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Introduction

Let G be a group of Lie type over a field K, and let U be the unipotent radical of a Borel subgroup
in G. The present paper is devoted to studying certain abelian normal subgroups in U and some
related problems.

The study of these questions has been under active investigation since 1970s. ]J. Gibbs [5] de-
scribed the lower and upper central series, the characteristic subgroups and the automorphisms of U
with char K # 2,3. A description for an arbitrary field K was completed in [13], and it solves the
problem (1.5) from [7]. The approach of [13] uses a description of maximal abelian normal subgroups
of the unitriangular group and close structural connections of U and its associated Lie ring, cf. [10,12,
8,9,16].

The theorems announced in [15] and Theorems 4.1 and 4.6 about the normal structure use the
concept of corners of subsets in U (for notation see Section 1). Thus, the extremal subgroups from [18]
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are the normal abelian subgroups in U with a simple corner. For the application to symplectic amal-
gams [21] and the revision of the classification of finite simple groups, C. Parker and P. Rowley
studied the groups U with an extremal subgroup and the possible simple corners of such a sub-
group [18-20].

Theorems 3.1, 4.8 and 5.1 of the present paper and [15, Theorem 5] (for the classical types)
describe all maximal abelian normal subgroups in U. Therefore, we have a new solution to the Parker-
Rowley problem. Theorem 2.1 gives a clarification of some assertions from [18,19] when U is of type
D4 and 2Dg,.

In Section 6 we consider an application to description of the large abelian and normal large abelian
subgroups in the finite groups U. For the exceptional types, this problem was pointed out in A.S. Kon-
dratiev’s survey [7, Problem (1.6)] (for the classical types, see [1,2,28,29]). Using a computer approach
as well as a generalization of A.I. Mal'tsev’s method [17], E.P. Vdovin [26, Table 4] determined the
orders of large abelian subgroups of U.

Given a group-theoretic property P, we recall that every P-subgroup of largest order in a finite
group is a large P-subgroup. Theorem 6.1 and [16, Table 2] (for the classical types) give the list of
all large normal abelian subgroups in the finite groups U. Using the approach of [17] and [26] we
show that the identical list gives the normal large abelian subgroups (Theorem 6.4). (In general, there
exists a large normal P-subgroup, which is not a large PP-subgroup, cf. Section 6.) It allows us to
clarify some orders of large abelian subgroups in U which were found in [26, Table 4], cf. Remark in
Section 6.

Finally, in Section 6 we show that either each large abelian subgroup in U is G-conjugate to
a normal subgroup in U or G is of certain exceptional type and there exists a normal large abelian
subgroup in U which is not extremal.

1. Preliminary remarks and notation

Along with the usual notation of [22,4,23] we use notation from [13], which simplifies our proofs.

Let @ (K) denotes a Chevalley group with the root system @ over a field K. This group is generated
by the root elements x,(t) (t € K, r € @). Let IT = IT(®) be a basis for simple roots in @, and let @+
be the set of positive roots of @ with respect to I7. We set p(®) = max{(r,r)/(s,S) | r,s € [1(®)}.

A Coxeter graph of @ is defined in J.-P. Serre [22, V.12]. (This concept coincides with the concept of
the Dynkin diagram discussed by R. Carter [4, § 3.4].) The nodes of this graph are all roots from I7.
By [22, V.15], it gives a Dynkin diagram of & if the numbers p(®) and 1 put into correspondence
with the long and short roots r € I, respectively. For example, we get the following different Dynkin
diagrams

B &5 & b & @)
R — ST S SN ( )
1 3

G /=0

The twisted group ™® (K) is the centralizer in & (K) of a twisting automorphism 6 € Aut @ (K) of
order m = 2 or 3. According to [23, § 11], @ is the composition of a graph automorphism t and a non-
trivial automorphism o :t — t (t € K) of K satisfying the condition p(®)c™ = 1. We also denote by ~
the symmetry of Coxeter graph. For certain extension of the symmetry ~ of order m on the Coxeter
graph to the root system &, we have 6(X;) = t(X;) = X5 (r € @, Xr = x,(K)).

As usual, the “root” elements of ™M@ (K) are given by the subgroups Xg =" (K)N (X, |reS) for
certain equivalence classes S of @, cf. [23,4]. We now associate the root elements with the ~-orbits.
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A mapping of a root system to another one is called a homomorphism if it can be extended to a ho-
momorphism of the root lattices of these root systems. By [11, Lemma 7], for p(®) =1 there exists
a homomorphism ¢ of @ onto a root system such that ¢(r) = ¢(s) if and only if either r=s orr=s
or s =r. Therefore, if either (@,m) = (D4,3) or m =2 and & is of type Eg, Dny1, Aan—1 OF Aap
then ¢(®) is of type Gy, Fa4, By, Cy or BC, [22, V.16], respectively, cf. [4, Remark 13.3.8] and [11,
Lemma 8].

When S is an -orbit in @, S has type A1, A1 x A1 or A; x A1 x Aq, by Propositions 13.6.3
and 13.6.4 in [4]. Then X! =xs(F) >~ FT, where F is the subfield {t e K |t =t} = ker(1 — o), K or K,
respectively for each type, and F* is the additive group of F. If S = {r,7,r 47} has type A, then & is
of type Azn, and

X&={xst,u) | xs(t, u) = X (Oxr Oxr17 (W), u,t € K, u+ i = £tt}.

For the ~-orbits {r+7} and {r, 7}, we denote, respectively, x,.;(ker(1+0)) by Xog, where 2R = ¢ (r+7),
and xg(K) by Xg, where R =¢(r), and Xy is the system of representatives Xg(t) = Xy (£)X7 ()X 47 (f)
(for all t € K) of cosets in X} by the subgroup Xag, and ~ is a transformation of K. In the remaining
cases, S has type By or G; (see [4, Proposition 13.6.4]), and & (K) is of type 2G3, 2B or 2F4. Then
S is the union of “-orbits having representatives r, r +7 (and also 2r +7 for type G2). We now use the
root subsets o (K) = Xg, B(K) = Xagr, and y (K) = X3g, which were defined in Proposition 13.6.4 (vi)
and (vii) in [4].

Thus, the ~-orbit « of each root r € @ uniquely determines a root subset X, in ™®(K). The set of
all such o will be denoted by ™®. If « is of order 1 then « is said to be of the first type. Choosing
all o with r € IT(®) we get a basis IT(™®) for "®. If p(®) =1 then "® = ¢(P), and I[T("D) =
C(IT(®)). Thus, for type 3Dy, the root system ¢ (&) is of type G, with r,q € IT(®), q =4, and we
have

Xo=%(K). a=¢() (xa() =% OxOx:0). t € K),

Xp=xq(ker(1 —0)), b=¢(q) (xp(t) :=xq(t), t =T).

By analogy with [13], G(K) denotes a group of Lie type associated either with the system G =M@
or G =¢@. We fix a basis I7 for G and the set GT of all positive roots with respect to I7. We define
a unipotent subgroup U by U =UG(K): = (X5 |s € G), cf. [4,23,13].

Let {r}™ be the family of s € G* with nonnegative coefficients in the linear expression of s —r
by IT. We set

T(r) :=(Xs |se{r}F), Q) :=(Xs[se{rT\({r}) (eC).

If HC T(r{)T(r)---T(rym) and the inclusion fails under every substitution of T(r;) by Q (r;) then
L(H)={r1,r2,...,ry} is said to be the set of corners of H.

As in [4, § 4.4], take the K-algebra Lx with Chevalley basis {e; (r € @), ...}. Denote by N&(K) the
subalgebra in Lx with the basis {e; | r € ®T}. The Lie products e, * es = crserys (¢;s =0 for r +s ¢ @)
define the structure constants of Chevalley basis in N@(K). Chevalley’s commutator formula gives
[Xr, Xs] = Xr4s(crsK) mod Q (r + s). Using also relations from [13, § 4 (I)] and [16, Theorem 2] for the
twisted groups, we easily get

Lemma 1.1 Let U = UG(K) and r,s,r + s € GT. Then either [X,, Xs] = Xr4s mod Q(r +s) or G = &,
crsK =0=p(®)K, and [X;, Xs]1 S Q (r +5).

It is well known that every element y € U is uniquely represented as the product of root elements
xr(yr), r € G, arranged according to a fixed order in G, cf. [23, Lemma 18] (we call such repre-
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sentation as the canonical decomposition of y). The coefficient y; is said to be an r-projection of y.
Putting

()= )Y ye(y eUd(K), aopi=n(r '@rx '(B) (a.BeNDK)).

redt

we define an adjoint group (N&(K), o), which is isomorphic to the group U® (K). Similar represen-
tation of U™® (K) for p(®) =1 as an adjoint group of certain K,-module N"®(K) is used in [13]
and [16].

The set of r-projections of all elements in a subset H C UG(K) is called an r-projection of H. If an
s-projection of y € H is the product of its r-projection and a fixed non-zero scalar, not depending on
a choice of y, then r, s are said to be connected in H. If also there exist p,r + p,s+p e G™ then r
and s are said to be p-connected in H. It is easy to prove the following

Lemma 1.2. Let H S U®(K), p(®)!K =K, r be a cornerin H, s € {r}*, and s # r. Then H possesses a sub-
group with a corner s and with the s-projection K.

The highest root in G* is denoted by p. If r € G then r= )", 7 co With ¢4 € Z. The height of r
is defined by ht(r) = )", Ca. For every system G, the Coxeter number h is defined by ht(p) +1=
h(G) = h. The highest roots of root systems and h are described in [3, Tables I-IX]. When G is of type
2F4, 2B3, 2G; or 2Ay,, we have h =9, 3,4 or 2n, respectively.

The subgroups U; = (X; |r € GT, ht(r) > i) form the standard central series U=U; DUy D --- D
Up, =1 in U, by [4, Theorem 5.3.3] and [13]. We shall use some property of the hypercenters
(Lemma 1.3). Some subgroups A and B in a group are said to be incident if A C B or B C A. Under the
conditions of the following lemma the upper central (or hypercentral) series 1=ZyoC Z1 CZ; C ---
is standard, by [13]. Set t(U) =6, 3 or 1 for G = Eg, Eg, Ay, respectively,

t(U)=4 forG =Gy, Fs,?F4,%Es, E7, or 2K =K and G =>Dy,
and t(U) =2 in the other cases. By [14, Lemma 3], we have

Lemma 1.3. Let U = UG(K), and let p(®)!K = K for G = @. Then each normal subgroup of U is incident
with every hypercenter Z;, 0 <i < t(U).

The centralizer C(T(r)) of T(r) in U was determined in [13]. For G = &, we distinguish also some
subgroups of the following form:

a(K)(C(TM)NC(T(r)), alt) :=xOx- () (t€K), T+1" =p; (1)
B (C(TM) NC(T ()X Oxr (Oxr4p(ct) [t K} (c€K),

B(t) =Xy p(OXpyp(t), T+T" +p=p. (2)

The group U of type A, (denoted by UA,(K)) is isomorphic to the unitriangular group UT (n +
1, K). By [10, Theorem 3] (for a finite field K of odd order, see also [27, Theorem 7]), we get

Lemma 1.4. Up to conjugation by a diagonal automorphism, every maximal abelian normal subgroup of
U A (K) is either T(p), or (1), or (2) for 2K =0,n > 3 and somer,r' e T, p € I1.
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2. Extremal subgroups

Let U = UG(K). According to [18] and [19], a normal abelian subgroup A in U is said to be
extremal if A ¢ U,. Therefore, there exists a simple corner p in A, ie, AZ (X, |r€G*t, r+#p) (see
also [4, § 8.1]). For the purpose of application to the revision of the classification of finite simple
groups and etc., C. Parker and P. Rowley [18-20] studied the groups U, having extremal subgroups,
and simple corners of such subgroups.

Now, we correct some flaws in [18] and [19]. For UD4(K) over a field K of characteristic 2, the
example in [18, pp. 396-397] gives some extremal subgroups with three simple corners (see also [18,
Theorem 1.3]). By [19, Theorem 1.2], if U2D4(K) has an extremal subgroup with two simple corners
then 2K = 0. But we now show that if U2D4(K) and UD4(K) were chosen as above, then, in fact,
|K| =4 and |K| =2, respectively.

Let @ be a root system of type D4, and let = be a symmetry of order 3 of the Coxeter graph
of ®. We consider simple roots r, 7, 7, and q = q. Clearly, UD4(K) and U2D4(K) contain the ele-
ment

B =X (Dxr (Dx:(Dxs—r (Dxs s (DX,_:(1)  (s:=q+r+7+ 7). (3)

Theorem 2.1. The groups UD4(K) for |K| > 2 and U2D4(K) for |K| > 4 have no extremal subgroups with
> 3 or > 2 simple corners, respectively. The normal closure of (3) in UD4(2), and U2D4(4) is an extremal
subgroup with three and two simple corners, respectively.

Proof. Note that if U is of type D4 and 2D4 then every its extremal subgroup contains U, by
Lemma 1.3, and also U3z = C(U3).

Let U = UD4(K). Suppose that r, g, s are chosen as above. Assume that there exists an extremal
subgroup M in U with > 3 simple corners. Then we have

UsCMCCU)=TOTOT{), LM)={rT.7},
U/T(r)~U/T(F) ~U/T({) ~UT@4,K).
By [10, Theorem 3], all corners in M are g-connected and 2K = 0. Setting
E(t) := xr (X7 (O)x:(1), N() = Xg4r (OXg17 (OXg 75 (O, Kp(t) :=Xs—p(O)Xs—_p (1),
up to conjugation of M by a diagonal automorphism we easily obtain

M=&(F)ymod Uy,  MNUy=[M,Xq] = n(K) mod Us,

MNUs=[nK).U]l=Us- [] #p(K).
pell\{q}

where F is an additive subgroup F of K and F 2 GF(2). Therefore, for some map ~:F — K and
Vr, Vi, vz € K, every y € M may be written modulo M NUs in the form

Y =& (Xqrr(Vxg 7 (VX ; (V)X (F)  (f € F).
Since s +q is equal to the highest root p and [£(F), kp(K)] =1, we obtain

[V kp(K)] = [Xq4r (VD) Xqur (VX 7 (V7). Kp (KD ] = X, (V) + Vp)K) =1
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and therefore vy = vy = vz. Consequently,

¥ = E(f)xs—r(f) mod M N Us.

Also we note that every w € M N Uz may be written modulo M N U3 as w = n(t)xs—r(t") for some
t,t' e K.
Now, taking into account that Us is abelian, we obtain

1=[y.wl=[y. 2 (t)][E(). nO][xs=r (). n(®)]
=x5(t' )xp (FO[E), nO] = x5 (' f + F20)x, (Ft + f2).

When f =1, the equality t’ f + f2t =0 implies t' =t for every t € K.
Analogously, for all f € F and t € K, we obtain f = f, t* +t =0, and hence |K|=2 = |F|. Conse-
quently, M coincides with the normal closure

(U {[9. Xg1r (D], 9.5 D]) 2 ([2: 50 D)} > (9) @

of the element ¢ from (3) in UD4(2). Moreover, (4) is the unique extremal subgroup in UD4(2) with
three simple corners.

Let M be an extremal subgroup in U = U%2D4(K) possessing at least two simple corners. Take
the twisted automorphism 6 € Aut D4(K) of order 2 such that 6(x,(1)) = x(1), 6(Xz) = X:. Then the
system ¢(@) is of type B3 and L£(M) = {a, b}, where a = ¢(r), b=¢(F).

Up to conjugation by a diagonal automorphism, we obtain ¢ € U, M. Using the argument of previ-
ous case, we get

Xa+c@+b(Ko)Us =[[0, Xe @], Xo] C M, |Ko| =2,

and, finally, M coincides with the subgroup (4) in UD4(2) N U%D4(4). This completes the proof of
Theorem 2.1. O

A description of maximal abelian normal subgroups of U in Sections 3-5 and [15, Theorem 5] (for
the classical types) gives also a description of extremal subgroups and hence a new solution to the
Parker-Rowley problem.

3. The case of Lie rank < 2

Let U be the group UG(K) of exceptional type over a field K. In this section we prove the following
theorem.

Theorem 3.1. If U is of rank < 2 then all maximal abelian normal subgroups in U are exhausted by the
following subgroups:

(a) (¥)Uz (y €U\ Uy) for G =2By;

(b) U; for G =2G, (or G = G, and 3K = 0);

(c) Uz for G = G, if 6K = K, and, additionally, B:(K) - Us (c € K) for 2K = 0, and also {«) x {1(1)) for
|K| = 2, where

o = Xg(1)x2q4p(1), Be(t) = Xg b () X204 (C);
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(d) Uz for G = 3Dy, and, when 2K = 0, additionally, up to conjugation by a diagonal automorphism,
Be(Ko)Xpq15(K179) - Uy (c € K), and also

(o) x (B1(D)) X Xoq45 (K1) if Ky | =2.

Proof. Consider an arbitrary maximal abelian normal subgroup M of U. Note that the Coxeter num-
ber h is even and Up, is an abelian normal subgroup for every root system & of type # Ap.

The Coxeter number of a root system of type G is equal to 6. Therefore, the normal subgroup Us
(i.e., T(2a+b)) is abelian in the group U of type G, or 3Dy4. For M ¢ Us, the intersection M N U, has
the corner a+ b and

Us=[Xe, MNU2JUs SM S C(Ug) =T(a).

Thus, up to conjugation of M by a diagonal automorphism, there exist some additive subgroups F, Q,
Pof K(1€Q,1€F or F=0)and a map “: Q — K such that

M =xq(F) mod Uz, ~ MNUz=B(Q)Xq+5(P)Us4,
where B(v) :=xq45(V)X2a46(V) €M (v € Q).
Suppose that U = UG, (K). If 6K = K then Us is a self-centralizing subgroup and each normal
subgroup H of the group UG, (K) is incident with U3 by Lemma 1.3. It follows that M = Us. Since
[M N Uy, M] = x244p(2FK) mod Us4, we have 2F = 0. In particular, T(a + b) (i.e., Uz) is a unique

maximal abelian normal subgroup for 3K = 0.
When 2K =0, the relations

[B(Q), X2015(P)] = X3045(3QP) mod Us,  [Bw), B(V)] = X3a425(3u¥ + vid))

show that P=0and ¥V =vd (ve Q) for a fixedd=1 € K. Consequently, the intersection M N U; is
contained into the abelian normal subgroup

Meg = {¥ars (€t)xoap(td) | £ € K}Us ((c.d) # (0,0))

for ¢ = 1. Assume that M ¢ U,. Then 1 € F and o = x4(1)x2445(f) € M for f € K. Since [o, Xp]Us C
M N Uy, we obtain

MNUz =M1,  1=[a, Mi1]=x30:2({> +f [t €K}).
Hence, f =1 and |K| = 2. On the other hand, {(x4(1)X24+5(1))Mj,1 is an abelian normal subgroup of
order |K|* =24 for |[K| =2.If |K| >2 then M = U3 = Mg 1 or M = M 4 for an arbitrary d € K.

For U of type 3Dy, the ideal Kl+o+o? {t+t+ t | t € K} of the subfield K, is non-zero (see
also [19, Lemma 2.3]), and hence Ky = K1+9+°°_ Since Ky N K'+% =2K,, we get

KD KWo y gl+o+o? 5o’ g k=Ko LK, -

1= [[Xa. D] BD] = [aag (K1), B1)] = 230525 (K179) T7H).

Hence, 0 = 2K'*+0+9> — 2K, = 2K, whence the sum K'+7 4 K, is direct and P = K+ 4+ (P N K,).
Taking into account the relations

1= [X2a+b(P NKe), ,3(1)] :X3a+2b((P n [{U)]+U+O’2),
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we deduce 0=3(PNKy) =P NK, and hence P = K1+ = P°_ Also, M N U3 centralizes M N U; and
Xa+b (K5 )U3. Therefore,

1= [ﬂ(Q n I<]+U)’X2a+b(P)] =x30425((P(Q N K1+‘7))1+‘7+02)7

1+o+0? _

(7 +9)(Q NK)) —0.  (v+7+P(QnKio)Eore’

=0 (veKk).

Summarizing the last two equalities, we get (v(Q N K”U))”‘”‘72 =0 for all v € K. Consequently,
Q N K+ =0 (otherwise K1*9+°° = 0) and Q C K.

Choose a system B(Q) of coset representatives of M N U3 in M N Uy such that Q C K. Using
the isomorphism U3D4(K) N UD4(Ky) ~ UG2(K,) we obtain ¥ =dv for d = 1. Therefore, M N U3
coincides with

Ma = {Xg45(V)Xog15(dV) | v € Ko } X204 (K7 ) Us.

For F #0, a = Xq(1)X204+5(f) € M may be chosen with f € K. The subgroup («)B(Q)Us is normal
in U3D4(K)NUD4(Ky). As above, (o) 8(Q)Uy is abelian if and only if f =1 and |Ky| = 2. Note that
(Xa(1)X2q45(1)) M is an abelian normal subgroup in U3D4(K) for |[K| =8. If |[K,| > 2 then either
M =Us or M coincides with My for an arbitrary d € K.

If K possesses an automorphism o such that 302 =1 then U2G,(K) is represented by the ele-
ments (t,u,v) and

(t, u, V)(t/, u/’ V/) _ (t + t/, u+ U — t(t/)3g, v+ v —ut + t(t/)30+1 _ tZ(t/)Bc)

(see [5, 13.6.4 (viii)] and [23]). The subgroups (0,0, F), (0, F, K), and (F, K, K) in U2G,(K) exhaust
all normal subgroups by Lemma 1.3, where F is an additive subgroup of K. Obviously, U; is abelian
and (F, K, K) with F # 0 are not abelian.

In [5, 13.6.4 (vii)], U2B»(K) is represented as

U2B2(K)={(t,w) [tuek}, @t uw(t' u)=(+t u+u +©), (5)

where K possesses a non-trivial automorphism ~ such that >:<2 =x (x € K). The center Z; of U2B3(K)
is equal to (0, K) and, by Lemma 1.3, every normal subgroup is of the form either (0, F) or (F, K)
for an arbitrary additive subgroup F of K. For the commuting elements (t,u) and (t’,u’), we have
(H)>t’ =t'%t. When t' # 0, up to conjugation by a diagonal element, we may assume that t' = 1. In
this case t = (£)2 = (£)* = t2, whence either t = 0 or t = 1. Therefore, the maximal abelian normal
subgroups of U2By(K) are exhausted by the centralizers of the elements of order 4; they have the
form (F, K) with |F| = 2. Thus, Theorem 3.1 is proved. O

4. The normal structure

In this section, we consider the normal structure of UG(K) and describe the maximal abelian
normal subgroups of groups UE,(K), n=6,7,8.

Let U=UG(K) and H C U. Since H C HSEE(H)T(S), there exists a subset F(H) in Hseﬁ(H) X
such that #(H) = H mod HseL(H) Q(s). As in [15], F(H) is said to be a frame of H. The following
theorem holds.

Theorem 4.1. Let H be a subgroup in the group U of classical type or of type E, over a field K. Assume that
2K =K or U is of type An or 2A,. Then H < U if and only if F([H, Xp]) € H foreach p € IT(G).
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Let us consider the idea of the proof.

Using the representation 7 from Section 1 of U we define a frame of a subset 7 (H) in (NG(K), o)
by the rule F(;r (H)) := w (F(H)). The concept of frame and the representation 7t allow us to apply
linear methods, cf. [12,13,15,16]. The multiplication o and the addition on the frame F (7 (H)) coin-
cide modulo ZrEE(H)Tr(Q(r)). Also, we may consider an arbitrary frame in the module NG(K) as
a submodule. When G = @, we get

Lemma4.2. Let H C U®(K),  (H) be a subgroup in the adjoint or additive group of N® (K), and let p € &+
Then 7w (F([H, X;1)) is a K-submodule in N& (K) coinciding with the frame of 7w (H) * Ke.

Lemma4.3.let U=UG(K), HC U and p € G". Then |L([H, XpDI <3

Proof. The standard commutator relations show that every corner in [H, X,] can be written in the
form s+ p for s e UreL(H){r}Jf. Evidently, |£(H)| < rank G. By the well known classification of root
systems, for G = @, the minimal root subsystem of @ containing L([H, Xp]) U {p} has a connected
Coxeter graph of rank < 4. Therefore, |£([H, Xp])| < 3. Using the root system ¢(®) we get this in-
equality for G ="®, p(®)=1. O

Now let U =UG(K), G=2®, p(®)=1,r1,5,r+s€GT, and let
x-(F) C X;, xs(V)C X; forsome F,V C K, FV #0.

Lemma 4.4.

(i) If [x-(F),xs(V)] € Q (r + s) then r + s is of the first type, r and s are not of the first type, and, up to
conjugation by a diagonal automorphism, either F C Ky, V € K1=% or G =2Ay, F, V C K.

(ii) If [x-(F), Xs] does not coincide with 0, X,+s modulo Q (r + s) then s is of the first type, r, r + s are not of
the first type, and F K is a 1-dimensional K, -module.

Proof. Firstly, assume that either r (or s) is of the first type or r 4+ s is not of the first type. Then
the basic relations of the twisted group U (cf. [4,23] and [16, Theorem 2]) show that [x,(u), xs(v)] =
Xr4s(£n) mod Q (r +s) for n = uv,uv,uv or uv, and hence r + s is a corner of the commutator
[x-(F), xs(V)].

Thus, the assumption [x:(F), xs(V)] € Q (r + s) shows that r + s is of the first type, r and s are
not of the first type, and n =0 for all u € F, v € V, where either n =uv + uv (uv +uv) or n =
uv —iiv when G =2A,,. Up to conjugation by a diagonal automorphism, we may assume that 1 € F.
It immediately follows that either V € Ker(1+0)=K'"°, FC K, or G=2Ay,, V,F C K.

When [x;(F), Xs]Q (r + s) does not coincide with Q (r +s) and T(r +s), we easily infer that s is of
the first type, r + s and r are not of the first type, and FK, is a 1-dimensional K,-module. O

Using Lemma 1.1, Lemma 4.4, and (ii) we obtain the following lemma.
Lemma 4.5. Let H < UG(K) and L(H) = {r}. Then either H = Q (r)F(H) or (a) G = 2®, p(®) = 1, r is not
of the first type, r-projection of H generates a 1-dimensional K, -module and there exists s € I1(G) of the first

type withr +s € Gt,or (b) G =@, p(®)!K =00r G =3Dy, 2K =0.

It is well known that for G = 2Ay, every s € IT(G) is not of the first type. Using Lemmas 4.4
and 4.5 repeatedly we get the following theorem from [15].

Theorem 4.6. Let UG (K) be of type By, Cp, for 2K = K or of type Ay, 2An. A subgroup H is normal if and only
if for each corner r of H and p € I1(G) withr + p € G either
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(A) F([H, XpDQ(r+p) S H
or G = B, and

(B) for some q € IT1(G) two corners in [H, Xp] are q-connected, two corners in [H, X4] are connected, and
F(H,XpDF(H, X¢DQ (@ +p,r+p+q) CH.

For the group U of type E,, the analogue of this theorem is not satisfied [25]. By [15, Theorems 3
and 5], for U of type Dy, and 2D,, there exists a normal subgroup M such that the height of commuta-
tor [[...[[M, U], U]...], U] grows unboundedly together with the grows of n, where the commutator
is not generated by the root elements of M. To finish the consideration of remaining groups U in
Theorem 4.1 we use the normal closures of subgroups which are similar to the subgroups from The-
orem 2.1, and we get

Lemma 4.7. If H < UG(K) for type D, (or 2D,) and F([H, Xpl) ¢ H for some p € I1(G) then there
exist simple corners r, T (respectively, ¢ (r)) and a p-connected corner in H which have the projections of
order 2.

Our description of abelian normal subgroups uses a specific notation.

For every ¥ C GT, we set Xy = (X, |r € ¥). A subset ¥ in G is called normal if {s}™ C ¥ for all
se ¥, and hence Xy < UG(K). By [17], a subset ¥ in &7 is called abelian if r+s ¢ @ forallr,s e ¥.
Then Xy is the direct product of some root subgroups. For H C UG(K), put

W(H)={reG" |HN X #1}. (6)

Denote by @\(H) the set of all corners of the elements in H, which are not in ¥ (H), and also all sums
in GT of such corners. Thus, for the subgroup H in U®(K) of the shape (1) or (2) from Lemma 14,
W(H) is {r,r, p} or {r,r’,r + p,r’ + p, p}, respectively.

Further, we use the elements «/(t) and B(t) from (1) and (2). By [15], for 2K =0, UD;(K) has
a unique maximal abelian normal subgroup My possessing some simple corners r and r’ =7 with
a(1) € Mg and ¥ (M) = {r}* U {r'}*. For n =4 and some p, q € IT(®), Mo is of the shape

o (K) B X4 p4g (DX 4 piq(®) |t € K}(C(T M) NC(T(1))). (7)

Theorem 4.8. Let M be a maximal abelian normal subgroup of the group U = U® (K), ¥ = ¥ (M) and
p(®)!K = K. Then Xy € M and for M # Xy, up to conjugation by diagonal automorphism, there are two
cases:

(i) Mis of the form (1) and X§ ~UT (3, K);
(ii) 2K =0, p(®) =1, Xg N M has p-connected corners for a simple root p.

Moreover, in (ii) one of the following subcases holds:

(a) M is of the form (2) and X, Xy ~ UT (4, K),

(b) U=UD4(2) = Xg Xp,

(c) Uisoftype Dy, Em, and Xg x Xs >~ [UD4(K), UD4(K)] for somes e ¥,
(d) M is of the form Mg or (7), respectively, for types Dy, Ep.

Proof. Using Lemmas 1.2 and 4.5, we easily find that ¥ and ¥ U {r}T are commutative normal sets
in ®* for r € £L(M). The subgroup Xy centralizes M, and hence Xy C M. Obviously, M = Xy if
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and only if ¥ is a maximal commutative normal set in ®7. Let U =¥ M). Assuming M # Xy we
get

LXg)=LMNXg), Xe= [ C(TM), M=MnNXz)x Xy wri)-
reL(Xg)

Each root r in ':l/\\(lI/ ﬂ@\) does not commute with at least one root of Q/\\(lll ﬂlf/\), since X, centralizes
no M. Therefore, each corner in M N Xy is connected with another corner in M N Xg.

If there exist corners r and r’ in M N X which are not commuting then [M, X;][M, X1 C M, and
the root systems from [3] give

X ~UTG,K), #={rr,r+r'}, Xe=C{TOT()}, r+r=pew

Then, by Lemma 1.4, M is conjugate by a diagonal automorphism to (1).

In the other cases, for a simple root p, there exist some p-connected corners r and r’ in M N X3
and {r,7',r+ p,r' + p,r+1 + p} C ¥ holds. If this inclusion turns into an equality then p(®) =1,
2K =0, M is reduced to the form (2), and

r+r+p=p, XpXg=UT(4,K).

In the other cases, for type D, and |[£(Xg)| =2, we have Xg = T(r)T(r) by [15]. Up to conjugation
by a diagonal automorphism, the subgroup M in U is of the shape (7) if U is of type Ep,.

The case |£(Xg)| =3 is possible when U is of type E;, and Dy. Then two of three corners ry, 2,
r3 in M N Xg are p-connected, two of them are g-connected, and Xy x Xs > [UD4(K), UD4(K)] for
some s € ¥ and some simple roots p, q # p. In this case, M has the form

{Xn ©Oxry (O)xr; (O)Xr,1p(ct) ’ te K}{Xr1+p(t)xr2+p () ’ te K}{Xrl +q()Xr;4q(0) ‘ te K}XW- (8)

In the remaining cases, for U of type D, M has three simple corners and U = UD4(2) = Xg Xq (see
Theorem 2.1 and [15, Theorem 5]). O

We now list the maximal commutative normal sets ¥ C & and all subgroups (1)-(8) in U of
type En. For UEg(K), this enumeration is given up to a graph automorphism. For a root system &
of type En, corresponding to m =6, 7 or 8, the Coxeter number is equal to h = 12,18 or 30; more-
over,

Zr=Up_r CSMCC(Z), k=4,60r10.

Choose some simple roots «; (1 <i<m) as in [3, Tables V-VII]. When M has a corner of height <4,
using Lemma 1.2 we infer that either U is of type E; and M = T (c7) or U is of type Eg and M is one
of the subgroups T(cq) and T(ag) or M C (Ug N (T (1) T (x0g)))Us. We set

acde... f

b = (ac[db'e... f) :=aay + bars + caz + dog + eas + -+ + form.

A) The maximal commutative normal sets ¥

Type Eg: {11[10)'10}T U {01[21121}F, {11[101' 11} U {14 + a1}t U {fia + a6} T, {1}, {14} T, where
fla = (01[21]'10) (the highest root of subsystem of type D4 with the root o4);

Type E7: {a7}*, {12[321210}F U {00[117111}*, {12[311210}* U {01[211111}+, {12[211210}+ U
(120217111} U {01[217211}F, {12[217110)F U {01[21]221}F, {11[21]210}F U {01[21]211}+,
{12[217'100}*, {01[21]210};



V.M. Levchuk, G.S. Suleimanova / Journal of Algebra 349 (2012) 98-116 109

Type Eg: {12[32]'2100}+, {12[31]3210}*, {12[32]3210}* U {12[31]3211}*+, {12[32]'2210}*F U
{12[311'3321)7, {12[42]'3210}+ U {12[3172221}+, {13[42]'3210}* U (122112221}, {23[42]'3210}F U
(11[2172221)F, {12[321'3210}+ U {12[32]'2221}+ U {12[311'3221}*, {01[21]'2221}*.

B) The roots r defining the subgroup (1)

Type Eg: (11[111700), (11[117'10), fi4;

Type E7: (11[10]'111), (12[21]'100), (12[21]1'110), (11[21)210), (11[21]'111), (11[11]'111);

Type Eg: (12[32]'2111), (12[32]'2211), (12[31]'3211), (12[32]'3211), (12[21]'2221), (11[21]2221),
(01[211'2221).

C) The pairs {r, p} defining the subgroup (2)

Type Eg: {(11[11]'00), a5}, {(11[11]'10), e}, {(11[11]1'10), cva};

Type E7: {(12[211100), (11[217211)}, {(12[217'110), (11[217210)}, {(12[211'110), (11[217'111)},
((11[217'210), (11[217111)}, {(12[217210), (11[111'111)}, {(12[31]'210), (11[10'111)};

Type Es: {(12[31]'3221),(12[32]/2111)}, {(12[311'3211),(12[32]'2211)}, {(12[31]2221), (12[31]'3211)},
((12[311'2221), (12[321'2211)}, {(12[2112221), (12[32]'3211)}, {(11[21]'2221), (12[42]'3211)}.

D) The corners {r, 1’} defining the subgroup (7) with g-connected corners in the commutator group [M, X, ]

For types Eg, E7, and Eg such corners are {(11[10]10), (01[10]'11)}, {(01[21]'210), (01[21]'111)}, and
{(12[311'3210), (12[32]2210)}, respectively.

E) The pairwise p-connected or q-connected corners {rq, 2, r3} of the subgroup (8)

Type Eg: {(12[311'2221), (12[317'3211), (12[32]'2211)};
Type E7: {(12[217'110), (11[21]'210), (11[21]'111)};
Type Eg: {(11[11]'10), jis, (O1[11]'11)}.

5. The groups U of types F4,2F4 and 2Eg

For the root system @& of type F4, we need notation from [13].
By [3, Tables I-1V] and [13], the positive roots of systems of types A,_1, By, Cn, BCy, and D, may
be written as

& —mej=pimj, 1<j<i<n, m=0,1,-1.

Set T;y = T(piy) for exception the case Ti; = T(p;—1)T(pi1) for type Dy. If UG(K) is a group of
classical type distinct from A, then, by [13, Lemma 6 (II)], the centralizer C(T;,) in UG(K) coincides
with Ty _y_q, when either i <n or G = 2A, or 2K = K, G = Cp; in the remaining cases, we have
C(Tnv) = Tl,—v—1 Thn—1.

Let C;F = {pivy |0 < |v| <i<n, v#i}, as above. For type Bp, we set & — me; = qj,mj. By analogy
with [13], we represent the positive system FI as the union CI u ij with the given intersection

By nC ={gio.pi—i 1<i<4}, Bf={gj|0<|jl<i<4}.
Also, we use the following diagram from [13]. (The roots are accompanied by the notation (abcd)

from [3, Table VIII].) The substitution ~:® — & is defined by the simple rule: p;; = qij, Gij = pij
A <ljl<i<d).
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The positive roots of the system F4

421 =Pp1,-1 d10 = P21 P32
(1100) 431 QZO—P2—1 D31 (0011)
(1110) P43 =(30 q2/1 pz\z P3,-1  (0111)
X /
(1120) 61371 P3 -2 (0121)
/ \1111)
(12200 q3,-2 D41 (1121 D3,-3 =043 (0122)
(1221)  P4,—1 42  (1122)
(1231) P4,-2 q41  (1222)
\ /
-3 =(40 (1232)
q4,-1 (1242)
q4,-2 (1342)
q4,-3 =P4,-4 (2342)

Consider the “root elements” of U2F4(K), cf. Section 1. Let r = gij. Put R;j(t) = x-(t)xz(t) if either
i,)=02,-1,3,2),3,-2) or i=4, je{-3,-2,-1,1,2}. When (i, j) =(2,1),3,1),(3,-1) or
(4, 3), according to [4], {r,7,r +71,r+ 2r} is a class of type B, and we set

Rij(£) = X¢ (O)Xr (O)Xr47(EE) (¢ € K).

By [13, § 4 (I)], Uy in U2F4(K) is generated by the elements Rij(t) corresponding to the columns
with number > k in the following table:
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R21 Rz -1 R3-1 R3 -2
R3; Rz Ra3 Ry R41 Rg—1 Ry4_3 Ry_s3.

Recall that the system 2@ of type 2Eg is associated with a root system of type F4. Choose the
following subgroups in UF4(K) and U2Eg(K) with F =K and F = K, respectively:

T(q43)Us, T(pa—-1DT(@G3,-2), T(pa—1){Xgs_,Oxqy,(t) [t € F}; 9)

T(pa2)Xqss» T(P42)Xpg, T(P3.-2), T(p3.-2)", T(q3,-2)Xpgy Xps 55 (

{¥ps 2 (Oxpy, (0) [t € K}S, S =T(qa3)T(pa1) or T(q3,—2)Xp,y; (
{%g5_, OXqp, O |t € K}T (D4, —1)Xpyy S, S = Xpys Xpyy 08 Xpy ;3 (12)

(%pas (DXgus ()T (pa2)  (d € K*); (

[(Xps 5 O%p, () | £ € K) X (xg5 _, (DXqup (D) | £ € K)]T (D4, —1) Xy - (

The main theorem of this section is the following one.

Theorem 5.1. Up to conjugation by a diagonal automorphism, the maximal abelian normal subgroups in
UF4(K) and U%Eg(K) are exhausted by the subgroups (9) for 2K = K; when 2K = 0, they are exhausted
by the subgroups (10)-(14) and, respectively, by (9), (T (p3,—2) N Ee(Ks))U7, and

{xp41 (t)xpz;f] (ft) | t € F}Xp4',1 (KU)T(Q43)U7 (f € K \ KU) (15)
In U2F4(K), they are exhausted by the subgroups
(R43(1))R42(K)Us, {R3,—2(O)Ra2(ct) [t e K}Us (c € K). (16)

Proof. Note that if the roots r, s, and r + s from F4+ do not lie simultaneously in one of the subsys-
tems B or C; then they lie in one of the following subsystems of type B :

{P3.—v,q3,2v, P4,2v, qav}, {P3.2v,q3,—v, D4v,q4a,2v},

{P3v,q3v. P4a,2v.q4,2v}, {P3,2v,43,—2v, P4,—v,qav}, [V|=1.

Also we have U2Eg(K) = (Xp;, (), Xq;, (Kg) A1 V] <i<4).
Consider an arbitrary maximal abelian normal subgroup M in U of type F4 and 2Es. When
pa41-projection of M is zero, we get

T(g3,-2)T(q43) D M =C(M) D C(T(q3,-2)T(q43)) 2 T(p4,—1).

Let F=K or F =K, as in the theorem. Since Xg,, Xgs 2 Xqq_5 =UT(3,K) by Lemma 1.4, we obtain
the subgroups (9).

Further, we may assume that the p4;-projection in M is non-zero. Then the p4;-projection P of
the intersection M N Us is also non-zero because of M < U. Up to conjugation of M by a diagonal
automorphism, we have 1 € P. Commuting M NUs firstly with T(p1,—1) and then with U, we find the
subgroup Xp, ,(FP)T(ps,—2) in M (see the diagram). Since the centralizer of this subgroup coincides
with T(p2,_1), we obtain M C T(pz,—1) and 2K =0, because of the equality [xp, ,(FP), MNUs]=1.
Thus, if 2K = K then M is one of the subgroups (9).

Note that U2Eg(K) N Eg(Ky) =~ UF4(Ky). For type 2E¢ we also infer that the K,-module FP is
one-dimensional, and 1 € P C K,. The p4 _1-projection of the subgroup M N (T(p4,—1)T(q43)) is



112 V.M. Levchuk, G.S. Suleimanova / Journal of Algebra 349 (2012) 98-116

contained in Ky, since M is an abelian subgroup. Taking into account the normality of M, we ob-
tain

T(p3,—2) 2M2C(T(p3-2)),  MNT(pa) =a(P)xp, ,(Ko)T(qa2)U7

where a(t) = Xpy, (DXp, _, () for a suitable mapping “:P — K. Set f =1 and ty =f + ft. Using
[ae(t),x(1)] =1 we find

+ ft+ft=0, to=to, ft=to+fteft+K, (teP).

=l

[

Clearly, (T(p3,—2) N Es(Ky))U7 is an abelian normal subgroup. Consequently, if the p3 _-projection
in M is zero then we have f € K \ K. Therefore, P = K, and M is the second subgroup in (15).
Similarly

M = B(P)xp,, (Ko)xp, 1 (Ko)T(qa2)U7,  B() =Xp; , (O)Xp, , (f1)

in the case when M has the corner p3 5. But in the latter case the condition [B(t), B(1)] =1 gives
ft+ ft =0 (t € P). Therefore, f € Ky, and M coincides with the subgroup (T (p3._2) N E¢(Ky))U7.

In UF4(K), the subgroup X,, T(ps,—1) centralizes Us. Using the normality of M, we also find
the corner p4; of the intersection M N T(p41) for the case M 51 Us. Therefore, the p; _1-projection
and ps _q-projection in M are zero, i.e, M C T(pa3)T(q2,—1). If either the g _1-projection or the
q3,—1-projection in M is non-zero then M N T(q41) has the corner q41, and M N T(q41) does not
centralize M, a contradiction. It follows that

T(pa,—1)Xpy EM S Xppy T(p42) T (p3,-2)T(q3,-2).

Since 1=[[M, T(g32)], M], the g3 _z-projection should be zero if the q43-projection in M is non-
zero. Similarly, the ps _»-projection in M is zero if the ps3-projection is non-zero. For the center Z
of U, the subgroup B = X;,; Xq,; Z has a direct complement D in Xp,; Xg,;T(p42), and

ZxD=T(ps) SMCBxD, M=(MnNB) xD, B ~ UBy(K).

If ps3s and q43 are corners in M then they are connected. By [15, Theorem 5], the projections on
these corners have order 2. Thus, M N B is a maximal abelian normal subgroup in B, and M is the
subgroup (13).

The other cases for the non-zero pg43-projection or g43-projection give one of the subgroups
T(p3,—2), T(q3,—2)Xpys Xpyy Xpyy (i€, T(p3,—2)%, when K is perfect and hence there exists a graph
automorphism), T(ps2)Xq,, T(p42)Xp,, and the first of subgroups in (11) and (12). If M C
T(pa2)T(p3,—2) then M coincides with one of T(p3 —2), T(p42)T(qa3) or (11).

Considering the subgroups M with the corners p3 _» and g3 _» we get the subgroups
T(q3,—2)Xp4; Xps_,, (14) and the remaining subgroups in (11) and (12).

By Lemma 1.3 every normal subgroup in U2F4(K) is incident with the abelian normal subgroup
Z4 = Us. Therefore,

Zy=Us CM C C(Z4) =Ry3(K)Zs.

The defining relations for the twisted group U2F4(K) in terms of generators Rj,(t) (t € K) were
described in [13, Lemma 4]. In particular,

[Ra3(@), R3v(b)] = Ray(@h) (Iv|<2),  [Rav(@),R3_v(b)]=Ra_3@ab) (v==2).
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Also, we obtain the isomorphic embeddings t — R;,(t) of the additive group KT into R;,(K) for all
(i,v) such that (i,v) ¢ {(2,1), (4,3),(3,1), (3, —1)}. For the remaining cases, using the representa-
tion (5), we get the following isomorphic embeddings of the group U2B;(K) into U2F4(K):

(t,u) > Riy(ORi —v () ((,v)=(2,1),(4,3)), (t,u) > R3y(ORa2v () (JvI=1).
The subgroup T(R42) centralizes R43(K)T(R42). For M C Zs, the isomorphism
R42(K)R3,—2(K)R4,—3(K) >~ UT(3, K)

and Lemma 1.4 give the equality M = {R3 _2(t)Rax(td) | t € K}Z4 for a fixed d € K.
Let M;, be an R;j,-projection of M. Since

1=[M,[M,R32(1)]] = [M, Ra2(M43)] = Ra,_3(M3 2 M43),

we get M3 M43 =0. If M3 _» =0 and hence M C T (R43) then the description of the abelian normal
subgroups in U2B,(K) implies M = T (R42){«) for an arbitrary « € T(R43) \ T(R42). Thus, Theorem 5.1
is proved. O

6. Some large P-subgroups

In this section, we consider some application to the problem (1.6) from [7] of description of the
large abelian and normal large abelian subgroups in a finite group U of exceptional Lie type. Under
notation of Theorems 3.1, 4.8 and 5.1, as a consequence, we obtain

Theorem 6.1. Let U = UG(K) for a finite field K. Then the large normal abelian subgroups in U are the
following:

(@) T(oq + 203 + 203 + 304 + 25 + o) in UEg(K), T(aq) and T (ag) in UEg(K), T (a7) in UE7(K);

(b) (y)U2 (y €U\ Uy) for G =2By, (Ra43(0))Raz(K)Us (c #0) for G = 2Fy;

(c) T(qa3)Us for 2K = K, G = F4 or 2Eg;

(d) Us in UG2(K) for 6K = K and in U3 D4(K) for 2K = K;

(e) Uy for 3K =0, G = G; or 2Go, (o) x (B1(1)) in UG(2), and Uz and B:(K)Uy (c € K) in UG,(K) for
2K =0, [K| > 2;

(f) when 2K = 0, up to conjugation by a diagonal automorphism,

(T(p3,—2) NEs(Ky))U7 in U*Ee(K), (17)
Be(Ko)Xoain(K'T7) - Us (c€K) and Us inU>D4(K) for |Ko| > 2,
(@) x (B1(D) X Xaa45(K'*7) in U>Da(®), (18)
T(p3.-2)". XpsT(P42).  Xpas Xpay Xpar {Xgs o O%qp, (0) | t € K} T (g, 1),
T(p3,-2). XqsT(42), {Xps o (Oxp, () |t € K} Xqys T(Pa1)

and, in addition, (Xp,, (1)Xq,; (1)) T (pa2) for |K| =2 in UF4(K).

Now we show that the large normal abelian subgroups in U are large abelian subgroups.

In general, a large normal P-subgroup of a finite group is not a normal large P-subgroup. In fact,
the center of SL(n, K) is a large normal cyclic subgroup but this group has no a normal large cyclic
subgroup.

We have to prove the inequality a(U) < b(U), where a(U) (and b(U)) is the largest order of all
(respectively, normal) abelian subgroups in U. This fact is well known for the groups of Lie type of
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rank 1 or of classical type, [7] and [16]. Theorem 6.1 explicitly gives the number b(U) for every U of
exceptional Lie type.

Further, we use the notion of a regular ordering of roots, which agrees with the height function on
roots [4, Lemma 5.3.1]. Taking into account the representation ¢ in Section 1 we may use similar
ordering for the twisted system.

Now, in the canonical decomposition of every o € U = UG(K), the first non-unit cofactor corre-
sponds to the first corner in «. Evidently, if M C U then for every corner r in M the r-projection
Fp(r) of M does not depend on the choice of ordering in G. The following lemma is immediate.

Lemma 6.2. Let M be a subgroup in UG(K), and let £1(M) be the set of first corners of all elements in M.
Then M| = Hrell](M) [Fp (D).

By Lemma 1.1, a subgroup Xy in U®(K) (with p(®)!K = K) is abelian if and only if ¥ is an
abelian subset in @, and hence {e; | r € ¥} is a basis for an abelian subalgebra in N& (K). According
to E.P. Vdovin [26], a subset ¥ of @ is said to be p-abelian if in the algebra N®(K) over a field K of
characteristic p we have e; xe; =0 for all r,s € ¥. For p(®)!K =K, this gives r +s ¢ ¥, i.e., ¥ is an
abelian subset. Clearly, every abelian subset in @ is always p-abelian for every prime p. The largest
order of abelian and p-abelian subsets in @+ is denoted by a(®) and a(®, p), respectively.

An application of the first corner of the elements in U and Lemma 6.2 give a simplified proof of
the following statement (see [26, § 2]).

Lemma 6.3. Let A be an abelian subgroup in U®(K). Then L1(A) is a p-abelian subset in &%, and
|A] < K[,

AL Mal'tsev [17] described the abelian subsets of largest order in @*. His description shows that
there exists a normal abelian subset ¥ of order a(®). For U®(K) with p(®)!K = K, Xy is a normal
large abelian subgroup of order |K|3®), and hence a(U) =b(U) = |[K|3(®).

Analogously, if p(®) = charK = p > 2 then there exists a normal p-abelian subset ¥ in &% of
order a(®, p) and a(U) =b(U) = |K|2(®-P), For type C,, this result follows from the description in [2].
By E.P. Vdovin [26], for types G, and F4 we get, respectively,

Xeg=Uz, a(®,3)=4, and Xy =T(p3-2), a(®,2)=11

Also, if @ is of type G, then {a,a+b, 3a+ b, 3a + 2b} is a unique 2-abelian subset in @1 of order
> 3 and a(®, 2) = 4. Every abelian subgroup A in UG;(K) (2K = 0) either is of order |A| < |U3| = |K|?
or

A = (Xa(O)X2015(SE), Xa 15 (X2 s (SD)Ua (5.t € K*), |A| =4- K. (19)

The subgroup (19) is of order > |K|? if and only if |K| =2 or 4. If this inequality is strict then |K| =2
and (19) is a normal subgroup. Therefore, a(U) = b(U) holds for all U® (K).

The same holds for the groups U of type 2F4, 2B, and 2G,, since a corner projection of every
their root set X, coincides with K.

For the remaining groups U™®(K) of type 3D4 and 2Eg, E.P. Vdovin [26] suggested to use the
description from [17] of abelian subsets in @ of type D4 and Eg. Simplifying this approach, we use
a description of p-abelian subsets of the associated root systems ¢ (®).

Consider U of type 2Eg in detail. Then ¢(®) is of type Fa, and U NUEg(Ky) =~ UF4(Ky). Let A
be an arbitrary large abelian subgroup in U. By Lemma 4.4, if |F4(r)| > |K| for some root r € £1(A)
then r+s ¢ £1(A) for all s € £1(A). For 2K = K, according to Lemma 6.3, £1(A) is an abelian subset
in £(®)T of order <a(¢(®)) =9. By [17], £1(A) doesn’t contain more than six classes of every fixed
type, and also it doesn’t contain more than three classes of type Ay x A1, i.e., £1(A) possesses no the
roots pj, with 1< |v| <i in the diagram of Section 5. By Lemma 6.2, we obtain

aU) =A< Ko |® - |KP = Ko | =b(U).
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If 2K =0 then £1(A) is a 2-abelian subset, and |£1(A)| < a(¢(®),2) = 11. Also, the description
from [26] and Lemma 4.4 show that the number of all r € £1(A) with |Fa(r)| > |Ky| is less than 3.
Since the number b(U) coincides with the order |Ky|'? of the abelian normal subgroup (17), we
get

aU) = |A| <K - 1Ko |° = Ky | =b(U).
Thus, a(U) =b(U) holds for all U. We arrived at the following

Theorem 6.4. Let U = UG (K) for a finite field K. Then a subgroup in U is a large normal abelian subgroup if
and only if it is a normal large abelian subgroup.

Remark. For the groups UG»(2), U3D4(8), and U%Eg(K) with 2K = 0, Theorem 6.4 allows us to
refine the values a(U), which by [26] might be 23, 25 or |K,|'2, respectively. The subgroups (19),
(18) and (17) of orders 24, 26 and |K,|'3, respectively, were omitted in [26].

Now it is easy to show that if all normal large abelian subgroups in a finite group U are extremal
then all large abelian subgroups in U are normal. We note that for every finite group G of Lie type the
authors have the proof of the following theorem. (See also [16, Theorem 4] for the classical types [24],
and the question in [6, § 1].)

Theorem 6.5. In every finite group U, either each large abelian subgroup is G-conjugate to a normal subgroup
in U or G is of type Gy, >Da, F4 or %Es.
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