AlGEBRA

Extremal and maximal normal abelian subgroups of a maximal unipotent subgroup in groups of Lie type ${ }^{\text {T }}$

Vladimir M. Levchuk*, Galina S. Suleimanova
Inst. Math. of Siberian Federal University, av. Svobodny 79, Krasnoyarsk 660041, Russia

A R T I C L E I N F O

Article history:

Received 16 January 2011
Available online 28 October 2011
Communicated by E.I. Khukhro

Keywords:

Group of Lie type
Unipotent subgroup
Maximal abelian normal subgroup
Extremal subgroup
Large abelian subgroup

Abstract

We describe all maximal abelian normal subgroups in the unipotent radical U of a Borel subgroup in a group of Lie type G over a field K. This gives a new description of the extremal subgroups in U which were studied by C. Parker and P. Rowley. For a finite field K, we prove that either each large abelian subgroup in U is G-conjugate to a normal subgroup in U or G is of certain exceptional Lie type.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Let G be a group of Lie type over a field K, and let U be the unipotent radical of a Borel subgroup in G. The present paper is devoted to studying certain abelian normal subgroups in U and some related problems.

The study of these questions has been under active investigation since 1970s. J. Gibbs [5] described the lower and upper central series, the characteristic subgroups and the automorphisms of U with char $K \neq 2$, 3. A description for an arbitrary field K was completed in [13], and it solves the problem (1.5) from [7]. The approach of [13] uses a description of maximal abelian normal subgroups of the unitriangular group and close structural connections of U and its associated Lie ring, cf. [10,12, 8,9,16].

The theorems announced in [15] and Theorems 4.1 and 4.6 about the normal structure use the concept of corners of subsets in U (for notation see Section 1). Thus, the extremal subgroups from [18]

[^0]are the normal abelian subgroups in U with a simple corner. For the application to symplectic amalgams [21] and the revision of the classification of finite simple groups, C. Parker and P. Rowley studied the groups U with an extremal subgroup and the possible simple corners of such a subgroup [18-20].

Theorems 3.1, 4.8 and 5.1 of the present paper and [15, Theorem 5] (for the classical types) describe all maximal abelian normal subgroups in U. Therefore, we have a new solution to the ParkerRowley problem. Theorem 2.1 gives a clarification of some assertions from [18,19] when U is of type D_{4} and ${ }^{2} D_{4}$.

In Section 6 we consider an application to description of the large abelian and normal large abelian subgroups in the finite groups U. For the exceptional types, this problem was pointed out in A.S. Kondratiev's survey [7, Problem (1.6)] (for the classical types, see [1,2,28,29]). Using a computer approach as well as a generalization of A.I. Mal'tsev's method [17], E.P. Vdovin [26, Table 4] determined the orders of large abelian subgroups of U.

Given a group-theoretic property \mathcal{P}, we recall that every \mathcal{P}-subgroup of largest order in a finite group is a large \mathcal{P}-subgroup. Theorem 6.1 and [16, Table 2] (for the classical types) give the list of all large normal abelian subgroups in the finite groups U. Using the approach of [17] and [26] we show that the identical list gives the normal large abelian subgroups (Theorem 6.4). (In general, there exists a large normal \mathcal{P}-subgroup, which is not a large \mathcal{P}-subgroup, cf. Section 6.) It allows us to clarify some orders of large abelian subgroups in U which were found in [26, Table 4], cf. Remark in Section 6.

Finally, in Section 6 we show that either each large abelian subgroup in U is G-conjugate to a normal subgroup in U or G is of certain exceptional type and there exists a normal large abelian subgroup in U which is not extremal.

1. Preliminary remarks and notation

Along with the usual notation of [22,4,23] we use notation from [13], which simplifies our proofs.
Let $\Phi(K)$ denotes a Chevalley group with the root system Φ over a field K. This group is generated by the root elements $x_{r}(t)(t \in K, r \in \Phi)$. Let $\Pi=\Pi(\Phi)$ be a basis for simple roots in Φ, and let Φ^{+} be the set of positive roots of Φ with respect to Π. We set $p(\Phi)=\max \{(r, r) /(s, s) \mid r, s \in \Pi(\Phi)\}$.

A Coxeter graph of Φ is defined in J.-P. Serre [22, V.12]. (This concept coincides with the concept of the Dynkin diagram discussed by R. Carter [4, § 3.4].) The nodes of this graph are all roots from Π. By [22, V.15], it gives a Dynkin diagram of Φ if the numbers $p(\Phi)$ and 1 put into correspondence with the long and short roots $r \in \Pi$, respectively. For example, we get the following different Dynkin diagrams

The twisted group ${ }^{m} \Phi(K)$ is the centralizer in $\Phi(K)$ of a twisting automorphism $\theta \in \operatorname{Aut} \Phi(K)$ of order $m=2$ or 3 . According to [23, § 11], θ is the composition of a graph automorphism τ and a nontrivial automorphism $\sigma: t \rightarrow \bar{t}(t \in K)$ of K satisfying the condition $p(\Phi) \sigma^{m}=1$. We also denote by ${ }^{-}$ the symmetry of Coxeter graph. For certain extension of the symmetry ${ }^{\text {- }}$ of order m on the Coxeter graph to the root system Φ, we have $\theta\left(X_{r}\right)=\tau\left(X_{r}\right)=X_{\bar{r}}\left(r \in \Phi, X_{r}=x_{r}(K)\right)$.

As usual, the "root" elements of ${ }^{m} \Phi(K)$ are given by the subgroups $X_{S}^{1}={ }^{m} \Phi(K) \cap\left\langle X_{r} \mid r \in S\right\rangle$ for certain equivalence classes S of Φ, cf. [23,4]. We now associate the root elements with the ${ }^{-}$-orbits.

A mapping of a root system to another one is called a homomorphism if it can be extended to a homomorphism of the root lattices of these root systems. By [11, Lemma 7], for $p(\Phi)=1$ there exists a homomorphism ζ of Φ onto a root system such that $\zeta(r)=\zeta(s)$ if and only if either $r=s$ or $\bar{r}=s$ or $\bar{s}=r$. Therefore, if either $(\Phi, m)=\left(D_{4}, 3\right)$ or $m=2$ and Φ is of type $E_{6}, D_{n+1}, A_{2 n-1}$ or $A_{2 n}$ then $\zeta(\Phi)$ is of type $G_{2}, F_{4}, B_{n}, C_{n}$ or $B C_{n}$ [22, V.16], respectively, cf. [4, Remark 13.3.8] and [11, Lemma 8].

When S is an ${ }^{-}$-orbit in Φ, S has type $A_{1}, A_{1} \times A_{1}$ or $A_{1} \times A_{1} \times A_{1}$, by Propositions 13.6.3 and 13.6.4 in [4]. Then $X_{S}^{1}=x_{S}(F) \simeq F^{+}$, where F is the subfield $\{t \in K \mid \bar{t}=t\}=\operatorname{ker}(1-\sigma)$, K or K, respectively for each type, and F^{+}is the additive group of F. If $S=\{r, \bar{r}, r+\bar{r}\}$ has type A_{2} then Φ is of type $A_{2 n}$ and

$$
X_{S}^{1}=\left\{x_{S}(t, u) \mid x_{S}(t, u)=x_{r}(t) x_{\bar{r}}(\bar{t}) x_{r+\bar{r}}(u), u, t \in K, u+\bar{u}= \pm t \bar{t}\right\} .
$$

For the ${ }^{-}$-orbits $\{r+\bar{r}\}$ and $\{r, \bar{r}\}$, we denote, respectively, $x_{r+\bar{r}}(\operatorname{ker}(1+\sigma))$ by $X_{2 R}$, where $2 R=\zeta(r+\bar{r})$, and $x_{R}(K)$ by X_{R}, where $R=\zeta(r)$, and X_{R} is the system of representatives $x_{R}(t)=x_{r}(t) x_{\bar{r}}(\bar{t}) x_{r+\bar{r}}(\tilde{t})$ (for all $t \in K$) of cosets in X_{S}^{1} by the subgroup $X_{2 R}$, and ${ }^{\sim}$ is a transformation of K. In the remaining cases, S has type B_{2} or G_{2} (see [4, Proposition 13.6.4]), and ${ }^{m} \Phi(K)$ is of type ${ }^{2} G_{2},{ }^{2} B_{2}$ or ${ }^{2} F_{4}$. Then S is the union of ${ }^{-}$-orbits having representatives $r, r+\bar{r}$ (and also $2 r+\bar{r}$ for type G_{2}). We now use the root subsets $\alpha(K)=X_{R}, \beta(K)=X_{2 R}$, and $\gamma(K)=X_{3 R}$, which were defined in Proposition 13.6.4 (vi) and (vii) in [4].

Thus, the ${ }^{-}$-orbit α of each root $r \in \Phi$ uniquely determines a root subset X_{α} in ${ }^{m} \Phi(K)$. The set of all such α will be denoted by ${ }^{m} \Phi$. If α is of order 1 then α is said to be of the first type. Choosing all α with $r \in \Pi(\Phi)$ we get a basis $\Pi\left({ }^{m} \Phi\right)$ for ${ }^{m} \Phi$. If $p(\Phi)=1$ then ${ }^{m} \Phi=\zeta(\Phi)$, and $\Pi\left({ }^{m} \Phi\right)=$ $\zeta(\Pi(\Phi))$. Thus, for type ${ }^{3} D_{4}$, the root system $\zeta(\Phi)$ is of type G_{2} with $r, q \in \Pi(\Phi), q=\bar{q}$, and we have

$$
\begin{aligned}
& X_{a}=x_{a}(K), \quad a=\zeta(r)\left(x_{a}(t):=x_{r}(t) x_{\bar{r}}(\bar{t}) x_{\bar{r}}(\overline{\bar{t}}), t \in K\right), \\
& X_{b}=x_{q}(\operatorname{ker}(1-\sigma)), \quad b=\zeta(q)\left(x_{b}(t):=x_{q}(t), t=\bar{t}\right) .
\end{aligned}
$$

By analogy with [13], $G(K)$ denotes a group of Lie type associated either with the system $G={ }^{m} \Phi$ or $G=\Phi$. We fix a basis Π for G and the set G^{+}of all positive roots with respect to Π. We define a unipotent subgroup U by $U=U G(K):=\left\langle X_{s} \mid s \in G^{+}\right\rangle$, cf. [4,23,13].

Let $\{r\}^{+}$be the family of $s \in G^{+}$with nonnegative coefficients in the linear expression of $s-r$ by $П$. We set

$$
T(r):=\left\langle X_{s} \mid s \in\{r\}^{+}\right\rangle, \quad Q(r):=\left\langle X_{s} \mid s \in\{r\}^{+} \backslash\{r\}\right\rangle \quad(r \in G) .
$$

If $H \subseteq T\left(r_{1}\right) T\left(r_{2}\right) \cdots T\left(r_{m}\right)$ and the inclusion fails under every substitution of $T\left(r_{i}\right)$ by $Q\left(r_{i}\right)$ then $\mathcal{L}(H)=\left\{r_{1}, r_{2}, \ldots, r_{m}\right\}$ is said to be the set of corners of H.

As in [4, §4.4], take the K-algebra \mathcal{L}_{K} with Chevalley basis $\left\{e_{r}(r \in \Phi), \ldots\right\}$. Denote by $N \Phi(K)$ the subalgebra in \mathcal{L}_{K} with the basis $\left\{e_{r} \mid r \in \Phi^{+}\right\}$. The Lie products $e_{r} * e_{s}=c_{r s} e_{r+s}$ ($c_{r s}=0$ for $r+s \notin \Phi$) define the structure constants of Chevalley basis in $N \Phi(K)$. Chevalley's commutator formula gives $\left[X_{r}, X_{s}\right]=x_{r+s}\left(c_{r s} K\right) \bmod Q(r+s)$. Using also relations from [13, § $\left.4(\mathrm{I})\right]$ and [16, Theorem 2] for the twisted groups, we easily get

Lemma 1.1. Let $U=U G(K)$ and $r, s, r+s \in G^{+}$. Then either $\left[X_{r}, X_{s}\right]=X_{r+s} \bmod Q(r+s)$ or $G=\Phi$, $c_{r s} K=0=p(\Phi)!K$, and $\left[X_{r}, X_{s}\right] \subseteq Q(r+s)$.

It is well known that every element $\gamma \in U$ is uniquely represented as the product of root elements $x_{r}\left(\gamma_{r}\right), r \in G^{+}$, arranged according to a fixed order in G, cf. [23, Lemma 18] (we call such repre-
sentation as the canonical decomposition of γ). The coefficient γ_{r} is said to be an r-projection of γ. Putting

$$
\pi(\gamma):=\sum_{r \in \Phi^{+}} \gamma_{r} e_{r}(\gamma \in U \Phi(K)), \quad \alpha \circ \beta:=\pi\left(\pi^{-1}(\alpha) \pi^{-1}(\beta)\right) \quad(\alpha, \beta \in N \Phi(K)),
$$

we define an adjoint group ($N \Phi(K)$, o), which is isomorphic to the group $U \Phi(K)$. Similar representation of $U^{m} \Phi(K)$ for $p(\Phi)=1$ as an adjoint group of certain K_{σ}-module $N^{m} \Phi(K)$ is used in [13] and [16].

The set of r-projections of all elements in a subset $H \subseteq U G(K)$ is called an r-projection of H. If an s-projection of $\gamma \in H$ is the product of its r-projection and a fixed non-zero scalar, not depending on a choice of γ, then r, s are said to be connected in H. If also there exist $p, r+p, s+p \in G^{+}$then r and s are said to be p-connected in H. It is easy to prove the following

Lemma 1.2. Let $H \leqslant U \Phi(K), p(\Phi)!K=K, r$ be a corner in $H, s \in\{r\}^{+}$, and $s \neq r$. Then H possesses a subgroup with a corner s and with the s-projection K.

The highest root in G^{+}is denoted by ρ. If $r \in G$ then $r=\sum_{\alpha \in \Pi} c_{\alpha} \alpha$ with $c_{\alpha} \in \mathbb{Z}$. The height of r is defined by $h t(r)=\sum_{\alpha \in \Pi} c_{\alpha}$. For every system G, the Coxeter number h is defined by $h t(\rho)+1=$ $h(G)=h$. The highest roots of root systems and h are described in [3, Tables I-IX]. When G is of type ${ }^{2} F_{4},{ }^{2} B_{2},{ }^{2} G_{2}$ or ${ }^{2} A_{2 n}$, we have $h=9,3,4$ or $2 n$, respectively.

The subgroups $U_{i}=\left\langle X_{r} \mid r \in G^{+}, h t(r) \geqslant i\right\rangle$ form the standard central series $U=U_{1} \supset U_{2} \supset \cdots \supset$ $U_{h}=1$ in U, by [4, Theorem 5.3.3] and [13]. We shall use some property of the hypercenters (Lemma 1.3). Some subgroups A and B in a group are said to be incident if $A \subseteq B$ or $B \subseteq A$. Under the conditions of the following lemma the upper central (or hypercentral) series $1=Z_{0} \subset Z_{1} \subset Z_{2} \subset \ldots$ is standard, by [13]. Set $t(U)=6,3$ or 1 for $G=E_{8}, E_{6}, A_{n}$, respectively,

$$
t(U)=4 \text { for } G=G_{2}, F_{4},{ }^{2} F_{4},{ }^{2} E_{6}, E_{7}, \text { or } 2 K=K \text { and } G={ }^{3} D_{4},
$$

and $t(U)=2$ in the other cases. By [14, Lemma 3], we have

Lemma 1.3. Let $U=U G(K)$, and let $p(\Phi)!K=K$ for $G=\Phi$. Then each normal subgroup of U is incident with every hypercenter $Z_{i}, 0 \leqslant i \leqslant t(U)$.

The centralizer $C(T(r))$ of $T(r)$ in U was determined in [13]. For $G=\Phi$, we distinguish also some subgroups of the following form:

$$
\begin{align*}
& \alpha(K)\left(C(T(r)) \cap C\left(T\left(r^{\prime}\right)\right)\right), \quad \alpha(t):=x_{r}(t) x_{r^{\prime}}(t)(t \in K), r+r^{\prime}=\rho ; \tag{1}\\
& \beta(K)\left(C(T(r)) \cap C\left(T\left(r^{\prime}\right)\right)\right)\left\{x_{r}(t) x_{r^{\prime}}(t) x_{r+p}(c t) \mid t \in K\right\} \quad(c \in K), \\
& \quad \beta(t):=x_{r+p}(t) x_{r^{\prime}+p}(t), r+r^{\prime}+p=\rho . \tag{2}
\end{align*}
$$

The group U of type A_{n} (denoted by $U A_{n}(K)$) is isomorphic to the unitriangular group $U T(n+$ $1, K$). By [10, Theorem 3] (for a finite field K of odd order, see also [27, Theorem 7]), we get

Lemma 1.4. Up to conjugation by a diagonal automorphism, every maximal abelian normal subgroup of $U A_{n}(K)$ is either $T(p)$, or (1), or (2) for $2 K=0, n \geqslant 3$ and some $r, r^{\prime} \in \Phi^{+}, p \in \Pi$.

2. Extremal subgroups

Let $U=U G(K)$. According to [18] and [19], a normal abelian subgroup A in U is said to be extremal if $A \nsubseteq U_{2}$. Therefore, there exists a simple corner p in A, i.e., $A \nsubseteq\left\langle X_{r} \mid r \in G^{+}, r \neq p\right\rangle$ (see also [4, § 8.1]). For the purpose of application to the revision of the classification of finite simple groups and etc., C. Parker and P. Rowley [18-20] studied the groups U, having extremal subgroups, and simple corners of such subgroups.

Now, we correct some flaws in [18] and [19]. For $U D_{4}(K)$ over a field K of characteristic 2, the example in [18, pp. 396-397] gives some extremal subgroups with three simple corners (see also [18, Theorem 1.3]). By [19, Theorem 1.2], if $U^{2} D_{4}(K)$ has an extremal subgroup with two simple corners then $2 K=0$. But we now show that if $U^{2} D_{4}(K)$ and $U D_{4}(K)$ were chosen as above, then, in fact, $|K|=4$ and $|K|=2$, respectively.

Let Φ be a root system of type D_{4}, and let ${ }^{-}$be a symmetry of order 3 of the Coxeter graph of Φ. We consider simple roots $r, \bar{r}, \overline{\bar{r}}$, and $q=\bar{q}$. Clearly, $U D_{4}(K)$ and $U^{2} D_{4}(K)$ contain the element

$$
\begin{equation*}
\vartheta:=x_{r}(1) x_{\bar{r}}(1) x_{\bar{r}}(1) x_{s-r}(1) x_{s-\bar{r}}(1) x_{s-\overline{\bar{r}}}(1) \quad(s:=q+r+\bar{r}+\overline{\bar{r}}) . \tag{3}
\end{equation*}
$$

Theorem 2.1. The groups $U D_{4}(K)$ for $|K|>2$ and $U^{2} D_{4}(K)$ for $|K|>4$ have no extremal subgroups with $\geqslant 3$ or $\geqslant 2$ simple corners, respectively. The normal closure of (3) in $U D_{4}(2)$, and $U^{2} D_{4}(4)$ is an extremal subgroup with three and two simple corners, respectively.

Proof. Note that if U is of type D_{4} and ${ }^{2} D_{4}$ then every its extremal subgroup contains U_{4}, by Lemma 1.3, and also $U_{3}=C\left(U_{3}\right)$.

Let $U=U D_{4}(K)$. Suppose that r, q, s are chosen as above. Assume that there exists an extremal subgroup M in U with $\geqslant 3$ simple corners. Then we have

$$
\begin{gathered}
U_{4} \subset M \subset C\left(U_{4}\right)=T(r) T(\bar{r}) T(\overline{\bar{r}}), \quad \mathcal{L}(M)=\{r, \bar{r}, \overline{\bar{r}}\}, \\
U / T(r) \simeq U / T(\bar{r}) \simeq U / T(\overline{\bar{r}}) \simeq U T(4, K) .
\end{gathered}
$$

By [10, Theorem 3], all corners in M are q-connected and $2 K=0$. Setting

$$
\xi(t):=x_{r}(t) x_{\bar{r}}(t) x_{\bar{r}}(t), \quad \eta(t):=x_{q+r}(t) x_{q+\bar{r}}(t) x_{q+\overline{\bar{r}}}(t), \quad \kappa_{p}(t):=x_{s-p}(t) x_{s-\bar{p}}(t),
$$

up to conjugation of M by a diagonal automorphism we easily obtain

$$
\begin{gathered}
M=\xi(F) \bmod U_{2}, \quad M \cap U_{2}=\left[M, X_{q}\right]=\eta(K) \bmod U_{3}, \\
M \cap U_{3}=[\eta(K), U]=U_{4} \cdot \prod_{p \in \Pi \backslash\{q\}} \kappa_{p}(K),
\end{gathered}
$$

where F is an additive subgroup F of K and $F \supseteq G F(2)$. Therefore, for some map ${ }^{\sim}: F \rightarrow K$ and $v_{r}, v_{\bar{r}}, v_{\overline{\bar{r}}} \in K$, every $\gamma \in M$ may be written modulo $M \cap U_{3}$ in the form

$$
\gamma=\xi(f)\left(x_{q+r}\left(v_{r}\right) x_{q+\bar{r}}\left(v_{\bar{r}}\right) x_{q+\overline{\bar{r}}}\left(v_{\bar{r}}\right)\right) x_{s-r}(\tilde{f}) \quad(f \in F) .
$$

Since $s+q$ is equal to the highest root ρ and $\left[\xi(F), \kappa_{p}(K)\right]=1$, we obtain

$$
\left[\gamma, \kappa_{p}(K)\right]=\left[x_{q+r}\left(v_{r}\right) x_{q+\bar{r}}\left(v_{\bar{r}}\right) x_{q+\overline{\bar{r}}}\left(v_{\overline{\bar{r}}}\right), \kappa_{p}(K)\right]=x_{\rho}\left(\left(v_{p}+v_{\bar{p}}\right) K\right)=1
$$

and therefore $v_{r}=v_{\bar{r}}=v_{\bar{r}}$. Consequently,

$$
\gamma=\xi(f) x_{s-r}(\tilde{f}) \bmod M \cap U_{2} .
$$

Also we note that every $\omega \in M \cap U_{2}$ may be written modulo $M \cap U_{3}$ as $\omega=\eta(t) x_{s-r}\left(t^{\prime}\right)$ for some $t, t^{\prime} \in K$.

Now, taking into account that U_{3} is abelian, we obtain

$$
\begin{aligned}
1 & =[\gamma, \omega]=\left[\gamma, x_{s-r}\left(t^{\prime}\right)\right][\xi(f), \eta(t)]\left[x_{s-r}(\tilde{f}), \eta(t)\right] \\
& =x_{s}\left(t^{\prime} f\right) x_{\rho}(\tilde{f} t)[\xi(f), \eta(t)]=x_{s}\left(t^{\prime} f+f^{2} t\right) x_{\rho}\left(\tilde{f} t+f t^{2}\right) .
\end{aligned}
$$

When $f=1$, the equality $t^{\prime} f+f^{2} t=0$ implies $t^{\prime}=t$ for every $t \in K$.
Analogously, for all $f \in F$ and $t \in K$, we obtain $f=\tilde{f}, t^{2}+t=0$, and hence $|K|=2=|F|$. Consequently, M coincides with the normal closure

$$
\begin{equation*}
\left\{\left(U_{4} \times\left\langle\left[\vartheta, x_{q+r}(1)\right],\left[\vartheta, x_{q+\bar{r}}(1)\right]\right\rangle\right) \lambda\left\langle\left[\vartheta, x_{q}(1)\right]\right\rangle\right\} \lambda\langle\vartheta\rangle \tag{4}
\end{equation*}
$$

of the element ϑ from (3) in $U D_{4}(2)$. Moreover, (4) is the unique extremal subgroup in $U D_{4}(2)$ with three simple corners.

Let M be an extremal subgroup in $U=U^{2} D_{4}(K)$ possessing at least two simple corners. Take the twisted automorphism $\theta \in \operatorname{Aut} D_{4}(K)$ of order 2 such that $\theta\left(x_{r}(1)\right)=x_{\bar{r}}(1), \theta\left(X_{\bar{r}}\right)=X_{\bar{F}}$. Then the system $\zeta(\Phi)$ is of type B_{3} and $\mathcal{L}(M)=\{a, b\}$, where $a=\zeta(r), b=\zeta(\overline{\bar{r}})$.

Up to conjugation by a diagonal automorphism, we obtain $\vartheta \in U_{2} M$. Using the argument of previous case, we get

$$
x_{a+\zeta(q)+b}\left(K_{\sigma}\right) U_{4}=\left[\left[\vartheta, X_{\zeta(q)}\right], X_{b}\right] \subset M, \quad\left|K_{\sigma}\right|=2,
$$

and, finally, M coincides with the subgroup (4) in $U D_{4}(2) \cap U^{2} D_{4}$ (4). This completes the proof of Theorem 2.1.

A description of maximal abelian normal subgroups of U in Sections 3-5 and [15, Theorem 5] (for the classical types) gives also a description of extremal subgroups and hence a new solution to the Parker-Rowley problem.

3. The case of Lie rank $\leqslant 2$

Let U be the group $U G(K)$ of exceptional type over a field K. In this section we prove the following theorem.

Theorem 3.1. If U is of rank $\leqslant 2$ then all maximal abelian normal subgroups in U are exhausted by the following subgroups:
(a) $\langle\gamma\rangle U_{2}\left(\gamma \in U \backslash U_{2}\right)$ for $G={ }^{2} B_{2}$;
(b) U_{2} for $G={ }^{2} G_{2}$ (or $G=G_{2}$ and $3 K=0$);
(c) U_{3} for $G=G_{2}$ if $6 K=K$, and, additionally, $\beta_{c}(K) \cdot U_{4}(c \in K)$ for $2 K=0$, and also $\langle\alpha\rangle \times\left\langle\beta_{1}(1)\right\rangle$ for $|K|=2$, where

$$
\alpha=x_{a}(1) x_{2 a+b}(1), \quad \beta_{c}(t)=x_{a+b}(t) x_{2 a+b}(t c) ;
$$

(d) U_{3} for $G={ }^{3} D_{4}$, and, when $2 K=0$, additionally, up to conjugation by a diagonal automorphism, $\beta_{c}\left(K_{\sigma}\right) x_{2 a+b}\left(K^{1+\sigma}\right) \cdot U_{4}(c \in K)$, and also

$$
\langle\alpha\rangle \times\left\langle\beta_{1}(1)\right\rangle \times x_{2 a+b}\left(K^{1+\sigma}\right) \quad \text { if }\left|K_{\sigma}\right|=2 .
$$

Proof. Consider an arbitrary maximal abelian normal subgroup M of U. Note that the Coxeter number h is even and $U_{h / 2}$ is an abelian normal subgroup for every root system Φ of type $\neq A_{n}$.

The Coxeter number of a root system of type G_{2} is equal to 6 . Therefore, the normal subgroup U_{3} (i.e., $T(2 a+b)$) is abelian in the group U of type G_{2} or ${ }^{3} D_{4}$. For $M \nsubseteq U_{3}$, the intersection $M \cap U_{2}$ has the corner $a+b$ and

$$
U_{4}=\left[X_{a}, M \cap U_{2}\right] U_{5} \subseteq M \subseteq C\left(U_{4}\right)=T(a)
$$

Thus, up to conjugation of M by a diagonal automorphism, there exist some additive subgroups F, Q, P of $K(1 \in Q, 1 \in F$ or $F=0)$ and a map ${ }^{\sim}: Q \rightarrow K$ such that

$$
M=x_{a}(F) \bmod U_{2}, \quad M \cap U_{2}=\beta(Q) x_{2 a+b}(P) U_{4},
$$

where $\beta(v):=x_{a+b}(v) x_{2 a+b}(\tilde{v}) \in M(v \in Q)$.
Suppose that $U=U G_{2}(K)$. If $6 K=K$ then U_{3} is a self-centralizing subgroup and each normal subgroup H of the group $U G_{2}(K)$ is incident with U_{3} by Lemma 1.3. It follows that $M=U_{3}$. Since $\left[M \cap U_{2}, M\right]=x_{2 a+b}(2 F K) \bmod U_{4}$, we have $2 F=0$. In particular, $T(a+b)$ (i.e., U_{2}) is a unique maximal abelian normal subgroup for $3 K=0$.

When $2 K=0$, the relations

$$
\left[\beta(Q), x_{2 a+b}(P)\right]=x_{3 a+b}(3 Q P) \bmod U_{5}, \quad[\beta(u), \beta(v)]=x_{3 a+2 b}(3(u \tilde{v}+v \tilde{u}))
$$

show that $P=0$ and $\tilde{v}=v d(v \in Q)$ for a fixed $d=\tilde{1} \in K$. Consequently, the intersection $M \cap U_{2}$ is contained into the abelian normal subgroup

$$
\mathcal{M}_{c, d}=\left\{x_{a+b}(c t) x_{2 a+b}(t d) \mid t \in K\right\} U_{4} \quad((c, d) \neq(0,0))
$$

for $c=1$. Assume that $M \nsubseteq U_{2}$. Then $1 \in F$ and $\alpha=x_{a}(1) x_{2 a+b}(f) \in M$ for $f \in K$. Since $\left[\alpha, X_{b}\right] U_{4} \subseteq$ $M \cap U_{2}$, we obtain

$$
M \cap U_{2}=\mathcal{M}_{1,1}, \quad 1=\left[\alpha, \mathcal{M}_{1,1}\right]=x_{3 a+2 b}\left(\left\{t^{2}+t f \mid t \in K\right\}\right) .
$$

Hence, $f=1$ and $|K|=2$. On the other hand, $\left\langle x_{a}(1) x_{2 a+b}(1)\right\rangle \mathcal{M}_{1,1}$ is an abelian normal subgroup of order $|K|^{4}=2^{4}$ for $|K|=2$. If $|K|>2$ then $M=U_{3}=\mathcal{M}_{0,1}$ or $M=\mathcal{M}_{1, d}$ for an arbitrary $d \in K$.

For U of type ${ }^{3} D_{4}$, the ideal $K^{1+\sigma+\sigma^{2}}=\{t+\bar{t}+\overline{\bar{t}} \mid t \in K\}$ of the subfield K_{σ} is non-zero (see also [19, Lemma 2.3]), and hence $K_{\sigma}=K^{1+\sigma+\sigma^{2}}$. Since $K_{\sigma} \cap K^{1+\sigma}=2 K_{\sigma}$, we get

$$
\begin{gathered}
K \supseteq K^{1+\sigma}+K^{1+\sigma+\sigma^{2}} \supseteq K^{\sigma^{2}}=K, \quad K=K^{1+\sigma}+K_{\sigma} ; \\
1=\left[\left[X_{a}, \beta(1)\right], \beta(1)\right]=\left[x_{2 a+b}\left(K^{1+\sigma}\right), \beta(1)\right]=x_{3 a+2 b}\left(\left(K^{1+\sigma}\right)^{1+\sigma+\sigma^{2}}\right) .
\end{gathered}
$$

Hence, $0=2 K^{1+\sigma+\sigma^{2}}=2 K_{\sigma}=2 K$, whence the sum $K^{1+\sigma}+K_{\sigma}$ is direct and $P=K^{1+\sigma}+\left(P \cap K_{\sigma}\right)$. Taking into account the relations

$$
1=\left[x_{2 a+b}\left(P \cap K_{\sigma}\right), \beta(1)\right]=x_{3 a+2 b}\left(\left(P \cap K_{\sigma}\right)^{1+\sigma+\sigma^{2}}\right),
$$

we deduce $0=3\left(P \cap K_{\sigma}\right)=P \cap K_{\sigma}$ and hence $P=K^{1+\sigma}=P^{\sigma}$. Also, $M \cap U_{3}$ centralizes $M \cap U_{2}$ and $x_{a+b}\left(K_{\sigma}\right) U_{3}$. Therefore,

$$
\begin{array}{r}
1=\left[\beta\left(Q \cap K^{1+\sigma}\right), x_{2 a+b}(P)\right]=x_{3 a+2 b}\left(\left(P\left(Q \cap K^{1+\sigma}\right)\right)^{1+\sigma+\sigma^{2}}\right) \\
\left((\bar{v}+\overline{\bar{v}})\left(Q \cap K^{1+\sigma}\right)\right)^{1+\sigma+\sigma^{2}}=0, \quad(v+\bar{v}+\overline{\bar{v}})\left(Q \cap K^{1+\sigma}\right)^{1+\sigma+\sigma^{2}}=0 \quad(v \in K)
\end{array}
$$

Summarizing the last two equalities, we get $\left(v\left(Q \cap K^{1+\sigma}\right)\right)^{1+\sigma+\sigma^{2}}=0$ for all $v \in K$. Consequently, $Q \cap K^{1+\sigma}=0$ (otherwise $K^{1+\sigma+\sigma^{2}}=0$) and $Q \subseteq K_{\sigma}$.

Choose a system $\beta(Q)$ of coset representatives of $M \cap U_{3}$ in $M \cap U_{2}$ such that $\tilde{Q} \subseteq K_{\sigma}$. Using the isomorphism $U^{3} D_{4}(K) \cap U D_{4}\left(K_{\sigma}\right) \simeq U G_{2}\left(K_{\sigma}\right)$ we obtain $\tilde{v}=d v$ for $d=\tilde{1}$. Therefore, $M \cap U_{2}$ coincides with

$$
\mathcal{M}_{d}=\left\{x_{a+b}(v) x_{2 a+b}(d v) \mid v \in K_{\sigma}\right\} x_{2 a+b}\left(K^{1+\sigma}\right) U_{4}
$$

For $F \neq 0, \alpha=x_{a}(1) x_{2 a+b}(f) \in M$ may be chosen with $f \in K_{\sigma}$. The subgroup $\langle\alpha\rangle \beta(Q) U_{4}$ is normal in $U^{3} D_{4}(K) \cap U D_{4}\left(K_{\sigma}\right)$. As above, $\langle\alpha\rangle \beta(Q) U_{4}$ is abelian if and only if $f=1$ and $\left|K_{\sigma}\right|=2$. Note that $\left\langle x_{a}(1) x_{2 a+b}(1)\right\rangle \mathcal{M}_{1}$ is an abelian normal subgroup in $U^{3} D_{4}(K)$ for $|K|=8$. If $\left|K_{\sigma}\right|>2$ then either $M=U_{3}$ or M coincides with \mathcal{M}_{d} for an arbitrary $d \in K$.

If K possesses an automorphism σ such that $3 \sigma^{2}=1$ then $U^{2} G_{2}(K)$ is represented by the elements (t, u, v) and

$$
(t, u, v)\left(t^{\prime}, u^{\prime}, v^{\prime}\right)=\left(t+t^{\prime}, u+u^{\prime}-t\left(t^{\prime}\right)^{3 \sigma}, v+v^{\prime}-u t^{\prime}+t\left(t^{\prime}\right)^{3 \sigma+1}-t^{2}\left(t^{\prime}\right)^{3 \sigma}\right)
$$

(see [5, 13.6 .4 (viii)] and [23]). The subgroups $(0,0, F),(0, F, K)$, and (F, K, K) in $U^{2} G_{2}(K)$ exhaust all normal subgroups by Lemma 1.3 , where F is an additive subgroup of K. Obviously, U_{2} is abelian and (F, K, K) with $F \neq 0$ are not abelian.

In [5, 13.6.4 (vii)], $U^{2} B_{2}(K)$ is represented as

$$
\begin{equation*}
U^{2} B_{2}(K)=\{(t, u) \mid t, u \in K\}, \quad(t, u)\left(t^{\prime}, u^{\prime}\right)=\left(t+t^{\prime}, u+u^{\prime}+(\bar{t})^{2} t^{\prime}\right) \tag{5}
\end{equation*}
$$

where K possesses a non-trivial automorphism ${ }^{-}$such that $\overline{\bar{x}}^{2}=x(x \in K)$. The center Z_{1} of $U^{2} B_{2}(K)$ is equal to $(0, K)$ and, by Lemma 1.3 , every normal subgroup is of the form either $(0, F)$ or (F, K) for an arbitrary additive subgroup F of K. For the commuting elements (t, u) and $\left(t^{\prime}, u^{\prime}\right)$, we have $(\bar{t})^{2} t^{\prime}=\bar{t}^{\prime 2} t$. When $t^{\prime} \neq 0$, up to conjugation by a diagonal element, we may assume that $t^{\prime}=1$. In this case $t=(\bar{t})^{2}=(\overline{\bar{t}})^{4}=t^{2}$, whence either $t=0$ or $t=1$. Therefore, the maximal abelian normal subgroups of $U^{2} B_{2}(K)$ are exhausted by the centralizers of the elements of order 4 ; they have the form (F, K) with $|F|=2$. Thus, Theorem 3.1 is proved.

4. The normal structure

In this section, we consider the normal structure of $U G(K)$ and describe the maximal abelian normal subgroups of groups $U E_{n}(K), n=6,7,8$.

Let $U=U G(K)$ and $H \subseteq U$. Since $H \subseteq \prod_{s \in \mathcal{L}(H)} T(s)$, there exists a subset $\mathcal{F}(H)$ in $\prod_{s \in \mathcal{L}(H)} X_{s}$ such that $\mathcal{F}(H)=H \bmod \prod_{s \in \mathcal{L}(H)} Q(s)$. As in [15], $\mathcal{F}(H)$ is said to be a frame of H. The following theorem holds.

Theorem 4.1. Let H be a subgroup in the group U of classical type or of type E_{n} over a field K. Assume that $2 K=K$ or U is of type A_{n} or ${ }^{2} A_{n}$. Then $H \boxtimes U$ if and only if $\mathcal{F}\left(\left[H, X_{p}\right]\right) \subseteq H$ for each $p \in \Pi(G)$.

Let us consider the idea of the proof.
Using the representation π from Section 1 of U we define a frame of a subset $\pi(H)$ in $(N G(K), \circ)$ by the rule $\mathcal{F}(\pi(H)):=\pi(\mathcal{F}(H))$. The concept of frame and the representation π allow us to apply linear methods, cf. [12,13,15,16]. The multiplication \circ and the addition on the frame $\mathcal{F}(\pi(H))$ coincide modulo $\sum_{r \in \mathcal{L}(H)} \pi(Q(r))$. Also, we may consider an arbitrary frame in the module $N G(K)$ as a submodule. When $G=\Phi$, we get

Lemma 4.2. Let $H \subseteq U \Phi(K)$, $\pi(H)$ be a subgroup in the adjoint or additive group of $N \Phi(K)$, and let $p \in \Phi^{+}$. Then $\pi\left(\mathcal{F}\left(\left[H, X_{p}\right]\right)\right)$ is a K-submodule in $N \Phi(K)$ coinciding with the frame of $\pi(H) * K e_{p}$.

Lemma 4.3. Let $U=U G(K), H \subseteq U$ and $p \in G^{+}$. Then $\left|\mathcal{L}\left(\left[H, X_{p}\right]\right)\right| \leqslant 3$.
Proof. The standard commutator relations show that every corner in $\left[H, X_{p}\right.$] can be written in the form $s+p$ for $s \in \bigcup_{r \in \mathcal{L}(H)}\{r\}^{+}$. Evidently, $|\mathcal{L}(H)| \leqslant$ rank G. By the well known classification of root systems, for $G=\Phi$, the minimal root subsystem of Φ containing $\mathcal{L}\left(\left[H, X_{p}\right]\right) \cup\{p\}$ has a connected Coxeter graph of rank $\leqslant 4$. Therefore, $\left|\mathcal{L}\left(\left[H, X_{p}\right]\right)\right| \leqslant 3$. Using the root system $\zeta(\Phi)$ we get this inequality for $G={ }^{m} \Phi, p(\Phi)=1$.

Now let $U=U G(K), G={ }^{2} \Phi, p(\Phi)=1, r, s, r+s \in G^{+}$, and let

$$
x_{r}(F) \subseteq X_{r}, \quad x_{s}(V) \subseteq X_{s} \quad \text { for some } F, V \subseteq K, F V \neq 0
$$

Lemma 4.4.

(i) If $\left[x_{r}(F), x_{s}(V)\right] \subseteq Q(r+s)$ then $r+s$ is of the first type, r and s are not of the first type, and, up to conjugation by a diagonal automorphism, either $F \subseteq K_{\sigma}, V \subseteq K^{1-\sigma}$ or $G={ }^{2} A_{2 n}, F, V \subseteq K_{\sigma}$.
(ii) If $\left[X_{r}(F), X_{s}\right]$ does not coincide with $0, X_{r+s}$ modulo $Q(r+s)$ then s is of the first type, $r, r+s$ are not of the first type, and $F K_{\sigma}$ is a 1 -dimensional K_{σ}-module.

Proof. Firstly, assume that either r (or s) is of the first type or $r+s$ is not of the first type. Then the basic relations of the twisted group U (cf. [4,23] and [16, Theorem 2]) show that $\left[x_{r}(u), x_{s}(v)\right]=$ $x_{r+s}(\pm \eta) \bmod Q(r+s)$ for $\eta=u v, \bar{u} v, u \bar{v}$ or $\bar{u} \bar{v}$, and hence $r+s$ is a corner of the commutator [$\left.x_{r}(F), x_{s}(V)\right]$.

Thus, the assumption $\left[x_{r}(F), x_{s}(V)\right] \subseteq Q(r+s)$ shows that $r+s$ is of the first type, r and s are not of the first type, and $\eta=0$ for all $u \in F, v \in V$, where either $\eta=u v+\bar{u} \bar{v}(u \bar{v}+\bar{u} v)$ or $\eta=$ $u \bar{v}-\bar{u} v$ when $G={ }^{2} A_{2 n}$. Up to conjugation by a diagonal automorphism, we may assume that $1 \in F$. It immediately follows that either $V \subseteq K e r(1+\sigma)=K^{1-\sigma}, F \subseteq K_{\sigma}$ or $G={ }^{2} A_{2 n}, V, F \subseteq K_{\sigma}$.

When $\left[x_{r}(F), X_{s}\right] Q(r+s)$ does not coincide with $Q(r+s)$ and $T(r+s)$, we easily infer that s is of the first type, $r+s$ and r are not of the first type, and $F K_{\sigma}$ is a 1 -dimensional K_{σ}-module.

Using Lemma 1.1, Lemma 4.4, and (ii) we obtain the following lemma.
Lemma 4.5. Let $H \leqslant U G(K)$ and $\mathcal{L}(H)=\{r\}$. Then either $H=Q(r) \mathcal{F}(H)$ or $(\mathrm{a}) G={ }^{2} \Phi, p(\Phi)=1$, r is not of the first type, r-projection of H generates a 1-dimensional K_{σ}-module and there exists $s \in \Pi(G)$ of the first type with $r+s \in G^{+}$, or (b) $G=\Phi, p(\Phi)!K=0$ or $G={ }^{3} D_{4}, 2 K=0$.

It is well known that for $G={ }^{2} A_{2 n}$ every $s \in \Pi(G)$ is not of the first type. Using Lemmas 4.4 and 4.5 repeatedly we get the following theorem from [15].

Theorem 4.6. Let $U G(K)$ be of type B_{n}, C_{n} for $2 K=K$ or of type $A_{n},{ }^{2} A_{n}$. A subgroup H is normal if and only if for each corner r of H and $p \in \Pi(G)$ with $r+p \in G$ either
(A) $\mathcal{F}\left(\left[H, X_{p}\right]\right) Q(r+p) \subseteq H$
or $G=B_{n}$ and
(B) for some $q \in \Pi(G)$ two corners in $\left[H, X_{p}\right]$ are q-connected, two corners in $\left[H, X_{q}\right]$ are connected, and $\mathcal{F}\left(\left[H, X_{p}\right]\right) \mathcal{F}\left(\left[H, X_{q}\right]\right) Q(r+p, r+p+q) \subset H$.

For the group U of type E_{n}, the analogue of this theorem is not satisfied [25]. By [15, Theorems 3 and 5], for U of type D_{n} and ${ }^{2} D_{n}$ there exists a normal subgroup M such that the height of commutator $[[\ldots[[M, U], U] \ldots], U]$ grows unboundedly together with the grows of n, where the commutator is not generated by the root elements of M. To finish the consideration of remaining groups U in Theorem 4.1 we use the normal closures of subgroups which are similar to the subgroups from Theorem 2.1, and we get

Lemma 4.7. If $H \geqq U G(K)$ for type $D_{n}\left(\right.$ or $\left.{ }^{2} D_{n}\right)$ and $\mathcal{F}\left(\left[H, X_{p}\right]\right) \nsubseteq H$ for some $p \in \Pi(G)$ then there exist simple corners r, \bar{r} (respectively, $\zeta(r)$) and a p-connected corner in H which have the projections of order 2.

Our description of abelian normal subgroups uses a specific notation.
For every $\Psi \subseteq G^{+}$, we set $X_{\Psi}=\left\langle X_{r} \mid r \in \Psi\right\rangle$. A subset Ψ in G^{+}is called normal if $\{s\}^{+} \subseteq \Psi$ for all $s \in \Psi$, and hence $X_{\Psi} \sharp U G(K)$. By [17], a subset Ψ in Φ^{+}is called abelian if $r+s \notin \Phi$ for all $r, s \in \Psi$. Then X_{Ψ} is the direct product of some root subgroups. For $H \subseteq U G(K)$, put

$$
\begin{equation*}
\Psi(H)=\left\{r \in G^{+} \mid H \cap X_{r} \neq 1\right\} . \tag{6}
\end{equation*}
$$

Denote by $\widehat{\Psi}(H)$ the set of all corners of the elements in H, which are not in $\Psi(H)$, and also all sums in G^{+}of such corners. Thus, for the subgroup H in $U \Phi(K)$ of the shape (1) or (2) from Lemma 1.4, $\widehat{\Psi}(H)$ is $\left\{r, r^{\prime}, \rho\right\}$ or $\left\{r, r^{\prime}, r+p, r^{\prime}+p, \rho\right\}$, respectively.

Further, we use the elements $\alpha(t)$ and $\beta(t)$ from (1) and (2). By [15], for $2 K=0, U D_{n}(K)$ has a unique maximal abelian normal subgroup M_{0} possessing some simple corners r and $r^{\prime}=\bar{r}$ with $\alpha(1) \in M_{0}$ and $\widehat{\Psi}\left(M_{0}\right)=\{r\}^{+} \cup\left\{r^{\prime}\right\}^{+}$. For $n=4$ and some $p, q \in \Pi(\Phi), M_{0}$ is of the shape

$$
\begin{equation*}
\alpha(K) \beta(K)\left\{x_{r+p+q}(t) x_{r^{\prime}+p+q}(t) \mid t \in K\right\}\left(C(T(r)) \cap C\left(T\left(r^{\prime}\right)\right)\right) . \tag{7}
\end{equation*}
$$

Theorem 4.8. Let M be a maximal abelian normal subgroup of the group $U=U \Phi(K), \Psi=\Psi(M)$ and $p(\Phi)!K=K$. Then $X_{\Psi} \subseteq M$ and for $M \neq X_{\Psi}$, up to conjugation by diagonal automorphism, there are two cases:
(i) M is of the form (1) and $X_{\widehat{\psi}} \simeq U T(3, K)$;
(ii) $2 K=0, p(\Phi)=1, X_{\widehat{\psi}} \cap M$ has p-connected corners for a simple root p.

Moreover, in (ii) one of the following subcases holds:
(a) M is of the form (2) and $X_{p} X_{\widehat{\Psi}} \simeq U T(4, K)$,
(b) $U=U D_{4}(2)=X_{\widehat{\Psi}} X_{p}$,
(c) U is of type D_{n}, E_{m}, and $X_{\widehat{\psi}} \times X_{s} \simeq\left[U D_{4}(K), U D_{4}(K)\right]$ for some $s \in \Psi$,
(d) M is of the form M_{0} or (7), respectively, for types D_{n}, E_{m}.

Proof. Using Lemmas 1.2 and 4.5, we easily find that Ψ and $\Psi \cup\{r\}^{+}$are commutative normal sets in Φ^{+}for $r \in \mathcal{L}(M)$. The subgroup X_{Ψ} centralizes M, and hence $X_{\Psi} \subseteq M$. Obviously, $M=X_{\Psi}$ if
and only if Ψ is a maximal commutative normal set in Φ^{+}. Let $\widehat{\Psi}=\widehat{\Psi}(M)$. Assuming $M \neq X_{\Psi}$ we get

$$
\mathcal{L}\left(X_{\widehat{\Psi}}\right)=\mathcal{L}\left(M \cap X_{\widehat{\Psi}}\right), \quad X_{\Psi}=\bigcap_{r \in \mathcal{L}\left(X_{\widehat{\Psi}}\right)} C(T(r)), M=\left(M \cap X_{\widehat{\Psi}}\right) \times X_{\Psi \backslash(\Psi \cap \widehat{\Psi})}
$$

Each root r in $\widehat{\Psi} \backslash(\Psi \cap \widehat{\Psi})$ does not commute with at least one root of $\widehat{\Psi} \backslash(\Psi \cap \widehat{\Psi})$, since X_{r} centralizes no M. Therefore, each corner in $M \cap X_{\widehat{\psi}}$ is connected with another corner in $M \cap X_{\widehat{\psi}}$.

If there exist corners r and r^{\prime} in $M \cap X_{\widehat{\Psi}}$ which are not commuting then [$\left.M, X_{r}\right]\left[M, X_{r^{\prime}}\right] \subset M$, and the root systems from [3] give

$$
X_{\widehat{\Psi}} \simeq U T(3, K), \quad \widehat{\Psi}=\left\{r, r^{\prime}, r+r^{\prime}\right\}, \quad X_{\Psi}=C\left\{T(r) T\left(r^{\prime}\right)\right\}, \quad r+r^{\prime}=\rho \in \Psi
$$

Then, by Lemma $1.4, M$ is conjugate by a diagonal automorphism to (1).
In the other cases, for a simple root p, there exist some p-connected corners r and r^{\prime} in $M \cap X_{\widehat{\psi}}$ and $\left\{r, r^{\prime}, r+p, r^{\prime}+p, r+r^{\prime}+p\right\} \subseteq \widehat{\Psi}$ holds. If this inclusion turns into an equality then $p(\Phi)=1$, $2 K=0, M$ is reduced to the form (2), and

$$
r^{\prime}+r+p=\rho, \quad X_{p} X_{\widehat{\Psi}} \simeq U T(4, K)
$$

In the other cases, for type D_{n} and $\left|\mathcal{L}\left(X_{\widehat{\Psi}}\right)\right|=2$, we have $X_{\widehat{\Psi}}=T(r) T(\bar{r})$ by [15]. Up to conjugation by a diagonal automorphism, the subgroup M in U is of the shape (7) if U is of type E_{m}.

The case $\left|\mathcal{L}\left(X_{\widehat{\psi}}\right)\right|=3$ is possible when U is of type E_{m} and D_{n}. Then two of three corners r_{1}, r_{2}, r_{3} in $M \cap X_{\widehat{\Psi}}$ are p-connected, two of them are q-connected, and $X_{\widehat{\psi}} \times X_{s} \simeq\left[U D_{4}(K), U D_{4}(K)\right]$ for some $s \in \Psi$ and some simple roots $p, q \neq p$. In this case, M has the form

$$
\begin{equation*}
\left\{x_{r_{1}}(t) x_{r_{2}}(t) x_{r_{3}}(t) x_{r_{2}+p}(c t) \mid t \in K\right\}\left\{x_{r_{1}+p}(t) x_{r_{2}+p}(t) \mid t \in K\right\}\left\{x_{r_{1}+q}(t) x_{r_{3}+q}(t) \mid t \in K\right\} X_{\Psi} . \tag{8}
\end{equation*}
$$

In the remaining cases, for U of type D_{n}, M has three simple corners and $U=U D_{4}(2)=X_{\widehat{\Psi}} X_{q}$ (see Theorem 2.1 and [15, Theorem 5]).

We now list the maximal commutative normal sets $\Psi \subseteq \Phi$ and all subgroups (1)-(8) in U of type E_{m}. For $U E_{6}(K)$, this enumeration is given up to a graph automorphism. For a root system Φ of type E_{m} corresponding to $m=6,7$ or 8 , the Coxeter number is equal to $h=12,18$ or 30 ; moreover,

$$
Z_{k}=U_{h-k} \subseteq M \subseteq C\left(Z_{k}\right), \quad k=4,6 \text { or } 10
$$

Choose some simple roots $\alpha_{i}(1 \leqslant i \leqslant m)$ as in [3, Tables V-VII]. When M has a corner of height $\leqslant 4$, using Lemma 1.2 we infer that either U is of type E_{7} and $M=T\left(\alpha_{7}\right)$ or U is of type E_{6} and M is one of the subgroups $T\left(\alpha_{1}\right)$ and $T\left(\alpha_{6}\right)$ or $M \subseteq\left(U_{4} \cap\left(T\left(\alpha_{1}\right) T\left(\alpha_{6}\right)\right)\right) U_{5}$. We set

$$
\begin{array}{r}
a c d e \ldots f \\
\quad b
\end{array}=\left(a c[d b]^{\prime} e \ldots f\right):=a \alpha_{1}+b \alpha_{2}+c \alpha_{3}+d \alpha_{4}+e \alpha_{5}+\cdots+f \alpha_{m}
$$

A) The maximal commutative normal sets Ψ

Type $E_{6}:\left\{11[10]^{\prime} 10\right\}^{+} \cup\left\{01[21]^{\prime} 21\right\}^{+},\left\{11[10]^{\prime} 11\right\}^{+} \cup\left\{\tilde{\mu}_{4}+\alpha_{1}\right\}^{+} \cup\left\{\tilde{\mu}_{4}+\alpha_{6}\right\}^{+},\left\{\alpha_{1}\right\}^{+},\left\{\tilde{\mu}_{4}\right\}^{+}$, where $\tilde{\mu}_{4}=\left(01[21]^{\prime} 10\right)$ (the highest root of subsystem of type D_{4} with the root $\left.\alpha_{4}\right)$;

Type $E_{7}:\left\{\alpha_{7}\right\}^{+},\left\{12[32]^{\prime} 210\right\}^{+} \cup\left\{00[11]^{\prime} 111\right\}^{+},\left\{12[31]^{\prime} 210\right\}^{+} \cup\left\{01[21]^{\prime} 111\right\}^{+},\left\{12[21]^{\prime} 210\right\}^{+} \cup$ $\left\{12[21]^{\prime} 111\right\}^{+} \cup\left\{01[21]^{\prime} 211\right\}^{+}, \quad\left\{12[21]^{\prime} 110\right\}^{+} \cup\left\{01[21]^{\prime} 221\right\}^{+}, \quad\left\{11[21]^{\prime} 210\right\}^{+} \cup\left\{01[21]^{\prime} 211\right\}^{+}$, $\left\{12[21]^{\prime} 100\right\}^{+},\left\{01[21]^{\prime} 210\right\}^{+}$;

Type $E_{8}:\left\{12[32]^{\prime} 2100\right\}^{+},\left\{12[31]^{\prime} 3210\right\}^{+}, \quad\left\{12[32]^{\prime} 3210\right\}^{+} \cup\left\{12[31]^{\prime} 3211\right\}^{+}, \quad\left\{12[32]^{\prime} 2210\right\}^{+} \cup$ $\left\{12[31]^{\prime} 3321\right\}^{+},\left\{12[42]^{\prime} 3210\right\}^{+} \cup\left\{12[31]^{\prime} 2221\right\}^{+},\left\{13[42]^{\prime} 3210\right\}^{+} \cup\left\{12[21]^{\prime} 2221\right\}^{+},\left\{23[42]^{\prime} 3210\right\}^{+} \cup$ $\left\{11[21]^{\prime} 2221\right\}^{+},\left\{12[32]^{\prime} 3210\right\}^{+} \cup\left\{12[32]^{\prime} 2221\right\}^{+} \cup\left\{12[31]^{\prime} 3221\right\}^{+},\left\{01[21]^{\prime} 2221\right\}^{+}$.
B) The roots r defining the subgroup (1)

Type $E_{6}:\left(11[11]^{\prime} 00\right),\left(11[11]^{\prime} 10\right), \tilde{\mu}_{4}$;
Type $E_{7}:\left(11[10]^{\prime} 111\right),\left(12[21]^{\prime} 100\right),\left(12[21]^{\prime} 110\right),\left(11[21]^{\prime} 210\right),\left(11[21]^{\prime} 111\right),\left(11[11]^{\prime} 111\right)$;
Type $E_{8}:\left(12[32]^{\prime} 2111\right),\left(12[32]^{\prime} 2211\right),\left(12[31]^{\prime} 3211\right),\left(12[32]^{\prime} 3211\right),\left(12[21]^{\prime} 2221\right),\left(11[21]^{\prime} 2221\right)$, (01[21]'2221).
C) The pairs $\{r, p\}$ defining the subgroup (2)

Type $E_{6}:\left\{\left(11[11]^{\prime} 00\right), \alpha_{5}\right\},\left\{\left(11[11]^{\prime} 10\right), \alpha_{6}\right\},\left\{\left(11[11]^{\prime} 10\right), \alpha_{4}\right\}$;
Type $\quad E_{7}:\left\{\left(12[21]^{\prime} 100\right),\left(11[21]^{\prime} 211\right)\right\}, \quad\left\{\left(12[21]^{\prime} 110\right),\left(11[21]^{\prime} 210\right)\right\}, \quad\left\{\left(12[21]^{\prime} 110\right),\left(11[21]^{\prime} 111\right)\right\}$, $\left\{\left(11[21]^{\prime} 210\right),\left(11[21]^{\prime} 111\right)\right\},\left\{\left(12[21]^{\prime} 210\right),\left(11[11]^{\prime} 111\right)\right\},\left\{\left(12[31]^{\prime} 210\right),\left(11[10]^{\prime} 111\right)\right\}$;

Type $E_{8}:\left\{\left(12[31]^{\prime} 3221\right),\left(12[32]^{\prime} 2111\right)\right\},\left\{\left(12[31]^{\prime} 3211\right),\left(12[32]^{\prime} 2211\right)\right\},\left\{\left(12[31]^{\prime} 2221\right),\left(12[31]^{\prime} 3211\right)\right\}$, $\left\{\left(12[31]^{\prime} 2221\right),\left(12[32]^{\prime} 2211\right)\right\},\left\{\left(12[21]^{\prime} 2221\right),\left(12[32]^{\prime} 3211\right)\right\},\left\{\left(11[21]^{\prime} 2221\right),\left(12[42]^{\prime} 3211\right)\right\}$.
D) The corners $\left\{r, r^{\prime}\right\}$ defining the subgroup (7) with q-connected corners in the commutator group $\left[M, X_{p}\right]$

For types E_{6}, E_{7}, and E_{8} such corners are $\left\{(11[10] 10),\left(01[10]^{\prime} 11\right)\right\},\left\{\left(01[21]^{\prime} 210\right),\left(01[21]^{\prime} 111\right)\right\}$, and $\left\{\left(12[31]^{\prime} 3210\right),\left(12[32]^{\prime} 2210\right)\right\}$, respectively.
E) The pairwise p-connected or q-connected corners $\left\{r_{1}, r_{2}, r_{3}\right\}$ of the subgroup (8)

Type $E_{8}:\left\{\left(12[31]^{\prime} 2221\right),\left(12[31]^{\prime} 3211\right),\left(12[32]^{\prime} 2211\right)\right\}$;
Type $E_{7}:\left\{\left(12[21]^{\prime} 110\right),\left(11[21]^{\prime} 210\right),\left(11[21]^{\prime} 111\right)\right\}$;
Type $E_{6}:\left\{\left(11[11]^{\prime} 10\right), \tilde{\mu}_{4},\left(01[11]^{\prime} 11\right)\right\}$.

5. The groups U of types $F_{4},{ }^{2} F_{4}$ and ${ }^{2} E_{6}$

For the root system Φ of type F_{4}, we need notation from [13].
By [3, Tables I-IV] and [13], the positive roots of systems of types $A_{n-1}, B_{n}, C_{n}, B C_{n}$, and D_{n} may be written as

$$
\varepsilon_{i}-m \varepsilon_{j}=p_{i, m j}, \quad 1 \leqslant j \leqslant i \leqslant n, m=0,1,-1
$$

Set $T_{i v}=T\left(p_{i v}\right)$ for exception the case $T_{i 1}=T\left(p_{i,-1}\right) T\left(p_{i 1}\right)$ for type D_{n}. If $U G(K)$ is a group of classical type distinct from A_{n} then, by [13, Lemma $6(\mathrm{II})$], the centralizer $C\left(T_{i v}\right)$ in $U G(K)$ coincides with $T_{1,-v-1}$, when either $i<n$ or $G={ }^{2} A_{m}$ or $2 K=K, G=C_{n}$; in the remaining cases, we have $C\left(T_{n v}\right)=T_{1,-v-1} T_{n n-1}$.

Let $C_{n}^{+}=\left\{p_{i v}|0<|v| \leqslant i \leqslant n, v \neq i\}\right.$, as above. For type B_{n}, we set $\varepsilon_{i}-m \varepsilon_{j}=q_{i, m j}$. By analogy with [13], we represent the positive system F_{4}^{+}as the union $C_{4}^{+} \cup B_{4}^{+}$with the given intersection

$$
B_{4}^{+} \cap C_{4}^{+}=\left\{q_{i 0}, p_{i,-i}(1 \leqslant i \leqslant 4)\right\}, \quad B_{4}^{+}=\left\{q_{i j}|0 \leqslant|j|<i \leqslant 4\}\right.
$$

Also, we use the following diagram from [13]. (The roots are accompanied by the notation (abcd) from [3, Table VIII].) The substitution ${ }^{-}: \Phi \mapsto \Phi$ is defined by the simple rule: $\bar{p}_{i j}=q_{i j}, \bar{q}_{i j}=p_{i j}$ $(1 \leqslant|j|<i \leqslant 4)$.

Consider the "root elements" of $U^{2} F_{4}(K)$, cf. Section 1. Let $r=q_{i j}$. Put $R_{i j}(t)=x_{r}(t) x_{\bar{r}}(\bar{t})$ if either $(i, j)=(2,-1),(3,2),(3,-2)$ or $i=4, j \in\{-3,-2,-1,1,2\}$. When $(i, j)=(2,1),(3,1),(3,-1)$ or $(4,3)$, according to [4], $\{r, \bar{r}, r+\bar{r}, r+2 \bar{r}\}$ is a class of type B_{2} and we set

$$
R_{i j}(t)=x_{\bar{r}}(\bar{t}) x_{r}(t) x_{r+\bar{r}}(t \bar{t}) \quad(t \in K) .
$$

By [13, § $4(\mathrm{I})], U_{k}$ in $U^{2} F_{4}(K)$ is generated by the elements $R_{i j}(t)$ corresponding to the columns with number $\geqslant k$ in the following table:

$$
\begin{array}{cccccccc}
R_{21} & R_{2,-1} & R_{3,-1} & R_{3,-2} & & & & \\
R_{32} & R_{31} & R_{43} & R_{42} & R_{41} & R_{4,-1} & R_{4,-2} & R_{4,-3} .
\end{array}
$$

Recall that the system ${ }^{2} \Phi$ of type ${ }^{2} E_{6}$ is associated with a root system of type F_{4}. Choose the following subgroups in $U F_{4}(K)$ and $U^{2} E_{6}(K)$ with $F=K$ and $F=K_{\sigma}$, respectively:

$$
\begin{gather*}
T\left(q_{43}\right) U_{6}, \quad T\left(p_{4,-1}\right) T\left(q_{3,-2}\right), \quad T\left(p_{4,-1}\right)\left\{x_{q_{3,-2}}(t) x_{q_{42}}(t) \mid t \in F\right\} ; \tag{9}\\
T\left(p_{42}\right) X_{q_{43}}, \quad T\left(p_{42}\right) X_{p_{43}}, \quad T\left(p_{3,-2}\right), \quad T\left(p_{3,-2}\right)^{\tau}, \quad T\left(q_{3,-2}\right) X_{p_{41}} X_{p_{3,-2}} ; \tag{10}\\
\left\{x_{p_{3,-2}}(t) x_{p_{42}}(t) \mid t \in K\right\} S, \quad S=T\left(q_{43}\right) T\left(p_{41}\right) \text { or } T\left(q_{3,-2}\right) X_{p_{41}} ; \tag{11}\\
\left\{x_{q_{3,-2}}(t) x_{q_{42}}(t) \mid t \in K\right\} T\left(p_{4,-1}\right) X_{p_{41}} S, \quad S=X_{p_{43}} X_{p_{42}} \text { or } X_{p_{3,-2}} ; \tag{12}\\
\left\{x_{p_{43}}(1) x_{q_{43}}(d)\right\rangle T\left(p_{42}\right) \quad\left(d \in K^{*}\right) ; \tag{13}\\
{\left[\left\langle x_{p_{3,-2}}(t) x_{p_{42}}(t) \mid t \in K\right\rangle \times\left\langle x_{q_{3,-2}}(t) x_{q_{42}}(d t) \mid t \in K\right\rangle\right] T\left(p_{4,-1}\right) X_{p_{41}} .} \tag{14}
\end{gather*}
$$

The main theorem of this section is the following one.
Theorem 5.1. Up to conjugation by a diagonal automorphism, the maximal abelian normal subgroups in $U F_{4}(K)$ and $U^{2} E_{6}(K)$ are exhausted by the subgroups (9) for $2 K=K$; when $2 K=0$, they are exhausted by the subgroups (10)-(14) and, respectively, by (9), $\left(T\left(p_{3,-2}\right) \cap E_{6}\left(K_{\sigma}\right)\right) U_{7}$, and

$$
\begin{equation*}
\left\{x_{p_{41}}(t) x_{p_{4,-1}}(f t) \mid t \in F\right\} x_{p_{4,-1}}\left(K_{\sigma}\right) T\left(q_{43}\right) U_{7} \quad\left(f \in K \backslash K_{\sigma}\right) . \tag{15}
\end{equation*}
$$

In $U^{2} F_{4}(K)$, they are exhausted by the subgroups

$$
\begin{equation*}
\left\langle R_{43}(1)\right\rangle R_{42}(K) U_{5}, \quad\left\{R_{3,-2}(t) R_{42}(c t) \mid t \in K\right\} U_{5} \quad(c \in K) . \tag{16}
\end{equation*}
$$

Proof. Note that if the roots r, s, and $r+s$ from F_{4}^{+}do not lie simultaneously in one of the subsystems B_{4}^{+}or C_{4}^{+}then they lie in one of the following subsystems of type B_{2}^{+}:

$$
\begin{gathered}
\left\{p_{3,-v}, q_{3,2 v}, p_{4,2 v}, q_{4 v}\right\}, \quad\left\{p_{3,2 v}, q_{3,-v}, p_{4 v}, q_{4,2 v}\right\}, \\
\left\{p_{3 v}, q_{3 v}, p_{4,2 v}, q_{4,2 v}\right\}, \quad\left\{p_{3,2 v}, q_{3,-2 v}, p_{4,-v}, q_{4 v}\right\}, \quad|v|=1 .
\end{gathered}
$$

Also we have $U^{2} E_{6}(K)=\left\langle x_{p_{i v}}(K), x_{q_{i v}}\left(K_{\sigma}\right)(1 \leqslant|v|<i \leqslant 4)\right\rangle$.
Consider an arbitrary maximal abelian normal subgroup M in U of type F_{4} and ${ }^{2} E_{6}$. When p_{41}-projection of M is zero, we get

$$
T\left(q_{3,-2}\right) T\left(q_{43}\right) \supset M=C(M) \supset C\left(T\left(q_{3,-2}\right) T\left(q_{43}\right)\right) \supseteq T\left(p_{4,-1}\right) .
$$

Let $F=K$ or $F=K_{\sigma}$ as in the theorem. Since $X_{q_{42}} X_{q_{3,-2}} X_{q_{4,-3}} \simeq U T(3, K)$ by Lemma 1.4, we obtain the subgroups (9).

Further, we may assume that the p_{41}-projection in M is non-zero. Then the p_{41}-projection P of the intersection $M \cap U_{5}$ is also non-zero because of $M \geqq U$. Up to conjugation of M by a diagonal automorphism, we have $1 \in P$. Commuting $M \cap U_{5}$ firstly with $T\left(p_{1,-1}\right)$ and then with U, we find the subgroup $x_{p_{4,-1}}(F P) T\left(p_{4,-2}\right)$ in M (see the diagram). Since the centralizer of this subgroup coincides with $T\left(p_{2,-1}\right)$, we obtain $M \subseteq T\left(p_{2,-1}\right)$ and $2 K=0$, because of the equality $\left[x_{p_{4,-1}}(F P), M \cap U_{5}\right]=1$. Thus, if $2 K=K$ then M is one of the subgroups (9).

Note that $U^{2} E_{6}(K) \cap E_{6}\left(K_{\sigma}\right) \simeq U F_{4}\left(K_{\sigma}\right)$. For type ${ }^{2} E_{6}$ we also infer that the K_{σ}-module $F P$ is one-dimensional, and $1 \in P \subseteq K_{\sigma}$. The $p_{4,-1}$-projection of the subgroup $M \cap\left(T\left(p_{4,-1}\right) T\left(q_{43}\right)\right)$ is
contained in K_{σ}, since M is an abelian subgroup. Taking into account the normality of M, we obtain

$$
T\left(p_{3,-2}\right) \supseteq M \supseteq C\left(T\left(p_{3,-2}\right)\right), \quad M \cap T\left(p_{41}\right)=\alpha(P) x_{p_{4,-1}}\left(K_{\sigma}\right) T\left(q_{42}\right) U_{7}
$$

where $\alpha(t)=x_{p_{41}}(t) x_{p_{4,-1}}(\tilde{t})$ for a suitable mapping ${ }^{\sim}: P \rightarrow K$. Set $f=\tilde{1}$ and $t_{0}=\tilde{t}+f t$. Using $[\alpha(t), \alpha(1)]=1$ we find

$$
\tilde{t}+\overline{\tilde{t}}+f \bar{t}+\bar{f} t=0, \quad t_{0}=\bar{t}_{0}, \quad \tilde{t}=t_{0}+f t \in f t+K_{\sigma} \quad(t \in P) .
$$

Clearly, $\left(T\left(p_{3,-2}\right) \cap E_{6}\left(K_{\sigma}\right)\right) U_{7}$ is an abelian normal subgroup. Consequently, if the $p_{3,-2}$-projection in M is zero then we have $f \in K \backslash K_{\sigma}$. Therefore, $P=K_{\sigma}$, and M is the second subgroup in (15). Similarly

$$
M=\beta(P) x_{p_{41}}\left(K_{\sigma}\right) x_{p_{4,-1}}\left(K_{\sigma}\right) T\left(q_{42}\right) U_{7}, \quad \beta(t)=x_{p_{3,-2}}(t) x_{p_{4,-1}}(f t)
$$

in the case when M has the corner $p_{3,-2}$. But in the latter case the condition $[\beta(t), \beta(1)]=1$ gives $f \bar{t}+\bar{f} t=0(t \in P)$. Therefore, $f \in K_{\sigma}$, and M coincides with the subgroup $\left(T\left(p_{3,-2}\right) \cap E_{6}\left(K_{\sigma}\right)\right) U_{7}$.

In $U F_{4}(K)$, the subgroup $X_{p_{41}} T\left(p_{4,-1}\right)$ centralizes U_{5}. Using the normality of M, we also find the corner p_{41} of the intersection $M \cap T\left(p_{41}\right)$ for the case $M \nsubseteq U_{5}$. Therefore, the $p_{2,-1}$-projection and $p_{3,-1}$-projection in M are zero, i.e., $M \subseteq T\left(p_{43}\right) T\left(q_{2,-1}\right)$. If either the $q_{2,-1}$-projection or the $q_{3,-1}$-projection in M is non-zero then $M \cap T\left(q_{41}\right)$ has the corner q_{41}, and $M \cap T\left(q_{41}\right)$ does not centralize M, a contradiction. It follows that

$$
T\left(p_{4,-1}\right) X_{p_{41}} \subseteq M \subseteq X_{p_{43}} T\left(p_{42}\right) T\left(p_{3,-2}\right) T\left(q_{3,-2}\right)
$$

Since $1=\left[\left[M, T\left(q_{32}\right)\right], M\right]$, the $q_{3,-2}$-projection should be zero if the q_{43}-projection in M is nonzero. Similarly, the $p_{3,-2}$-projection in M is zero if the p_{43}-projection is non-zero. For the center Z of U, the subgroup $B=X_{p_{43}} X_{q 43} Z$ has a direct complement D in $X_{p_{43}} X_{q 43} T\left(p_{42}\right)$, and

$$
Z \times D=T\left(p_{42}\right) \subseteq M \subseteq B \times D, \quad M=(M \cap B) \times D, \quad B \simeq U B_{2}(K) .
$$

If p_{43} and q_{43} are corners in M then they are connected. By [15, Theorem 5], the projections on these corners have order 2. Thus, $M \cap B$ is a maximal abelian normal subgroup in B, and M is the subgroup (13).

The other cases for the non-zero p_{43}-projection or q_{43}-projection give one of the subgroups $T\left(p_{3,-2}\right), T\left(q_{3,-2}\right) X_{p_{43}} X_{p_{42}} X_{p_{41}}$ (i.e., $T\left(p_{3,-2}\right)^{\tau}$, when K is perfect and hence there exists a graph automorphism), $T\left(p_{42}\right) X_{q_{43}}, T\left(p_{42}\right) X_{p_{43}}$ and the first of subgroups in (11) and (12). If $M \subseteq$ $T\left(p_{42}\right) T\left(p_{3,-2}\right)$ then M coincides with one of $T\left(p_{3,-2}\right), T\left(p_{42}\right) T\left(q_{43}\right)$ or (11).

Considering the subgroups M with the corners $p_{3,-2}$ and $q_{3,-2}$ we get the subgroups $T\left(q_{3,-2}\right) X_{p_{41}} X_{p_{3,-2}}$, (14) and the remaining subgroups in (11) and (12).

By Lemma 1.3 every normal subgroup in $U^{2} F_{4}(K)$ is incident with the abelian normal subgroup $Z_{4}=U_{5}$. Therefore,

$$
Z_{4}=U_{5} \subseteq M \subseteq C\left(Z_{4}\right)=R_{43}(K) Z_{5}
$$

The defining relations for the twisted group $U^{2} F_{4}(K)$ in terms of generators $R_{i v}(t)(t \in K)$ were described in [13, Lemma 4]. In particular,

$$
\left[R_{43}(a), R_{3 v}(b)\right]=R_{4 v}(a b) \quad(|v| \leqslant 2), \quad\left[R_{4 v}(a), R_{3,-v}(b)\right]=R_{4,-3}(a b) \quad(v= \pm 2)
$$

Also, we obtain the isomorphic embeddings $t \rightarrow R_{i v}(t)$ of the additive group K^{+}into $R_{i v}(K)$ for all (i, v) such that $(i, v) \notin\{(2,1),(4,3),(3,1),(3,-1)\}$. For the remaining cases, using the representation (5), we get the following isomorphic embeddings of the group $U^{2} B_{2}(K)$ into $U^{2} F_{4}(K)$:

$$
(t, u) \rightarrow R_{i v}(t) R_{i,-v}(u) \quad((i, v)=(2,1),(4,3)), \quad(t, u) \rightarrow R_{3 v}(t) R_{4,2 v}(u) \quad(|v|=1)
$$

The subgroup $T\left(R_{42}\right)$ centralizes $R_{43}(K) T\left(R_{42}\right)$. For $M \subseteq Z_{5}$, the isomorphism

$$
R_{42}(K) R_{3,-2}(K) R_{4,-3}(K) \simeq U T(3, K)
$$

and Lemma 1.4 give the equality $M=\left\{R_{3,-2}(t) R_{42}(t d) \mid t \in K\right\} Z_{4}$ for a fixed $d \in K$.
Let $M_{i v}$ be an $R_{i v}$-projection of M. Since

$$
1=\left[M,\left[M, R_{32}(1)\right]\right]=\left[M, R_{42}\left(M_{43}\right)\right]=R_{4,-3}\left(M_{3,-2} M_{43}\right)
$$

we get $M_{3,-2} M_{43}=0$. If $M_{3,-2}=0$ and hence $M \subseteq T\left(R_{43}\right)$ then the description of the abelian normal subgroups in $U^{2} B_{2}(K)$ implies $M=T\left(R_{42}\right)\langle\alpha\rangle$ for an arbitrary $\alpha \in T\left(R_{43}\right) \backslash T\left(R_{42}\right)$. Thus, Theorem 5.1 is proved.

6. Some large \mathcal{P}-subgroups

In this section, we consider some application to the problem (1.6) from [7] of description of the large abelian and normal large abelian subgroups in a finite group U of exceptional Lie type. Under notation of Theorems 3.1, 4.8 and 5.1, as a consequence, we obtain

Theorem 6.1. Let $U=U G(K)$ for a finite field K. Then the large normal abelian subgroups in U are the following:
(a) $T\left(\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}+3 \alpha_{4}+2 \alpha_{5}+\alpha_{6}\right)$ in $U E_{8}(K), T\left(\alpha_{1}\right)$ and $T\left(\alpha_{6}\right)$ in $U E_{6}(K), T\left(\alpha_{7}\right)$ in $U E_{7}(K)$;
(b) $\langle\gamma\rangle U_{2}\left(\gamma \in U \backslash U_{2}\right)$ for $G={ }^{2} B_{2},\left\langle R_{43}(c)\right\rangle R_{42}(K) U_{5}(c \neq 0)$ for $G={ }^{2} F_{4}$;
(c) $T\left(q_{43}\right) U_{6}$ for $2 K=K, G=F_{4}$ or ${ }^{2} E_{6}$;
(d) U_{3} in $U G_{2}(K)$ for $6 K=K$ and in $U^{3} D_{4}(K)$ for $2 K=K$;
(e) U_{2} for $3 K=0, G=G_{2}$ or ${ }^{2} G_{2},\langle\alpha\rangle \times\left\langle\beta_{1}(1)\right\rangle$ in $U G_{2}(2)$, and U_{3} and $\beta_{c}(K) U_{4}(c \in K)$ in $U G_{2}(K)$ for $2 K=0,|K|>2$;
(f) when $2 K=0$, up to conjugation by a diagonal automorphism,

$$
\begin{gather*}
\left(T\left(p_{3,-2}\right) \cap E_{6}\left(K_{\sigma}\right)\right) U_{7} \quad \text { in } U^{2} E_{6}(K), \tag{17}\\
\beta_{c}\left(K_{\sigma}\right) x_{2 a+b}\left(K^{1+\sigma}\right) \cdot U_{4} \quad(c \in K) \quad \text { and } \quad U_{3} \quad \text { in } U^{3} D_{4}(K) \text { for }\left|K_{\sigma}\right|>2, \\
\langle\alpha\rangle \times\left\langle\beta_{1}(1)\right\rangle \times x_{2 a+b}\left(K^{1+\sigma}\right) \quad \text { in } U^{3} D_{4}(8), \tag{18}\\
T\left(p_{3,-2}\right)^{\tau}, \quad X_{p_{43}} T\left(p_{42}\right), \quad X_{p_{43}} X_{p_{42} X_{p_{41}}\left\{x_{q_{3,-2}}(t) x_{q_{42}}(t) \mid t \in K\right\} T\left(p_{4,-1}\right),}^{T\left(p_{3,-2}\right), \quad X_{q_{43}} T\left(p_{42}\right), \quad\left\{x_{p_{3,-2}}(t) x_{p_{42}}(t) \mid t \in K\right\} X_{q_{43}} T\left(p_{41}\right)}
\end{gather*}
$$

and, in addition, $\left\langle x_{p_{43}}(1) x_{q_{43}}(1)\right\rangle T\left(p_{42}\right)$ for $|K|=2$ in $U F_{4}(K)$.
Now we show that the large normal abelian subgroups in U are large abelian subgroups.
In general, a large normal \mathcal{P}-subgroup of a finite group is not a normal large \mathcal{P}-subgroup. In fact, the center of $S L(n, K)$ is a large normal cyclic subgroup but this group has no a normal large cyclic subgroup.

We have to prove the inequality $\mathbf{a}(U) \leqslant \mathbf{b}(U)$, where $\mathbf{a}(U)$ (and $\mathbf{b}(U)$) is the largest order of all (respectively, normal) abelian subgroups in U. This fact is well known for the groups of Lie type of
rank 1 or of classical type, [7] and [16]. Theorem 6.1 explicitly gives the number $\mathbf{b}(U)$ for every U of exceptional Lie type.

Further, we use the notion of a regular ordering of roots, which agrees with the height function on roots [4, Lemma 5.3.1]. Taking into account the representation ζ in Section 1 we may use similar ordering for the twisted system.

Now, in the canonical decomposition of every $\alpha \in U=U G(K)$, the first non-unit cofactor corresponds to the first corner in α. Evidently, if $M \subseteq U$ then for every corner r in M the r-projection $F_{M}(r)$ of M does not depend on the choice of ordering in G. The following lemma is immediate.

Lemma 6.2. Let M be a subgroup in $U G(K)$, and let $\mathcal{L}_{1}(M)$ be the set of first corners of all elements in M. Then $|M|=\prod_{r \in \mathcal{L}_{1}(M)}\left|F_{M}(r)\right|$.

By Lemma 1.1, a subgroup X_{Ψ} in $U \Phi(K)$ (with $p(\Phi)!K=K$) is abelian if and only if Ψ is an abelian subset in Φ^{+}, and hence $\left\{e_{r} \mid r \in \Psi\right\}$ is a basis for an abelian subalgebra in $N \Phi(K)$. According to E.P. Vdovin [26], a subset Ψ of Φ^{+}is said to be p-abelian if in the algebra $N \Phi(K)$ over a field K of characteristic p we have $e_{r} * e_{s}=0$ for all $r, s \in \Psi$. For $p(\Phi)!K=K$, this gives $r+s \notin \Psi$, i.e., Ψ is an abelian subset. Clearly, every abelian subset in Φ^{+}is always p-abelian for every prime p. The largest order of abelian and p-abelian subsets in Φ^{+}is denoted by $\mathbf{a}(\Phi)$ and $\mathbf{a}(\Phi, p)$, respectively.

An application of the first corner of the elements in U and Lemma 6.2 give a simplified proof of the following statement (see [26, § 2]).

Lemma 6.3. Let A be an abelian subgroup in $U \Phi(K)$. Then $\mathcal{L}_{1}(A)$ is a p-abelian subset in Φ^{+}, and $|A| \leqslant|K|^{\mathbf{a}(\Phi, p)}$.
A.I. Mal'tsev [17] described the abelian subsets of largest order in Φ^{+}. His description shows that there exists a normal abelian subset ψ of order $\mathbf{a}(\Phi)$. For $U \Phi(K)$ with $p(\Phi)!K=K, X_{\Psi}$ is a normal large abelian subgroup of order $|K|^{\mathbf{a}(\Phi)}$, and hence $\mathbf{a}(U)=\mathbf{b}(U)=|K|^{\mathbf{a}(\Phi)}$.

Analogously, if $p(\Phi)=$ char $K=p \geqslant 2$ then there exists a normal p-abelian subset Ψ in Φ^{+}of order $\mathbf{a}(\Phi, p)$ and $\mathbf{a}(U)=\mathbf{b}(U)=|K|^{\mathbf{a}(\Phi, p)}$. For type C_{n}, this result follows from the description in [2]. By E.P. Vdovin [26], for types G_{2} and F_{4} we get, respectively,

$$
X_{\Psi}=U_{2}, \quad \mathbf{a}(\Phi, 3)=4, \quad \text { and } \quad X_{\Psi}=T\left(p_{3,-2}\right), \quad \mathbf{a}(\Phi, 2)=11 .
$$

Also, if Φ is of type G_{2} then $\{a, a+b, 3 a+b, 3 a+2 b\}$ is a unique 2 -abelian subset in Φ^{+}of order >3 and $a(\Phi, 2)=4$. Every abelian subgroup A in $U G_{2}(K)(2 K=0)$ either is of order $|A| \leqslant\left|U_{3}\right|=|K|^{3}$ or

$$
\begin{equation*}
A=\left\langle x_{a}(t) x_{2 a+b}(s t), x_{a+b}(s) x_{2 a+b}(s t)\right| U_{4} \quad\left(s, t \in K^{*}\right),|A|=4 \cdot|K|^{2} . \tag{19}
\end{equation*}
$$

The subgroup (19) is of order $\geqslant|K|^{3}$ if and only if $|K|=2$ or 4 . If this inequality is strict then $|K|=2$ and (19) is a normal subgroup. Therefore, $\mathbf{a}(U)=\mathbf{b}(U)$ holds for all $U \Phi(K)$.

The same holds for the groups U of type ${ }^{2} F_{4},{ }^{2} B_{2}$, and ${ }^{2} G_{2}$, since a corner projection of every their root set X_{r} coincides with K.

For the remaining groups $U^{m} \Phi(K)$ of type ${ }^{3} D_{4}$ and ${ }^{2} E_{6}$, E.P. Vdovin [26] suggested to use the description from [17] of abelian subsets in Φ of type D_{4} and E_{6}. Simplifying this approach, we use a description of p-abelian subsets of the associated root systems $\zeta(\Phi)$.

Consider U of type ${ }^{2} E_{6}$ in detail. Then $\zeta(\Phi)$ is of type F_{4}, and $U \cap U E_{6}\left(K_{\sigma}\right) \simeq U F_{4}\left(K_{\sigma}\right)$. Let A be an arbitrary large abelian subgroup in U. By Lemma 4.4, if $\left|F_{A}(r)\right|>\left|K_{\sigma}\right|$ for some root $r \in \mathcal{L}_{1}(A)$ then $r+s \notin \mathcal{L}_{1}(A)$ for all $s \in \mathcal{L}_{1}(A)$. For $2 K=K$, according to Lemma 6.3, $\mathcal{L}_{1}(A)$ is an abelian subset in $\zeta(\Phi)^{+}$of order $\leqslant \mathbf{a}(\zeta(\Phi))=9$. By [17], $\mathcal{L}_{1}(A)$ doesn't contain more than six classes of every fixed type, and also it doesn't contain more than three classes of type $A_{1} \times A_{1}$, i.e., $\mathcal{L}_{1}(A)$ possesses no the roots $p_{i v}$ with $1 \leqslant|v|<i$ in the diagram of Section 5. By Lemma 6.2, we obtain

$$
\mathbf{a}(U)=|A| \leqslant\left|K_{\sigma}\right|^{6} \cdot|K|^{3}=\left|K_{\sigma}\right|^{12}=\mathbf{b}(U)
$$

If $2 K=0$ then $\mathcal{L}_{1}(A)$ is a 2-abelian subset, and $\left|\mathcal{L}_{1}(A)\right| \leqslant \mathbf{a}(\zeta(\Phi), 2)=11$. Also, the description from [26] and Lemma 4.4 show that the number of all $r \in \mathcal{L}_{1}(A)$ with $\left|F_{A}(r)\right|>\left|K_{\sigma}\right|$ is less than 3. Since the number $\mathbf{b}(U)$ coincides with the order $\left|K_{\sigma}\right|^{13}$ of the abelian normal subgroup (17), we get

$$
\mathbf{a}(U)=|A| \leqslant|K|^{2} \cdot\left|K_{\sigma}\right|^{9}=\left|K_{\sigma}\right|^{13}=\mathbf{b}(U)
$$

Thus, $\mathbf{a}(U)=\mathbf{b}(U)$ holds for all U. We arrived at the following

Theorem 6.4. Let $U=U G(K)$ for a finite field K. Then a subgroup in U is a large normal abelian subgroup if and only if it is a normal large abelian subgroup.

Remark. For the groups $U G_{2}(2), U^{3} D_{4}(8)$, and $U^{2} E_{6}(K)$ with $2 K=0$, Theorem 6.4 allows us to refine the values $\mathbf{a}(U)$, which by [26] might be $2^{3}, 2^{5}$ or $\left|K_{\sigma}\right|^{12}$, respectively. The subgroups (19), (18) and (17) of orders $2^{4}, 2^{6}$ and $\left|K_{\sigma}\right|^{13}$, respectively, were omitted in [26].

Now it is easy to show that if all normal large abelian subgroups in a finite group U are extremal then all large abelian subgroups in U are normal. We note that for every finite group G of Lie type the authors have the proof of the following theorem. (See also [16, Theorem 4] for the classical types [24], and the question in $[6, \S 1]$.)

Theorem 6.5. In every finite group U, either each large abelian subgroup is G-conjugate to a normal subgroup in U or G is of type $G_{2},{ }^{3} D_{4}, F_{4}$ or ${ }^{2} E_{6}$.

References

[1] M.J.J. Barry, Large Abelian subgroups of Chevalley groups, J. Austral. Math. Soc. Ser. A 27 (1) (1979) 59-87.
[2] M.J.J. Barry, W.J. Wong, Abelian 2-subgroups of finite symplectic groups in characteristic 2, J. Austral. Math. Soc. Ser. A 33 (3) (1982) 345-350.
[3] N. Bourbaki, Groupes et algebres de Lie, Chapt. IV-VI, Hermann, Paris, 1968.
[4] R. Carter, Simple Groups of Lie Type, Wiley and Sons, New York, 1972.
[5] J. Gibbs, Automorphisms of certain unipotent groups, J. Algebra 14 (1970) 203-228.
[6] C.K. Gupta, V.M. Levchuk, Yu.Yu. Ushakov, Hypercentral and monic automorphisms of classical algebras, rings and groups, J. Siberian Federal Univ. Math. Phys. 1 (2008) 380-390.
[7] A.S. Kondratiev, Subgroups of finite Chevalley groups, Uspekhi Mat. Nauk 41 (1986) 65-118.
[8] F. Kuzucuoglu, V.M. Levchuk, The automorphism group of certain radical matrix rings, J. Algebra 243 (2) (2001) 473-485.
[9] F. Kuzucuoglu, V.M. Levchuk, Isomorphism of certain locally nilpotent finitary groups and associated rings, Acta Appl. Math. 82 (2) (2004) 169-181.
[10] V.M. Levchuk, Relation of the unitriangle group to certain rings, Algebra Logic 15 (1976) 348-360.
[11] V.M. Levchuk, Parabolic subgroups of some ABA-groups, Mat. Zametki 31 (4) (1982) 509-525.
[12] V.M. Levchuk, Chevalley groups and their unipotent subgroups, Contemp. Math. 131 (Part 1) (1992) 227-242.
[13] V.M. Levchuk, Automorphisms of unipotent subgroups of Chevalley groups, Algebra Logic 29 (1990) 97-112 (I), 211 224 (II).
[14] V.M. Levchuk, Hypercentral series and paired intersections of Sylow subgroups of Chevalley groups, Algebra Logic 41 (2002) 400-408.
[15] V.M. Levchuk, G.S. Suleimanova, The normal structure of unipotent subgroups in Lie-type groups and related questions, Dokl. Math. 77 (2008) 284-287.
[16] V.M. Levchuk, G.S. Suleimanova, Automorphisms and normal structure of unipotent subgroups of finitary Chevalley groups, Proc. Steklov Inst. Math. 3 (Suppl.) (2009) 118-127.
[17] A.I. Mal’tsev, Commutative subalgebras in semisimple Lie algebras, Izv. Akad. Nauk SSSR. Ser. Mat. 8 (1945) 291-300.
[18] C. Parker, P. Rowley, Extremal subgroups in Chevalley groups, J. Lond. Math. Soc. 55 (1997) 387-399.
[19] C. Parker, P. Rowley, Extremal subgroups in twisted Lie type groups, J. Reine Angew. Math. 498 (1998) 135-152.
[20] C. Parker, P. Rowley, Unique node extremal subgroups in Chevalley groups, Comm. Algebra 31 (2003) 3471-3486.
[21] C. Parker, P. Rowley, Symplectic Amalgams, Springer Monogr. Math., Springer-Verlag London, Ltd., London, 2002.
[22] J.-P. Serre, Algebres de Lie semi-simple complexes, Benjamin, New York, Amsterdam, 1966.
[23] R. Steinberg, Lections on Chevalley Groups, Yale University, 1967.
[24] G.S. Suleimanova, On a conjugacy in a Chevalley group of large abelian subgroups of the unipotent subgroup, J. Math. Sci. 169 (5) (2010) 696-794.
[25] G.S. Suleimanova, V.V. Yakoby, The normal structure of the unipotent subgroup of a Chevalley group of type E_{6}, E_{7}, E_{8}, J. Siberian Federal Univ. Math. Phys. 1 (2008) 152-157.
[26] E.P. Vdovin, Large abelian unipotent subgroups of finite Chevalley groups, Algebra Logic 40 (2001) 292-305.
[27] A.J. Weir, Sylow p-subgroups of the general linear group over finite fields of characteristic p, Proc. Amer. Math. Soc. 6 (1955) 454-464.
[28] W.J. Wong, Abelian unipotent subgroups of finite orthogonal groups, J. Austral. Math. Soc. Ser. A 32 (1982) 223-245.
[29] W.J. Wong, Abelian unipotent subgroups of finite unitary and symplectic groups, J. Austral. Math. Soc. Ser. A 33 (1982) 331-344.

[^0]: The authors were supported by the Russian Foundation for Basic Research (project 09-01-00717).

 * Corresponding author.

 E-mail addresses: levchuk@lan.krasu.ru (V.M. Levchuk), suleymanova@list.ru (G.S. Suleimanova).
 0021-8693/\$ - see front matter © 2011 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2011.10.025

