits in the province. An important factor in such a model is the
trigger to cause fluid release in the slab and sediment wedge. As
discussed by Seno and Kirby (2014), such a trigger might be the end
of subduction or stalling of the slab during subduction, which could
eposits. The three major Paleoproterozoic sutures (Inner Mongolia Suture Zone, Trans-
final stage of cratonization during late Paleoproterozoic are also shown. Adapted from



Figure 4. Schematic illustrations showing CO2 circulation through time for Archean
and post-Archean scenarios (after Santosh and Omori, 2008; Santosh et al., 2009).

Figure 5. Schematic representation of a permissive scenario for all orogenic gold de-
posits, including those in high-grade metamorphic rocks, involving a subcrustal fluid
and metal source from slab devolatilization. (a) Where these overpressured slab-
derived fluids intersect deep-crustal faults, they advect upwards to form orogenic
gold deposits in second-order structures or hydraulically-fractured rock bodies: based
on Archean lithostratigraphic controls on ore bodies. (b) Fluids released during
devolatilization of the subducting slab and associated sulfidic sediments at tempera-
tures below 650 �C and depths of 100 km may either fertilize the overlying mantle
wedge or, particularly once the wedge is fully hydrated, travel up-dip along the
interface between the slab and the overlying serpentinized wedge or base of the
lithosphere. Figure adapted from Goldfarb and Groves (2015). Detailed models are
presented in Wyman et al. (2008).
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result in a change of stress regime as plates were reorganised with
subsequent switchover from compression to transpression.
Wyman et al. (2008) and Wyman and Kerrich (2010) further sug-
gested that such a devolatilization process would be favoured by
flat subduction and could have extended back to the Archean.

That such fluids can be transported from the mantle to crustal
levels in crustal-scale fault zones is shown by radiogenic isotope,
halogen and noble gas data of the San Andreas fault system
(Kennedy and van Soest, 2007; Pili et al., 2011) and the Karakorum
fault zone (Klemperer et al., 2013).

Although it must be stressed that the slab devolatilization
model is only a hypothetical one, because all radiogenic and stable
isotope ratios and other geochemical data are equivocal for any
model for the genesis of orogenic gold deposits, it is the only
pragmatic model that can satisfy the available geological and
geochronological constraints for Jiaodong.

Goldfarb and Groves (2015) went further in suggesting that the
slab-source model is the only reasonable genetic model for the gold
deposits in the potentially giant Qinling gold province on the
southern margin of the North China block (e.g., Chen et al., 2008),
the region marking the closure of the northernmost paleo-Tethys
sea and the tectonic suturing of the Yangtze and North China Cra-
tons (Li et al., 2015b). Goldfarb et al. (2007) also noted that the
Tertiary gold deposits in northwestern Mexico and southernmost
Arizona are hosted in reactivated high-grade Proterozoic basement
in extensional structures within metamorphic core complexes in a
similar scenario to the deposits in the North China block.

The question then remains whether the giant Jiaodong gold
province, and the others with similar features mentioned above,
are highly anomalous members of the orogenic gold clan or are the
key to understanding all orogenic gold deposits in terranes of all
ages. Certainly, the Goldfarb and Santosh (2014) Jiaodong model
can explain the ubiquitous worldwide relationship to subduction
and generation of new crust, the late-metamorphic timing of
orogenic gold mineralization, and the temporal coincidence of
auriferous fluid release and transition from compression to trans-
pression if a stalled slab resulted in a change in far-field stress. It
can also explain the occurrence of Precambrian deposits at crustal
depths below those inferred for the supracrustal metamorphic
model and the lead isotope evidence that fluids interacted with
basement. It also obviates the somewhat problematic issue of
extensive lateral fluid flow, as the crustal-scale faults extend to the
Moho and slab-related metamorphic fluids could be channelled
directly into them with subsequent upward flow. It also elegantly
explains the conflicting isotopic and halogen and rare gas evidence
for upper to lower crustal and mantle components. Finally, it
overcomes the problem of implication of different source rocks
with time as the most favoured source rocks, gold-enriched pyrite-
rich marine sediments, would have been available in sediment
wedges above down-going slabs throughout Earth history. Meta-
morphic heating would have consistently transformed pyrite to
pyrrhotite, releasing gold and related elements such as Ag, As, Bi,
Sb, Te andW into a sulfur-bearing ore fluid. The higher CO2 content
of the Archean ore fluids could also be explained by a greater de-
gree of carbonation in Archean oceanic rocks due to a combination
of more-susceptible high-MgO basalts and lack of CO2 sinks.
Santosh and Omori (2008) and Santosh et al. (2009) evaluated the
history of CO2 circulation through time and proposed schematic
models for the Archean and post-Archean scenarios which can
further enhance a model for greater degrees of carbonation of gold
and fluid source rocks in the Archean (Fig. 4). The Mid Oceanic
Ridge basalt, carbonated at spreading axes and during lateral
transport associated with seafloor spreading, is eventually decar-
bonated during subduction at convergent plate boundaries. They
speculated that the incorporation of carbonate into the
subcontinental lithosphere by subductionwas probably initiated by
at least 4 Ga. Oceanic carbonates infiltrate into the deep mantle
domains during subduction, with carbonated mantle underlying
ancient (>2.0 Ga old) continents. The fluids released from these
domains would have advected up the crustal-scale faults under
steady-state creep and then migrated episodically along pressure
and permeability gradients during earthquake activity into lower-
order structures and/or hydraulically-fractured rock bodies above
the ductile-brittle transition (e.g., Cox et al., 2001).
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Thus, the slab devolatilization model, shown schematically in
Fig. 5, can potentially explain the conjunction of parameters that
consistently characterize the orogenic gold deposit clan. Like all
models, they suffer for a lack of complete understanding of the
precise processes operating at depth in the system, and in this
specific case, the lack of knowledge of subduction zone geometry at
the time of gold mineralization and whether analogies to fluid
migration into modern fore-arcs can be made to accreted terranes
containing back-arc components at the time of slab devolatiliza-
tion. However, the model is considered here to be the most
consistent if the fundamental concept of a unified model for
orogenic gold systems, such as those for other coherent mineral
deposit groups, is valid.

5. Concluding statement

There are no modern examples of orogenic gold deposits, with
the youngest well-documented, but uneconomic, orogenic gold
mineralization forming about 12e15 Ma ago in the European Alps,
and the most recent significant orogenic gold deposit forming
about 50 Ma ago (Goldfarb et al., 2001). They also form over a
crustal depth range unparalleled by any other gold deposit group
with the possible exception of iron-oxide copper-gold deposits
(e.g., Groves et al., 2010), in very complex tectonic environments
where various mantle and crustal processes could be involved in
crustal heating and fluid release. Therefore, it is to be expected that
their origin is controversial and that research tools such as fluid
inclusions, stable and radiometric isotope ratios and other
geochemical methodologies should prove equivocal. Such genetic
controversy has existed for a century or so for gold-only lode-gold
deposits, and continues today despite their recognition as a
coherent orogenic gold deposit group by Groves et al. (1998).

If the deposit group has a coherent set of critical features, like all
other deposit groups, it should share a specific origin and relate to a
unified minerals-system model. Based on consistent relationships
and geochronological constraints, two variants of a metamorphic
model are the only possibilities of providing such a unified model:
(1) a model involving devolatilization of deeper supracrustal se-
quences underlying the host rocks to the deposits, and (2) a model
involving devolatilization of a subducted slab and overlying sedi-
ment wedge.

The supracrustal metamorphic model requires that source rocks
varied from mafic volcanic rocks to sedimentary rocks from the
Precambrian to Phanerozoic, that auriferous metamorphic fluid
derived at greenschist- to amphibolite-facies P-T conditions was
expelled to higher crustal levels and resulted in mineralization in
rocks that were already metamorphosed in the same event, and
that significant lateral flow of such fluid towards crustal-scale faults
was possible. In such a model, the Precambrian gold deposits
deposited under amphibolite-facies conditions and the young de-
posits formed in much older, previously metamorphosed host
rocks, such as in the giant Jiaodong gold province, have to be
considered anomalous exceptions to the model. It is thus not a
unified model for all orogenic gold deposits of all ages.

In contrast, the slab devolatilization hypothesis, developed for
the giant Jiaodong gold province, has the potential to be a unified
model (Fig. 5) that can incorporate all orogenic gold deposits
including the high-PT Precambrian deposits. It can explain why
there is a consistent connection between post-peak metamorphic
auriferous-fluid advection and change in tectonic regime due to
stalling of a subducted slab, how over-pressured fluid can migrate
directly upwards into crustal-scale fault zones and then down hy-
draulic gradients into gold depositional sites at the ductile-brittle
transition, and involves a common fluid source, the slab and
overlying pyritic sediment wedge, throughout geological history. It
is truly a holistic model, whose only uncertainty, shared with all
models, is the precise processes operating at depth: in this case
exactly how fluid is channelled along the slab-mantle boundary
and how this fluid can migrate ocean-wards to the accreted ter-
ranes that typically host these orogenic gold deposits.

In conclusion, it is believed that the slab devolatilization model
is the model that explains most of the tectonic- to deposit-scale
features of orogenic gold deposits throughout Earth history and
requires less special pleading of specific explanations for individual
anomalous and controversial examples. In this view, the giant
Jiaodong gold province is the key to unlocking a unified minerals-
system model, not the exception to a supracrustal metamorphic
model.
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