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We describe all maximal abelian normal subgroups in the unipo-
tent radical U of a Borel subgroup in a group of Lie type G over
a field K . This gives a new description of the extremal subgroups
in U which were studied by C. Parker and P. Rowley. For a finite
field K , we prove that either each large abelian subgroup in U is
G-conjugate to a normal subgroup in U or G is of certain excep-
tional Lie type.
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Introduction

Let G be a group of Lie type over a field K , and let U be the unipotent radical of a Borel subgroup
in G . The present paper is devoted to studying certain abelian normal subgroups in U and some
related problems.

The study of these questions has been under active investigation since 1970s. J. Gibbs [5] de-
scribed the lower and upper central series, the characteristic subgroups and the automorphisms of U
with char K �= 2,3. A description for an arbitrary field K was completed in [13], and it solves the
problem (1.5) from [7]. The approach of [13] uses a description of maximal abelian normal subgroups
of the unitriangular group and close structural connections of U and its associated Lie ring, cf. [10,12,
8,9,16].

The theorems announced in [15] and Theorems 4.1 and 4.6 about the normal structure use the
concept of corners of subsets in U (for notation see Section 1). Thus, the extremal subgroups from [18]
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are the normal abelian subgroups in U with a simple corner. For the application to symplectic amal-
gams [21] and the revision of the classification of finite simple groups, C. Parker and P. Rowley
studied the groups U with an extremal subgroup and the possible simple corners of such a sub-
group [18–20].

Theorems 3.1, 4.8 and 5.1 of the present paper and [15, Theorem 5] (for the classical types)
describe all maximal abelian normal subgroups in U . Therefore, we have a new solution to the Parker–
Rowley problem. Theorem 2.1 gives a clarification of some assertions from [18,19] when U is of type
D4 and 2 D4.

In Section 6 we consider an application to description of the large abelian and normal large abelian
subgroups in the finite groups U . For the exceptional types, this problem was pointed out in A.S. Kon-
dratiev’s survey [7, Problem (1.6)] (for the classical types, see [1,2,28,29]). Using a computer approach
as well as a generalization of A.I. Mal’tsev’s method [17], E.P. Vdovin [26, Table 4] determined the
orders of large abelian subgroups of U .

Given a group-theoretic property P , we recall that every P -subgroup of largest order in a finite
group is a large P -subgroup. Theorem 6.1 and [16, Table 2] (for the classical types) give the list of
all large normal abelian subgroups in the finite groups U . Using the approach of [17] and [26] we
show that the identical list gives the normal large abelian subgroups (Theorem 6.4). (In general, there
exists a large normal P -subgroup, which is not a large P -subgroup, cf. Section 6.) It allows us to
clarify some orders of large abelian subgroups in U which were found in [26, Table 4], cf. Remark in
Section 6.

Finally, in Section 6 we show that either each large abelian subgroup in U is G-conjugate to
a normal subgroup in U or G is of certain exceptional type and there exists a normal large abelian
subgroup in U which is not extremal.

1. Preliminary remarks and notation

Along with the usual notation of [22,4,23] we use notation from [13], which simplifies our proofs.
Let Φ(K ) denotes a Chevalley group with the root system Φ over a field K . This group is generated

by the root elements xr(t) (t ∈ K , r ∈ Φ). Let Π = Π(Φ) be a basis for simple roots in Φ , and let Φ+
be the set of positive roots of Φ with respect to Π . We set p(Φ) = max{(r, r)/(s, s) | r, s ∈ Π(Φ)}.

A Coxeter graph of Φ is defined in J.-P. Serre [22, V.12]. (This concept coincides with the concept of
the Dynkin diagram discussed by R. Carter [4, § 3.4].) The nodes of this graph are all roots from Π .
By [22, V.15], it gives a Dynkin diagram of Φ if the numbers p(Φ) and 1 put into correspondence
with the long and short roots r ∈ Π , respectively. For example, we get the following different Dynkin
diagrams

� ����Bn: (n � 3)
1 2 2 22

� ����Cn: (n � 2)
2 1 1 11

G2: � �
1 3

The twisted group mΦ(K ) is the centralizer in Φ(K ) of a twisting automorphism θ ∈ Aut Φ(K ) of
order m = 2 or 3. According to [23, § 11], θ is the composition of a graph automorphism τ and a non-
trivial automorphism σ : t → t̄ (t ∈ K ) of K satisfying the condition p(Φ)σm = 1. We also denote by ¯
the symmetry of Coxeter graph. For certain extension of the symmetry ¯ of order m on the Coxeter
graph to the root system Φ , we have θ(Xr) = τ (Xr) = Xr̄ (r ∈ Φ , Xr = xr(K )).

As usual, the “root” elements of mΦ(K ) are given by the subgroups X1
S = mΦ(K ) ∩ 〈Xr | r ∈ S〉 for

certain equivalence classes S of Φ , cf. [23,4]. We now associate the root elements with the ¯-orbits.
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A mapping of a root system to another one is called a homomorphism if it can be extended to a ho-
momorphism of the root lattices of these root systems. By [11, Lemma 7], for p(Φ) = 1 there exists
a homomorphism ζ of Φ onto a root system such that ζ(r) = ζ(s) if and only if either r = s or r̄ = s
or s̄ = r. Therefore, if either (Φ,m) = (D4,3) or m = 2 and Φ is of type E6, Dn+1, A2n−1 or A2n

then ζ(Φ) is of type G2, F4, Bn , Cn or BCn [22, V.16], respectively, cf. [4, Remark 13.3.8] and [11,
Lemma 8].

When S is an ¯-orbit in Φ , S has type A1, A1 × A1 or A1 × A1 × A1, by Propositions 13.6.3
and 13.6.4 in [4]. Then X1

S = xS(F ) 	 F + , where F is the subfield {t ∈ K | t̄ = t} = ker(1 − σ), K or K ,
respectively for each type, and F + is the additive group of F . If S = {r, r̄, r + r̄} has type A2 then Φ is
of type A2n and

X1
S = {

xS(t, u)
∣∣ xS(t, u) = xr(t)xr̄(t̄)xr+r̄(u), u, t ∈ K , u + ū = ±tt̄

}
.

For the ¯-orbits {r + r̄} and {r, r̄}, we denote, respectively, xr+r̄(ker(1+σ)) by X2R , where 2R = ζ(r + r̄),
and xR(K ) by XR , where R = ζ(r), and XR is the system of representatives xR(t) = xr(t)xr̄(t̄)xr+r̄(t̃)
(for all t ∈ K ) of cosets in X1

S by the subgroup X2R , and ˜ is a transformation of K . In the remaining
cases, S has type B2 or G2 (see [4, Proposition 13.6.4]), and mΦ(K ) is of type 2G2, 2 B2 or 2 F4. Then
S is the union of ¯-orbits having representatives r, r + r̄ (and also 2r + r̄ for type G2). We now use the
root subsets α(K ) = XR , β(K ) = X2R , and γ (K ) = X3R , which were defined in Proposition 13.6.4 (vi)
and (vii) in [4].

Thus, the ¯-orbit α of each root r ∈ Φ uniquely determines a root subset Xα in mΦ(K ). The set of
all such α will be denoted by mΦ . If α is of order 1 then α is said to be of the first type. Choosing
all α with r ∈ Π(Φ) we get a basis Π(mΦ) for mΦ . If p(Φ) = 1 then mΦ = ζ(Φ), and Π(mΦ) =
ζ(Π(Φ)). Thus, for type 3 D4, the root system ζ(Φ) is of type G2 with r,q ∈ Π(Φ), q = q̄, and we
have

Xa = xa(K ), a = ζ(r)
(
xa(t) := xr(t)xr̄(t̄)x¯̄r(¯̄t), t ∈ K

)
,

Xb = xq
(
ker(1 − σ)

)
, b = ζ(q)

(
xb(t) := xq(t), t = t̄

)
.

By analogy with [13], G(K ) denotes a group of Lie type associated either with the system G = mΦ

or G = Φ . We fix a basis Π for G and the set G+ of all positive roots with respect to Π . We define
a unipotent subgroup U by U = U G(K ): = 〈Xs | s ∈ G+〉, cf. [4,23,13].

Let {r}+ be the family of s ∈ G+ with nonnegative coefficients in the linear expression of s − r
by Π . We set

T (r) := 〈
Xs

∣∣ s ∈ {r}+〉
, Q (r) := 〈

Xs
∣∣ s ∈ {r}+ \ {r}〉 (r ∈ G).

If H ⊆ T (r1)T (r2) · · · T (rm) and the inclusion fails under every substitution of T (ri) by Q (ri) then
L(H) = {r1, r2, . . . , rm} is said to be the set of corners of H .

As in [4, § 4.4], take the K -algebra L K with Chevalley basis {er (r ∈ Φ), . . .}. Denote by NΦ(K ) the
subalgebra in L K with the basis {er | r ∈ Φ+}. The Lie products er ∗ es = crser+s (crs = 0 for r + s /∈ Φ)
define the structure constants of Chevalley basis in NΦ(K ). Chevalley’s commutator formula gives
[Xr, Xs] = xr+s(crs K ) mod Q (r + s). Using also relations from [13, § 4 (I)] and [16, Theorem 2] for the
twisted groups, we easily get

Lemma 1.1. Let U = U G(K ) and r, s, r + s ∈ G+ . Then either [Xr, Xs] = Xr+s mod Q (r + s) or G = Φ ,
crs K = 0 = p(Φ)!K , and [Xr, Xs] ⊆ Q (r + s).

It is well known that every element γ ∈ U is uniquely represented as the product of root elements
xr(γr), r ∈ G+, arranged according to a fixed order in G , cf. [23, Lemma 18] (we call such repre-
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sentation as the canonical decomposition of γ ). The coefficient γr is said to be an r-projection of γ .
Putting

π(γ ) :=
∑

r∈Φ+
γrer

(
γ ∈ UΦ(K )

)
, α ◦ β := π

(
π−1(α)π−1(β)

) (
α,β ∈ NΦ(K )

)
,

we define an adjoint group (NΦ(K ),◦), which is isomorphic to the group UΦ(K ). Similar represen-
tation of UmΦ(K ) for p(Φ) = 1 as an adjoint group of certain Kσ -module NmΦ(K ) is used in [13]
and [16].

The set of r-projections of all elements in a subset H ⊆ U G(K ) is called an r-projection of H . If an
s-projection of γ ∈ H is the product of its r-projection and a fixed non-zero scalar, not depending on
a choice of γ , then r, s are said to be connected in H . If also there exist p, r + p, s + p ∈ G+ then r
and s are said to be p-connected in H . It is easy to prove the following

Lemma 1.2. Let H � UΦ(K ), p(Φ)!K = K , r be a corner in H, s ∈ {r}+ , and s �= r. Then H possesses a sub-
group with a corner s and with the s-projection K .

The highest root in G+ is denoted by ρ . If r ∈ G then r = ∑
α∈Π cαα with cα ∈ Z. The height of r

is defined by ht(r) = ∑
α∈Π cα . For every system G , the Coxeter number h is defined by ht(ρ) + 1 =

h(G) = h. The highest roots of root systems and h are described in [3, Tables I–IX]. When G is of type
2 F4, 2 B2, 2G2 or 2 A2n , we have h = 9,3,4 or 2n, respectively.

The subgroups Ui = 〈Xr | r ∈ G+, ht(r) � i〉 form the standard central series U = U1 ⊃ U2 ⊃ · · · ⊃
Uh = 1 in U , by [4, Theorem 5.3.3] and [13]. We shall use some property of the hypercenters
(Lemma 1.3). Some subgroups A and B in a group are said to be incident if A ⊆ B or B ⊆ A. Under the
conditions of the following lemma the upper central (or hypercentral) series 1 = Z0 ⊂ Z1 ⊂ Z2 ⊂ · · ·
is standard, by [13]. Set t(U ) = 6,3 or 1 for G = E8, E6, An , respectively,

t(U ) = 4 for G = G2, F4,
2 F4,

2 E6, E7, or 2K = K and G = 3 D4,

and t(U ) = 2 in the other cases. By [14, Lemma 3], we have

Lemma 1.3. Let U = U G(K ), and let p(Φ)!K = K for G = Φ . Then each normal subgroup of U is incident
with every hypercenter Zi , 0 � i � t(U ).

The centralizer C(T (r)) of T (r) in U was determined in [13]. For G = Φ , we distinguish also some
subgroups of the following form:

α(K )
(
C
(
T (r)

) ∩ C
(
T
(
r′))), α(t) := xr(t)xr′(t) (t ∈ K ), r + r′ = ρ; (1)

β(K )
(
C
(
T (r)

) ∩ C
(
T
(
r′))){xr(t)xr′(t)xr+p(ct)

∣∣ t ∈ K
}

(c ∈ K ),

β(t) := xr+p(t)xr′+p(t), r + r′ + p = ρ. (2)

The group U of type An (denoted by U An(K )) is isomorphic to the unitriangular group U T (n +
1, K ). By [10, Theorem 3] (for a finite field K of odd order, see also [27, Theorem 7]), we get

Lemma 1.4. Up to conjugation by a diagonal automorphism, every maximal abelian normal subgroup of
U An(K ) is either T (p), or (1), or (2) for 2K = 0, n � 3 and some r, r′ ∈ Φ+ , p ∈ Π .



102 V.M. Levchuk, G.S. Suleimanova / Journal of Algebra 349 (2012) 98–116
2. Extremal subgroups

Let U = U G(K ). According to [18] and [19], a normal abelian subgroup A in U is said to be
extremal if A � U2. Therefore, there exists a simple corner p in A, i.e., A � 〈Xr | r ∈ G+, r �= p〉 (see
also [4, § 8.1]). For the purpose of application to the revision of the classification of finite simple
groups and etc., C. Parker and P. Rowley [18–20] studied the groups U , having extremal subgroups,
and simple corners of such subgroups.

Now, we correct some flaws in [18] and [19]. For U D4(K ) over a field K of characteristic 2, the
example in [18, pp. 396–397] gives some extremal subgroups with three simple corners (see also [18,
Theorem 1.3]). By [19, Theorem 1.2], if U 2 D4(K ) has an extremal subgroup with two simple corners
then 2K = 0. But we now show that if U 2 D4(K ) and U D4(K ) were chosen as above, then, in fact,
|K | = 4 and |K | = 2, respectively.

Let Φ be a root system of type D4, and let ¯ be a symmetry of order 3 of the Coxeter graph
of Φ . We consider simple roots r, r̄, ¯̄r, and q = q̄. Clearly, U D4(K ) and U 2 D4(K ) contain the ele-
ment

ϑ := xr(1)xr̄(1)x¯̄r(1)xs−r(1)xs−r̄(1)xs−¯̄r(1) (s := q + r + r̄ + ¯̄r). (3)

Theorem 2.1. The groups U D4(K ) for |K | > 2 and U 2 D4(K ) for |K | > 4 have no extremal subgroups with
� 3 or � 2 simple corners, respectively. The normal closure of (3) in U D4(2), and U 2 D4(4) is an extremal
subgroup with three and two simple corners, respectively.

Proof. Note that if U is of type D4 and 2 D4 then every its extremal subgroup contains U4, by
Lemma 1.3, and also U3 = C(U3).

Let U = U D4(K ). Suppose that r, q, s are chosen as above. Assume that there exists an extremal
subgroup M in U with � 3 simple corners. Then we have

U4 ⊂ M ⊂ C(U4) = T (r)T (r̄)T (¯̄r), L(M) = {r, r̄, ¯̄r},
U/T (r) 	 U/T (r̄) 	 U/T (¯̄r) 	 U T (4, K ).

By [10, Theorem 3], all corners in M are q-connected and 2K = 0. Setting

ξ(t) := xr(t)xr̄(t)x¯̄r(t), η(t) := xq+r(t)xq+r̄(t)xq+¯̄r(t), κp(t) := xs−p(t)xs−p̄(t),

up to conjugation of M by a diagonal automorphism we easily obtain

M = ξ(F ) mod U2, M ∩ U2 = [M, Xq] = η(K ) mod U3,

M ∩ U3 = [
η(K ), U

] = U4 ·
∏

p∈Π\{q}
κp(K ),

where F is an additive subgroup F of K and F ⊇ G F (2). Therefore, for some map ˜ : F → K and
vr, vr̄, v ¯̄r ∈ K , every γ ∈ M may be written modulo M ∩ U3 in the form

γ = ξ( f )
(
xq+r(vr)xq+r̄(vr̄)xq+¯̄r(v ¯̄r)

)
xs−r( f̃ ) ( f ∈ F ).

Since s + q is equal to the highest root ρ and [ξ(F ), κp(K )] = 1, we obtain

[
γ ,κp(K )

] = [
xq+r(vr)xq+r̄(vr̄)xq+¯̄r(v ¯̄r), κp(K )

] = xρ

(
(v p + v p̄)K

) = 1
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and therefore vr = vr̄ = v ¯̄r . Consequently,

γ = ξ( f )xs−r( f̃ ) mod M ∩ U2.

Also we note that every ω ∈ M ∩ U2 may be written modulo M ∩ U3 as ω = η(t)xs−r(t′) for some
t, t′ ∈ K .

Now, taking into account that U3 is abelian, we obtain

1 = [γ ,ω] = [
γ , xs−r

(
t′)][ξ( f ),η(t)

][
xs−r( f̃ ),η(t)

]

= xs
(
t′ f

)
xρ( f̃ t)

[
ξ( f ),η(t)

] = xs
(
t′ f + f 2t

)
xρ

(
f̃ t + f t2).

When f = 1, the equality t′ f + f 2t = 0 implies t′ = t for every t ∈ K .
Analogously, for all f ∈ F and t ∈ K , we obtain f = f̃ , t2 + t = 0, and hence |K | = 2 = |F |. Conse-

quently, M coincides with the normal closure

{(
U4 × 〈[

ϑ, xq+r(1)
]
,
[
ϑ, xq+r̄(1)

]〉)
�

〈[
ϑ, xq(1)

]〉}
� 〈ϑ〉 (4)

of the element ϑ from (3) in U D4(2). Moreover, (4) is the unique extremal subgroup in U D4(2) with
three simple corners.

Let M be an extremal subgroup in U = U 2 D4(K ) possessing at least two simple corners. Take
the twisted automorphism θ ∈ Aut D4(K ) of order 2 such that θ(xr(1)) = xr̄(1), θ(X ¯̄r) = X ¯̄r . Then the
system ζ(Φ) is of type B3 and L(M) = {a,b}, where a = ζ(r), b = ζ(¯̄r).

Up to conjugation by a diagonal automorphism, we obtain ϑ ∈ U2 M . Using the argument of previ-
ous case, we get

xa+ζ(q)+b(Kσ )U4 = [[ϑ, Xζ(q)], Xb
] ⊂ M, |Kσ | = 2,

and, finally, M coincides with the subgroup (4) in U D4(2) ∩ U 2 D4(4). This completes the proof of
Theorem 2.1. �

A description of maximal abelian normal subgroups of U in Sections 3–5 and [15, Theorem 5] (for
the classical types) gives also a description of extremal subgroups and hence a new solution to the
Parker–Rowley problem.

3. The case of Lie rank ��� 2

Let U be the group U G(K ) of exceptional type over a field K . In this section we prove the following
theorem.

Theorem 3.1. If U is of rank � 2 then all maximal abelian normal subgroups in U are exhausted by the
following subgroups:

(a) 〈γ 〉U2 (γ ∈ U \ U2) for G = 2 B2;
(b) U2 for G = 2G2 (or G = G2 and 3K = 0);
(c) U3 for G = G2 if 6K = K , and, additionally, βc(K ) · U4 (c ∈ K ) for 2K = 0, and also 〈α〉 × 〈β1(1)〉 for

|K | = 2, where

α = xa(1)x2a+b(1), βc(t) = xa+b(t)x2a+b(tc);
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(d) U3 for G = 3 D4 , and, when 2K = 0, additionally, up to conjugation by a diagonal automorphism,
βc(Kσ )x2a+b(K 1+σ ) · U4 (c ∈ K ), and also

〈α〉 × 〈
β1(1)

〉 × x2a+b
(

K 1+σ
)

if |Kσ | = 2.

Proof. Consider an arbitrary maximal abelian normal subgroup M of U . Note that the Coxeter num-
ber h is even and Uh/2 is an abelian normal subgroup for every root system Φ of type �= An .

The Coxeter number of a root system of type G2 is equal to 6. Therefore, the normal subgroup U3
(i.e., T (2a + b)) is abelian in the group U of type G2 or 3 D4. For M � U3, the intersection M ∩ U2 has
the corner a + b and

U4 = [Xa, M ∩ U2]U5 ⊆ M ⊆ C(U4) = T (a).

Thus, up to conjugation of M by a diagonal automorphism, there exist some additive subgroups F , Q ,
P of K (1 ∈ Q , 1 ∈ F or F = 0) and a map ˜ : Q → K such that

M = xa(F ) mod U2, M ∩ U2 = β(Q )x2a+b(P )U4,

where β(v) := xa+b(v)x2a+b(ṽ) ∈ M (v ∈ Q ).
Suppose that U = U G2(K ). If 6K = K then U3 is a self-centralizing subgroup and each normal

subgroup H of the group U G2(K ) is incident with U3 by Lemma 1.3. It follows that M = U3. Since
[M ∩ U2, M] = x2a+b(2F K ) mod U4, we have 2F = 0. In particular, T (a + b) (i.e., U2) is a unique
maximal abelian normal subgroup for 3K = 0.

When 2K = 0, the relations

[
β(Q ), x2a+b(P )

] = x3a+b(3Q P ) mod U5,
[
β(u),β(v)

] = x3a+2b
(
3(uṽ + vũ)

)

show that P = 0 and ṽ = vd (v ∈ Q ) for a fixed d = 1̃ ∈ K . Consequently, the intersection M ∩ U2 is
contained into the abelian normal subgroup

Mc,d = {
xa+b(ct)x2a+b(td)

∣∣ t ∈ K
}

U4
(
(c,d) �= (0,0)

)

for c = 1. Assume that M � U2. Then 1 ∈ F and α = xa(1)x2a+b( f ) ∈ M for f ∈ K . Since [α, Xb]U4 ⊆
M ∩ U2, we obtain

M ∩ U2 = M1,1, 1 = [α, M1,1] = x3a+2b
({

t2 + t f
∣∣ t ∈ K

})
.

Hence, f = 1 and |K | = 2. On the other hand, 〈xa(1)x2a+b(1)〉M1,1 is an abelian normal subgroup of
order |K |4 = 24 for |K | = 2. If |K | > 2 then M = U3 = M0,1 or M = M1,d for an arbitrary d ∈ K .

For U of type 3 D4, the ideal K 1+σ+σ 2 = {t + t̄ + ¯̄t | t ∈ K } of the subfield Kσ is non-zero (see
also [19, Lemma 2.3]), and hence Kσ = K 1+σ+σ 2

. Since Kσ ∩ K 1+σ = 2Kσ , we get

K ⊇ K 1+σ + K 1+σ+σ 2 ⊇ Kσ 2 = K , K = K 1+σ + Kσ ;
1 = [[

Xa, β(1)
]
, β(1)

] = [
x2a+b

(
K 1+σ

)
, β(1)

] = x3a+2b
((

K 1+σ
)1+σ+σ 2)

.

Hence, 0 = 2K 1+σ+σ 2 = 2Kσ = 2K , whence the sum K 1+σ + Kσ is direct and P = K 1+σ + (P ∩ Kσ ).
Taking into account the relations

1 = [
x2a+b(P ∩ Kσ ),β(1)

] = x3a+2b
(
(P ∩ Kσ )1+σ+σ 2)

,
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we deduce 0 = 3(P ∩ Kσ ) = P ∩ Kσ and hence P = K 1+σ = Pσ . Also, M ∩ U3 centralizes M ∩ U2 and
xa+b(Kσ )U3. Therefore,

1 = [
β
(

Q ∩ K 1+σ
)
, x2a+b(P )

] = x3a+2b
((

P
(

Q ∩ K 1+σ
))1+σ+σ 2)

,

(
(v̄ + ¯̄v)

(
Q ∩ K 1+σ

))1+σ+σ 2 = 0, (v + v̄ + ¯̄v)
(

Q ∩ K 1+σ
)1+σ+σ 2 = 0 (v ∈ K ).

Summarizing the last two equalities, we get (v(Q ∩ K 1+σ ))1+σ+σ 2 = 0 for all v ∈ K . Consequently,
Q ∩ K 1+σ = 0 (otherwise K 1+σ+σ 2 = 0) and Q ⊆ Kσ .

Choose a system β(Q ) of coset representatives of M ∩ U3 in M ∩ U2 such that Q̃ ⊆ Kσ . Using
the isomorphism U 3 D4(K ) ∩ U D4(Kσ ) 	 U G2(Kσ ) we obtain ṽ = dv for d = 1̃. Therefore, M ∩ U2
coincides with

Md = {
xa+b(v)x2a+b(dv)

∣∣ v ∈ Kσ

}
x2a+b

(
K 1+σ

)
U4.

For F �= 0, α = xa(1)x2a+b( f ) ∈ M may be chosen with f ∈ Kσ . The subgroup 〈α〉β(Q )U4 is normal
in U 3 D4(K ) ∩ U D4(Kσ ). As above, 〈α〉β(Q )U4 is abelian if and only if f = 1 and |Kσ | = 2. Note that
〈xa(1)x2a+b(1)〉M1 is an abelian normal subgroup in U 3 D4(K ) for |K | = 8. If |Kσ | > 2 then either
M = U3 or M coincides with Md for an arbitrary d ∈ K .

If K possesses an automorphism σ such that 3σ 2 = 1 then U 2G2(K ) is represented by the ele-
ments (t, u, v) and

(t, u, v)
(
t′, u′, v ′) = (

t + t′, u + u′ − t
(
t′)3σ

, v + v ′ − ut′ + t
(
t′)3σ+1 − t2(t′)3σ )

(see [5, 13.6.4 (viii)] and [23]). The subgroups (0,0, F ), (0, F , K ), and (F , K , K ) in U 2G2(K ) exhaust
all normal subgroups by Lemma 1.3, where F is an additive subgroup of K . Obviously, U2 is abelian
and (F , K , K ) with F �= 0 are not abelian.

In [5, 13.6.4 (vii)], U 2 B2(K ) is represented as

U 2 B2(K ) = {
(t, u)

∣∣ t, u ∈ K
}
, (t, u)

(
t′, u′) = (

t + t′, u + u′ + (t̄)2t′), (5)

where K possesses a non-trivial automorphism ¯ such that ¯̄x2 = x (x ∈ K ). The center Z1 of U 2 B2(K )

is equal to (0, K ) and, by Lemma 1.3, every normal subgroup is of the form either (0, F ) or (F , K )

for an arbitrary additive subgroup F of K . For the commuting elements (t, u) and (t′, u′), we have
(t̄)2t′ = t̄′ 2t . When t′ �= 0, up to conjugation by a diagonal element, we may assume that t′ = 1. In
this case t = (t̄)2 = (¯̄t)4 = t2, whence either t = 0 or t = 1. Therefore, the maximal abelian normal
subgroups of U 2 B2(K ) are exhausted by the centralizers of the elements of order 4; they have the
form (F , K ) with |F | = 2. Thus, Theorem 3.1 is proved. �
4. The normal structure

In this section, we consider the normal structure of U G(K ) and describe the maximal abelian
normal subgroups of groups U En(K ), n = 6,7,8.

Let U = U G(K ) and H ⊆ U . Since H ⊆ ∏
s∈L(H) T (s), there exists a subset F (H) in

∏
s∈L(H) Xs

such that F (H) = H mod
∏

s∈L(H) Q (s). As in [15], F (H) is said to be a frame of H . The following
theorem holds.

Theorem 4.1. Let H be a subgroup in the group U of classical type or of type En over a field K . Assume that
2K = K or U is of type An or 2 An. Then H � U if and only if F ([H, X p]) ⊆ H for each p ∈ Π(G).
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Let us consider the idea of the proof.
Using the representation π from Section 1 of U we define a frame of a subset π(H) in (NG(K ),◦)

by the rule F (π(H)) := π(F (H)). The concept of frame and the representation π allow us to apply
linear methods, cf. [12,13,15,16]. The multiplication ◦ and the addition on the frame F (π(H)) coin-
cide modulo

∑
r∈L(H) π(Q (r)). Also, we may consider an arbitrary frame in the module NG(K ) as

a submodule. When G = Φ , we get

Lemma 4.2. Let H ⊆ UΦ(K ), π(H) be a subgroup in the adjoint or additive group of NΦ(K ), and let p ∈ Φ+ .
Then π(F ([H, X p])) is a K -submodule in NΦ(K ) coinciding with the frame of π(H) ∗ K ep.

Lemma 4.3. Let U = U G(K ), H ⊆ U and p ∈ G+ . Then |L([H, X p])| � 3.

Proof. The standard commutator relations show that every corner in [H, X p] can be written in the
form s + p for s ∈ ⋃

r∈L(H){r}+ . Evidently, |L(H)| � rank G . By the well known classification of root
systems, for G = Φ , the minimal root subsystem of Φ containing L([H, X p]) ∪ {p} has a connected
Coxeter graph of rank � 4. Therefore, |L([H, X p])| � 3. Using the root system ζ(Φ) we get this in-
equality for G = mΦ , p(Φ) = 1. �

Now let U = U G(K ), G = 2Φ , p(Φ) = 1, r, s, r + s ∈ G+ , and let

xr(F ) ⊆ Xr, xs(V ) ⊆ Xs for some F , V ⊆ K , F V �= 0.

Lemma 4.4.

(i) If [xr(F ), xs(V )] ⊆ Q (r + s) then r + s is of the first type, r and s are not of the first type, and, up to
conjugation by a diagonal automorphism, either F ⊆ Kσ , V ⊆ K 1−σ or G = 2 A2n, F , V ⊆ Kσ .

(ii) If [xr(F ), Xs] does not coincide with 0, Xr+s modulo Q (r + s) then s is of the first type, r, r + s are not of
the first type, and F Kσ is a 1-dimensional Kσ -module.

Proof. Firstly, assume that either r (or s) is of the first type or r + s is not of the first type. Then
the basic relations of the twisted group U (cf. [4,23] and [16, Theorem 2]) show that [xr(u), xs(v)] =
xr+s(±η) mod Q (r + s) for η = uv, ūv, uv̄ or ū v̄ , and hence r + s is a corner of the commutator
[xr(F ), xs(V )].

Thus, the assumption [xr(F ), xs(V )] ⊆ Q (r + s) shows that r + s is of the first type, r and s are
not of the first type, and η = 0 for all u ∈ F , v ∈ V , where either η = uv + ū v̄ (uv̄ + ūv) or η =
uv̄ − ūv when G = 2 A2n . Up to conjugation by a diagonal automorphism, we may assume that 1 ∈ F .
It immediately follows that either V ⊆ K er(1 + σ) = K 1−σ , F ⊆ Kσ or G = 2 A2n , V , F ⊆ Kσ .

When [xr(F ), Xs]Q (r + s) does not coincide with Q (r + s) and T (r + s), we easily infer that s is of
the first type, r + s and r are not of the first type, and F Kσ is a 1-dimensional Kσ -module. �

Using Lemma 1.1, Lemma 4.4, and (ii) we obtain the following lemma.

Lemma 4.5. Let H � U G(K ) and L(H) = {r}. Then either H = Q (r)F (H) or (a) G = 2Φ , p(Φ) = 1, r is not
of the first type, r-projection of H generates a 1-dimensional Kσ -module and there exists s ∈ Π(G) of the first
type with r + s ∈ G+ , or (b) G = Φ , p(Φ)!K = 0 or G = 3 D4 , 2K = 0.

It is well known that for G = 2 A2n every s ∈ Π(G) is not of the first type. Using Lemmas 4.4
and 4.5 repeatedly we get the following theorem from [15].

Theorem 4.6. Let U G(K ) be of type Bn, Cn for 2K = K or of type An, 2 An. A subgroup H is normal if and only
if for each corner r of H and p ∈ Π(G) with r + p ∈ G either
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(A) F ([H, X p])Q (r + p) ⊆ H

or G = Bn and

(B) for some q ∈ Π(G) two corners in [H, X p] are q-connected, two corners in [H, Xq] are connected, and
F ([H, X p])F ([H, Xq])Q (r + p, r + p + q) ⊂ H.

For the group U of type En , the analogue of this theorem is not satisfied [25]. By [15, Theorems 3
and 5], for U of type Dn and 2 Dn there exists a normal subgroup M such that the height of commuta-
tor [[. . . [[M, U ], U ] . . .], U ] grows unboundedly together with the grows of n, where the commutator
is not generated by the root elements of M . To finish the consideration of remaining groups U in
Theorem 4.1 we use the normal closures of subgroups which are similar to the subgroups from The-
orem 2.1, and we get

Lemma 4.7. If H � U G(K ) for type Dn (or 2 Dn) and F ([H, X p]) � H for some p ∈ Π(G) then there
exist simple corners r, r̄ (respectively, ζ (r)) and a p-connected corner in H which have the projections of
order 2.

Our description of abelian normal subgroups uses a specific notation.
For every Ψ ⊆ G+ , we set XΨ = 〈Xr | r ∈ Ψ 〉. A subset Ψ in G+ is called normal if {s}+ ⊆ Ψ for all

s ∈ Ψ , and hence XΨ � U G(K ). By [17], a subset Ψ in Φ+ is called abelian if r + s /∈ Φ for all r, s ∈ Ψ .
Then XΨ is the direct product of some root subgroups. For H ⊆ U G(K ), put

Ψ (H) = {
r ∈ G+ ∣∣ H ∩ Xr �= 1

}
. (6)

Denote by Ψ̂ (H) the set of all corners of the elements in H , which are not in Ψ (H), and also all sums
in G+ of such corners. Thus, for the subgroup H in UΦ(K ) of the shape (1) or (2) from Lemma 1.4,
Ψ̂ (H) is {r, r′,ρ} or {r, r′, r + p, r′ + p,ρ}, respectively.

Further, we use the elements α(t) and β(t) from (1) and (2). By [15], for 2K = 0, U Dn(K ) has
a unique maximal abelian normal subgroup M0 possessing some simple corners r and r′ = r̄ with
α(1) ∈ M0 and Ψ̂ (M0) = {r}+ ∪ {r′}+ . For n = 4 and some p,q ∈ Π(Φ), M0 is of the shape

α(K )β(K )
{

xr+p+q(t)xr′+p+q(t)
∣∣ t ∈ K

}(
C
(
T (r)

) ∩ C
(
T
(
r′))). (7)

Theorem 4.8. Let M be a maximal abelian normal subgroup of the group U = UΦ(K ), Ψ = Ψ (M) and
p(Φ)!K = K . Then XΨ ⊆ M and for M �= XΨ , up to conjugation by diagonal automorphism, there are two
cases:

(i) M is of the form (1) and XΨ̂ 	 U T (3, K );
(ii) 2K = 0, p(Φ) = 1, XΨ̂ ∩ M has p-connected corners for a simple root p.

Moreover, in (ii) one of the following subcases holds:

(a) M is of the form (2) and X p XΨ̂ 	 U T (4, K ),
(b) U = U D4(2) = XΨ̂ X p,
(c) U is of type Dn, Em, and XΨ̂ × Xs 	 [U D4(K ), U D4(K )] for some s ∈ Ψ ,
(d) M is of the form M0 or (7), respectively, for types Dn, Em.

Proof. Using Lemmas 1.2 and 4.5, we easily find that Ψ and Ψ ∪ {r}+ are commutative normal sets
in Φ+ for r ∈ L(M). The subgroup XΨ centralizes M , and hence XΨ ⊆ M . Obviously, M = XΨ if
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and only if Ψ is a maximal commutative normal set in Φ+ . Let Ψ̂ = Ψ̂ (M). Assuming M �= XΨ we
get

L(XΨ̂ ) = L(M ∩ XΨ̂ ), XΨ =
⋂

r∈L(XΨ̂ )

C
(
T (r)

)
, M = (M ∩ XΨ̂ ) × XΨ \(Ψ ∩Ψ̂ ).

Each root r in Ψ̂ \(Ψ ∩Ψ̂ ) does not commute with at least one root of Ψ̂ \(Ψ ∩Ψ̂ ), since Xr centralizes
no M . Therefore, each corner in M ∩ XΨ̂ is connected with another corner in M ∩ XΨ̂ .

If there exist corners r and r′ in M ∩ XΨ̂ which are not commuting then [M, Xr][M, Xr′ ] ⊂ M , and
the root systems from [3] give

XΨ̂ 	 U T (3, K ), Ψ̂ = {
r, r′, r + r′}, XΨ = C

{
T (r)T

(
r′)}, r + r′ = ρ ∈ Ψ.

Then, by Lemma 1.4, M is conjugate by a diagonal automorphism to (1).
In the other cases, for a simple root p, there exist some p-connected corners r and r′ in M ∩ XΨ̂

and {r, r′, r + p, r′ + p, r + r′ + p} ⊆ Ψ̂ holds. If this inclusion turns into an equality then p(Φ) = 1,
2K = 0, M is reduced to the form (2), and

r′ + r + p = ρ, Xp XΨ̂ 	 U T (4, K ).

In the other cases, for type Dn and |L(XΨ̂ )| = 2, we have XΨ̂ = T (r)T (r̄) by [15]. Up to conjugation
by a diagonal automorphism, the subgroup M in U is of the shape (7) if U is of type Em .

The case |L(XΨ̂ )| = 3 is possible when U is of type Em and Dn . Then two of three corners r1, r2,
r3 in M ∩ XΨ̂ are p-connected, two of them are q-connected, and XΨ̂ × Xs 	 [U D4(K ), U D4(K )] for
some s ∈ Ψ and some simple roots p, q �= p. In this case, M has the form

{
xr1(t)xr2(t)xr3(t)xr2+p(ct)

∣∣ t ∈ K
}{

xr1+p(t)xr2+p(t)
∣∣ t ∈ K

}{
xr1+q(t)xr3+q(t)

∣∣ t ∈ K
}

XΨ . (8)

In the remaining cases, for U of type Dn , M has three simple corners and U = U D4(2) = XΨ̂ Xq (see
Theorem 2.1 and [15, Theorem 5]). �

We now list the maximal commutative normal sets Ψ ⊆ Φ and all subgroups (1)–(8) in U of
type Em . For U E6(K ), this enumeration is given up to a graph automorphism. For a root system Φ

of type Em corresponding to m = 6,7 or 8, the Coxeter number is equal to h = 12,18 or 30; more-
over,

Zk = Uh−k ⊆ M ⊆ C(Zk), k = 4,6 or 10.

Choose some simple roots αi (1 � i � m) as in [3, Tables V–VII]. When M has a corner of height � 4,
using Lemma 1.2 we infer that either U is of type E7 and M = T (α7) or U is of type E6 and M is one
of the subgroups T (α1) and T (α6) or M ⊆ (U4 ∩ (T (α1)T (α6)))U5. We set

acde . . . f
b

= (
ac[db]′e . . . f

) := aα1 + bα2 + cα3 + dα4 + eα5 + · · · + f αm.

A) The maximal commutative normal sets Ψ

Type E6: {11[10]′10}+ ∪ {01[21]′21}+ , {11[10]′11}+ ∪ {μ̃4 + α1}+ ∪ {μ̃4 + α6}+ , {α1}+ , {μ̃4}+ , where
μ̃4 = (01[21]′10) (the highest root of subsystem of type D4 with the root α4);

Type E7: {α7}+ , {12[32]′210}+ ∪ {00[11]′111}+ , {12[31]′210}+ ∪ {01[21]′111}+ , {12[21]′210}+ ∪
{12[21]′111}+ ∪ {01[21]′211}+ , {12[21]′110}+ ∪ {01[21]′221}+ , {11[21]′210}+ ∪ {01[21]′211}+ ,
{12[21]′100}+ , {01[21]′210}+;



V.M. Levchuk, G.S. Suleimanova / Journal of Algebra 349 (2012) 98–116 109
Type E8: {12[32]′2100}+ , {12[31]′3210}+ , {12[32]′3210}+ ∪ {12[31]′3211}+ , {12[32]′2210}+ ∪
{12[31]′3321}+ , {12[42]′3210}+ ∪{12[31]′2221}+ , {13[42]′3210}+ ∪{12[21]′2221}+ , {23[42]′3210}+ ∪
{11[21]′2221}+ , {12[32]′3210}+ ∪ {12[32]′2221}+ ∪ {12[31]′3221}+ , {01[21]′2221}+ .

B) The roots r defining the subgroup (1)

Type E6: (11[11]′00), (11[11]′10), μ̃4;

Type E7: (11[10]′111), (12[21]′100), (12[21]′110), (11[21]′210), (11[21]′111), (11[11]′111);

Type E8: (12[32]′2111), (12[32]′2211), (12[31]′3211), (12[32]′3211), (12[21]′2221), (11[21]′2221),
(01[21]′2221).

C) The pairs {r, p} defining the subgroup (2)

Type E6: {(11[11]′00),α5}, {(11[11]′10),α6}, {(11[11]′10),α4};

Type E7: {(12[21]′100), (11[21]′211)}, {(12[21]′110), (11[21]′210)}, {(12[21]′110), (11[21]′111)},
{(11[21]′210), (11[21]′111)}, {(12[21]′210), (11[11]′111)}, {(12[31]′210), (11[10]′111)};

Type E8: {(12[31]′3221),(12[32]′2111)}, {(12[31]′3211),(12[32]′2211)}, {(12[31]′2221),(12[31]′3211)},
{(12[31]′2221), (12[32]′2211)}, {(12[21]′2221), (12[32]′3211)}, {(11[21]′2221), (12[42]′3211)}.

D) The corners {r, r′} defining the subgroup (7) with q-connected corners in the commutator group [M, X p]

For types E6, E7, and E8 such corners are {(11[10]10), (01[10]′11)}, {(01[21]′210), (01[21]′111)}, and
{(12[31]′3210), (12[32]′2210)}, respectively.

E) The pairwise p-connected or q-connected corners {r1, r2, r3} of the subgroup (8)

Type E8: {(12[31]′2221), (12[31]′3211), (12[32]′2211)};

Type E7: {(12[21]′110), (11[21]′210), (11[21]′111)};

Type E6: {(11[11]′10), μ̃4, (01[11]′11)}.

5. The groups U of types F4, 2 F4 and 2 E6

For the root system Φ of type F4, we need notation from [13].
By [3, Tables I–IV] and [13], the positive roots of systems of types An−1, Bn , Cn , BCn , and Dn may

be written as

εi − mε j = pi,mj, 1 � j � i � n, m = 0,1,−1.

Set Tiv = T (piv ) for exception the case Ti1 = T (pi,−1)T (pi1) for type Dn . If U G(K ) is a group of
classical type distinct from An then, by [13, Lemma 6 (II)], the centralizer C(Tiv ) in U G(K ) coincides
with T1,−v−1, when either i < n or G = 2 Am or 2K = K , G = Cn; in the remaining cases, we have
C(Tnv ) = T1,−v−1Tnn−1.

Let C+
n = {piv | 0 < |v| � i � n, v �= i}, as above. For type Bn , we set εi − mε j = qi,mj . By analogy

with [13], we represent the positive system F +
4 as the union C+

4 ∪ B+
4 with the given intersection

B+
4 ∩ C+

4 = {
qi0, pi,−i (1 � i � 4)

}
, B+

4 = {
qij

∣∣ 0 � | j| < i � 4
}
.

Also, we use the following diagram from [13]. (The roots are accompanied by the notation (abcd)

from [3, Table VIII].) The substitution ¯ :Φ �→ Φ is defined by the simple rule: p̄i j = qij , q̄i j = pij
(1 � | j| < i � 4).
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The positive roots of the system F4

q4,−3 = p4,−4 (2342)

q4,−2 (1342)

q4,−1 (1242)

p4,−3 = q40 (1232)

p4,−1(1221)

p4,−2

�
�

�
(1231) q41

�
�
�

(1222)

�
�
�

�
�

�

q3,−1(1120)

q3,−2

�
�

�
(1220) p41

�
�
�

(1121)

�
�
�

�
�

�

p4,−1(1221)

�
�
�

q42 (1122)

�
�

�

�
�
�

p3,−3 = q43 (0122)

�
�
�

�
�

�

p3,−2 (0121)p42

(1111)

�
�

�

�
�
�

p43 = q30(1110) p3,−1 (0111)

�
�

�

q31(1100)

�
�
�

�
�
�

�
�

�

q20 = p2,−1

q21 = p1,−1

�
�

�

p31 (0011)

�
�
�

�
�
�

�
�

�

q10 = p21q32

�
�

�

p32

�
�
�

q2,−1=p2,−2

�
�

�

�
�

�

Consider the “root elements” of U 2 F4(K ), cf. Section 1. Let r = qij . Put Rij(t) = xr(t)xr̄(t̄) if either
(i, j) = (2,−1), (3,2), (3,−2) or i = 4, j ∈ {−3,−2,−1,1,2}. When (i, j) = (2,1), (3,1), (3,−1) or
(4,3), according to [4], {r, r̄, r + r̄, r + 2r̄} is a class of type B2 and we set

Rij(t) = xr̄(t̄)xr(t)xr+r̄(tt̄) (t ∈ K ).

By [13, § 4 (I)], Uk in U 2 F4(K ) is generated by the elements Rij(t) corresponding to the columns
with number � k in the following table:
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R21 R2,−1 R3,−1 R3,−2

R32 R31 R43 R42 R41 R4,−1 R4,−2 R4,−3.

Recall that the system 2Φ of type 2 E6 is associated with a root system of type F4. Choose the
following subgroups in U F4(K ) and U 2 E6(K ) with F = K and F = Kσ , respectively:

T (q43)U6, T (p4,−1)T (q3,−2), T (p4,−1)
{

xq3,−2(t)xq42(t)
∣∣ t ∈ F

}; (9)

T (p42)Xq43 , T (p42)Xp43 , T (p3,−2), T (p3,−2)
τ , T (q3,−2)Xp41 Xp3,−2 ; (10)

{
xp3,−2(t)xp42(t)

∣∣ t ∈ K
}

S, S = T (q43)T (p41) or T (q3,−2)Xp41 ; (11)
{

xq3,−2(t)xq42(t)
∣∣ t ∈ K

}
T (p4,−1)Xp41 S, S = Xp43 Xp42 or Xp3,−2 ; (12)

〈
xp43(1)xq43(d)

〉
T (p42)

(
d ∈ K ∗); (13)

[〈
xp3,−2(t)xp42(t)

∣∣ t ∈ K
〉 × 〈

xq3,−2(t)xq42(dt)
∣∣ t ∈ K

〉]
T (p4,−1)Xp41 . (14)

The main theorem of this section is the following one.

Theorem 5.1. Up to conjugation by a diagonal automorphism, the maximal abelian normal subgroups in
U F4(K ) and U 2 E6(K ) are exhausted by the subgroups (9) for 2K = K ; when 2K = 0, they are exhausted
by the subgroups (10)–(14) and, respectively, by (9), (T (p3,−2) ∩ E6(Kσ ))U7 , and

{
xp41(t)xp4,−1( f t)

∣∣ t ∈ F
}

xp4,−1(Kσ )T (q43)U7 ( f ∈ K \ Kσ ). (15)

In U 2 F4(K ), they are exhausted by the subgroups

〈
R43(1)

〉
R42(K )U5,

{
R3,−2(t)R42(ct)

∣∣ t ∈ K
}

U5 (c ∈ K ). (16)

Proof. Note that if the roots r, s, and r + s from F +
4 do not lie simultaneously in one of the subsys-

tems B+
4 or C+

4 then they lie in one of the following subsystems of type B+
2 :

{p3,−v ,q3,2v , p4,2v ,q4v}, {p3,2v ,q3,−v , p4v ,q4,2v},
{p3v ,q3v , p4,2v ,q4,2v}, {p3,2v ,q3,−2v , p4,−v ,q4v}, |v| = 1.

Also we have U 2 E6(K ) = 〈xpiv (K ), xqiv (Kσ ) (1 � |v| < i � 4)〉.
Consider an arbitrary maximal abelian normal subgroup M in U of type F4 and 2 E6. When

p41-projection of M is zero, we get

T (q3,−2)T (q43) ⊃ M = C(M) ⊃ C
(
T (q3,−2)T (q43)

) ⊇ T (p4,−1).

Let F = K or F = Kσ as in the theorem. Since Xq42 Xq3,−2 Xq4,−3 	 U T (3, K ) by Lemma 1.4, we obtain
the subgroups (9).

Further, we may assume that the p41-projection in M is non-zero. Then the p41-projection P of
the intersection M ∩ U5 is also non-zero because of M � U . Up to conjugation of M by a diagonal
automorphism, we have 1 ∈ P . Commuting M ∩ U5 firstly with T (p1,−1) and then with U , we find the
subgroup xp4,−1 (F P )T (p4,−2) in M (see the diagram). Since the centralizer of this subgroup coincides
with T (p2,−1), we obtain M ⊆ T (p2,−1) and 2K = 0, because of the equality [xp4,−1(F P ), M ∩ U5] = 1.
Thus, if 2K = K then M is one of the subgroups (9).

Note that U 2 E6(K ) ∩ E6(Kσ ) 	 U F4(Kσ ). For type 2 E6 we also infer that the Kσ -module F P is
one-dimensional, and 1 ∈ P ⊆ Kσ . The p4,−1-projection of the subgroup M ∩ (T (p4,−1)T (q43)) is
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contained in Kσ , since M is an abelian subgroup. Taking into account the normality of M , we ob-
tain

T (p3,−2) ⊇ M ⊇ C
(
T (p3,−2)

)
, M ∩ T (p41) = α(P )xp4,−1(Kσ )T (q42)U7

where α(t) = xp41 (t)xp4,−1 (t̃) for a suitable mapping ˜ : P → K . Set f = 1̃ and t0 = t̃ + f t . Using
[α(t),α(1)] = 1 we find

t̃ + ¯̃t + f t̄ + f̄ t = 0, t0 = t̄0, t̃ = t0 + f t ∈ f t + Kσ (t ∈ P ).

Clearly, (T (p3,−2) ∩ E6(Kσ ))U7 is an abelian normal subgroup. Consequently, if the p3,−2-projection
in M is zero then we have f ∈ K \ Kσ . Therefore, P = Kσ , and M is the second subgroup in (15).
Similarly

M = β(P )xp41(Kσ )xp4,−1(Kσ )T (q42)U7, β(t) = xp3,−2(t)xp4,−1( f t)

in the case when M has the corner p3,−2. But in the latter case the condition [β(t), β(1)] = 1 gives
f t̄ + f̄ t = 0 (t ∈ P ). Therefore, f ∈ Kσ , and M coincides with the subgroup (T (p3,−2) ∩ E6(Kσ ))U7.

In U F4(K ), the subgroup X p41 T (p4,−1) centralizes U5. Using the normality of M , we also find
the corner p41 of the intersection M ∩ T (p41) for the case M � U5. Therefore, the p2,−1-projection
and p3,−1-projection in M are zero, i.e., M ⊆ T (p43)T (q2,−1). If either the q2,−1-projection or the
q3,−1-projection in M is non-zero then M ∩ T (q41) has the corner q41, and M ∩ T (q41) does not
centralize M , a contradiction. It follows that

T (p4,−1)Xp41 ⊆ M ⊆ Xp43 T (p42)T (p3,−2)T (q3,−2).

Since 1 = [[M, T (q32)], M], the q3,−2-projection should be zero if the q43-projection in M is non-
zero. Similarly, the p3,−2-projection in M is zero if the p43-projection is non-zero. For the center Z
of U , the subgroup B = X p43 Xq43 Z has a direct complement D in X p43 Xq43 T (p42), and

Z × D = T (p42) ⊆ M ⊆ B × D, M = (M ∩ B) × D, B 	 U B2(K ).

If p43 and q43 are corners in M then they are connected. By [15, Theorem 5], the projections on
these corners have order 2. Thus, M ∩ B is a maximal abelian normal subgroup in B , and M is the
subgroup (13).

The other cases for the non-zero p43-projection or q43-projection give one of the subgroups
T (p3,−2), T (q3,−2)X p43 X p42 X p41 (i.e., T (p3,−2)

τ , when K is perfect and hence there exists a graph
automorphism), T (p42)Xq43 , T (p42)X p43 and the first of subgroups in (11) and (12). If M ⊆
T (p42)T (p3,−2) then M coincides with one of T (p3,−2), T (p42)T (q43) or (11).

Considering the subgroups M with the corners p3,−2 and q3,−2 we get the subgroups
T (q3,−2)X p41 X p3,−2 , (14) and the remaining subgroups in (11) and (12).

By Lemma 1.3 every normal subgroup in U 2 F4(K ) is incident with the abelian normal subgroup
Z4 = U5. Therefore,

Z4 = U5 ⊆ M ⊆ C(Z4) = R43(K )Z5.

The defining relations for the twisted group U 2 F4(K ) in terms of generators Riv (t) (t ∈ K ) were
described in [13, Lemma 4]. In particular,

[
R43(a), R3v(b)

] = R4v(ab)
(|v| � 2

)
,

[
R4v(a), R3,−v(b)

] = R4,−3(ab) (v = ±2).
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Also, we obtain the isomorphic embeddings t → Riv(t) of the additive group K + into Riv(K ) for all
(i, v) such that (i, v) /∈ {(2,1), (4,3), (3,1), (3,−1)}. For the remaining cases, using the representa-
tion (5), we get the following isomorphic embeddings of the group U 2 B2(K ) into U 2 F4(K ):

(t, u) → Riv(t)Ri,−v(u)
(
(i, v) = (2,1), (4,3)

)
, (t, u) → R3v(t)R4,2v(u)

(|v| = 1
)
.

The subgroup T (R42) centralizes R43(K )T (R42). For M ⊆ Z5, the isomorphism

R42(K )R3,−2(K )R4,−3(K ) 	 U T (3, K )

and Lemma 1.4 give the equality M = {R3,−2(t)R42(td) | t ∈ K }Z4 for a fixed d ∈ K .
Let Miv be an Riv -projection of M . Since

1 = [
M,

[
M, R32(1)

]] = [
M, R42(M43)

] = R4,−3(M3,−2M43),

we get M3,−2M43 = 0. If M3,−2 = 0 and hence M ⊆ T (R43) then the description of the abelian normal
subgroups in U 2 B2(K ) implies M = T (R42)〈α〉 for an arbitrary α ∈ T (R43)\ T (R42). Thus, Theorem 5.1
is proved. �
6. Some large P-subgroups

In this section, we consider some application to the problem (1.6) from [7] of description of the
large abelian and normal large abelian subgroups in a finite group U of exceptional Lie type. Under
notation of Theorems 3.1, 4.8 and 5.1, as a consequence, we obtain

Theorem 6.1. Let U = U G(K ) for a finite field K . Then the large normal abelian subgroups in U are the
following:

(a) T (α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6) in U E8(K ), T (α1) and T (α6) in U E6(K ), T (α7) in U E7(K );
(b) 〈γ 〉U2 (γ ∈ U \ U2) for G = 2 B2 , 〈R43(c)〉R42(K )U5 (c �= 0) for G = 2 F4;
(c) T (q43)U6 for 2K = K , G = F4 or 2 E6;
(d) U3 in U G2(K ) for 6K = K and in U 3 D4(K ) for 2K = K ;
(e) U2 for 3K = 0, G = G2 or 2G2 , 〈α〉 × 〈β1(1)〉 in U G2(2), and U3 and βc(K )U4 (c ∈ K ) in U G2(K ) for

2K = 0, |K | > 2;
(f) when 2K = 0, up to conjugation by a diagonal automorphism,

(
T (p3,−2) ∩ E6(Kσ )

)
U7 in U 2 E6(K ), (17)

βc(Kσ )x2a+b
(

K 1+σ
) · U4 (c ∈ K ) and U3 in U 3 D4(K ) for |Kσ | > 2,

〈α〉 × 〈
β1(1)

〉 × x2a+b
(

K 1+σ
)

in U 3 D4(8), (18)

T (p3,−2)
τ , Xp43 T (p42), Xp43 Xp42 Xp41

{
xq3,−2(t)xq42(t)

∣∣ t ∈ K
}

T (p4,−1),

T (p3,−2), Xq43 T (p42),
{

xp3,−2(t)xp42(t)
∣∣ t ∈ K

}
Xq43 T (p41)

and, in addition, 〈xp43 (1)xq43 (1)〉T (p42) for |K | = 2 in U F4(K ).

Now we show that the large normal abelian subgroups in U are large abelian subgroups.
In general, a large normal P -subgroup of a finite group is not a normal large P -subgroup. In fact,

the center of SL(n, K ) is a large normal cyclic subgroup but this group has no a normal large cyclic
subgroup.

We have to prove the inequality a(U ) � b(U ), where a(U ) (and b(U )) is the largest order of all
(respectively, normal) abelian subgroups in U . This fact is well known for the groups of Lie type of
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rank 1 or of classical type, [7] and [16]. Theorem 6.1 explicitly gives the number b(U ) for every U of
exceptional Lie type.

Further, we use the notion of a regular ordering of roots, which agrees with the height function on
roots [4, Lemma 5.3.1]. Taking into account the representation ζ in Section 1 we may use similar
ordering for the twisted system.

Now, in the canonical decomposition of every α ∈ U = U G(K ), the first non-unit cofactor corre-
sponds to the first corner in α. Evidently, if M ⊆ U then for every corner r in M the r-projection
F M(r) of M does not depend on the choice of ordering in G . The following lemma is immediate.

Lemma 6.2. Let M be a subgroup in U G(K ), and let L1(M) be the set of first corners of all elements in M.
Then |M| = ∏

r∈L1(M) |F M(r)|.

By Lemma 1.1, a subgroup XΨ in UΦ(K ) (with p(Φ)!K = K ) is abelian if and only if Ψ is an
abelian subset in Φ+ , and hence {er | r ∈ Ψ } is a basis for an abelian subalgebra in NΦ(K ). According
to E.P. Vdovin [26], a subset Ψ of Φ+ is said to be p-abelian if in the algebra NΦ(K ) over a field K of
characteristic p we have er ∗ es = 0 for all r, s ∈ Ψ . For p(Φ)!K = K , this gives r + s /∈ Ψ , i.e., Ψ is an
abelian subset. Clearly, every abelian subset in Φ+ is always p-abelian for every prime p. The largest
order of abelian and p-abelian subsets in Φ+ is denoted by a(Φ) and a(Φ, p), respectively.

An application of the first corner of the elements in U and Lemma 6.2 give a simplified proof of
the following statement (see [26, § 2]).

Lemma 6.3. Let A be an abelian subgroup in UΦ(K ). Then L1(A) is a p-abelian subset in Φ+ , and
|A| � |K |a(Φ,p) .

A.I. Mal’tsev [17] described the abelian subsets of largest order in Φ+ . His description shows that
there exists a normal abelian subset Ψ of order a(Φ). For UΦ(K ) with p(Φ)!K = K , XΨ is a normal
large abelian subgroup of order |K |a(Φ) , and hence a(U ) = b(U ) = |K |a(Φ) .

Analogously, if p(Φ) = charK = p � 2 then there exists a normal p-abelian subset Ψ in Φ+ of
order a(Φ, p) and a(U ) = b(U ) = |K |a(Φ,p) . For type Cn , this result follows from the description in [2].
By E.P. Vdovin [26], for types G2 and F4 we get, respectively,

XΨ = U2, a(Φ,3) = 4, and XΨ = T (p3,−2), a(Φ,2) = 11.

Also, if Φ is of type G2 then {a,a + b,3a + b,3a + 2b} is a unique 2-abelian subset in Φ+ of order
> 3 and a(Φ,2) = 4. Every abelian subgroup A in U G2(K ) (2K = 0) either is of order |A| � |U3| = |K |3
or

A = 〈
xa(t)x2a+b(st), xa+b(s)x2a+b(st)

〉
U4

(
s, t ∈ K ∗), |A| = 4 · |K |2. (19)

The subgroup (19) is of order � |K |3 if and only if |K | = 2 or 4. If this inequality is strict then |K | = 2
and (19) is a normal subgroup. Therefore, a(U ) = b(U ) holds for all UΦ(K ).

The same holds for the groups U of type 2 F4, 2 B2, and 2G2, since a corner projection of every
their root set Xr coincides with K .

For the remaining groups UmΦ(K ) of type 3 D4 and 2 E6, E.P. Vdovin [26] suggested to use the
description from [17] of abelian subsets in Φ of type D4 and E6. Simplifying this approach, we use
a description of p-abelian subsets of the associated root systems ζ(Φ).

Consider U of type 2 E6 in detail. Then ζ(Φ) is of type F4, and U ∩ U E6(Kσ ) 	 U F4(Kσ ). Let A
be an arbitrary large abelian subgroup in U . By Lemma 4.4, if |F A(r)| > |Kσ | for some root r ∈ L1(A)

then r + s /∈ L1(A) for all s ∈ L1(A). For 2K = K , according to Lemma 6.3, L1(A) is an abelian subset
in ζ(Φ)+ of order � a(ζ(Φ)) = 9. By [17], L1(A) doesn’t contain more than six classes of every fixed
type, and also it doesn’t contain more than three classes of type A1 × A1, i.e., L1(A) possesses no the
roots piv with 1 � |v| < i in the diagram of Section 5. By Lemma 6.2, we obtain

a(U ) = |A| � |Kσ |6 · |K |3 = |Kσ |12 = b(U ).
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If 2K = 0 then L1(A) is a 2-abelian subset, and |L1(A)| � a(ζ(Φ),2) = 11. Also, the description
from [26] and Lemma 4.4 show that the number of all r ∈ L1(A) with |F A(r)| > |Kσ | is less than 3.
Since the number b(U ) coincides with the order |Kσ |13 of the abelian normal subgroup (17), we
get

a(U ) = |A| � |K |2 · |Kσ |9 = |Kσ |13 = b(U ).

Thus, a(U ) = b(U ) holds for all U . We arrived at the following

Theorem 6.4. Let U = U G(K ) for a finite field K . Then a subgroup in U is a large normal abelian subgroup if
and only if it is a normal large abelian subgroup.

Remark. For the groups U G2(2), U 3 D4(8), and U 2 E6(K ) with 2K = 0, Theorem 6.4 allows us to
refine the values a(U ), which by [26] might be 23, 25 or |Kσ |12, respectively. The subgroups (19),
(18) and (17) of orders 24, 26 and |Kσ |13, respectively, were omitted in [26].

Now it is easy to show that if all normal large abelian subgroups in a finite group U are extremal
then all large abelian subgroups in U are normal. We note that for every finite group G of Lie type the
authors have the proof of the following theorem. (See also [16, Theorem 4] for the classical types [24],
and the question in [6, § 1].)

Theorem 6.5. In every finite group U , either each large abelian subgroup is G-conjugate to a normal subgroup
in U or G is of type G2 , 3 D4 , F4 or 2 E6 .
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