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Abstract

We consider rotations on the torus T2, and we classify them with respect to the complexity functions. In dimension one, a
minimal rotation can be coded by a sturmian word. A sturmian word has complexity n + 1 by the Morse–Hedlund theorem. Here
we make a generalization in dimension two.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Sturmian words are infinite words over a two-letter alphabet that have exactly n + 1 factors of length n for each
integer n. The number of factors, of a given length, of an infinite word is called the complexity function. These
words have been introduced by Morse–Hedlund, [14]. They admit several equivalent definitions. One possibility is to
consider the rotation of angle α on the torus T1. Consider a two-letter alphabet corresponding to the intervals (0; 1−α)

and (1 − α; 1). Then, the orbit of any point under the rotation is coded by an infinite word. This word is a sturmian
word if and only if α is an irrational number. If α is rational, then the rotation is periodic and the word is periodic.

A sturmian word can also be defined by the billiard map: A billiard ball, i.e. a point mass, moves inside a polyhedron
P with unit speed along a straight line until it reaches the boundary ∂ P , then it instantaneously changes direction
according to the mirror law, and continues along the new line. Label the faces of P by symbols from a finite alphabet
A whose cardinality equals the number of faces of P . In the case of the square, we can code the parallel faces by the
same letter, and the orbit of a point is coded by an infinite word on two letters. Since the work of Coven–Hedlund, [8],
we know that this word is a sturmian word (under suitable hypothesis on the direction). Thus we have three equivalent
definitions for a sturmian word: An infinite word with n + 1 factors of length n; an infinite word which codes the
orbit of a point under an irrational rotation on the torus T1; an infinite word which codes the orbit of a point under the
billiard orbit inside the square.

Several attempts have been made to extend sturmian words to words over alphabets of more than two letters. An
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approach has been initiated by Rauzy [17], and developed by Arnoux, Rauzy [3]. Here we present another approach.
We consider a rotation on the torus of dimension two, with a natural partition of the torus, see [16]. The orbit of a
point is coded by an infinite word. As in the one-dimensional case, this map can be seen as a billiard orbit inside the
cube coded with three letters. Thus the infinite word can be viewed as the coding of the billiard orbit of a point inside
the cube. The computation of the complexity has been made when the direction satisfies some algebraic conditions.
Under these assumptions the complexity equals n2

+ n + 1. The first proof was given in [1,2], and a general proof in
dimension s ≥ 3 appears in [4]. Moreover, we give a new proof of the three-dimensional result in [5], and we remark
that the proof of [1,2] is false: there exists a minimal direction with a complexity less than n2

+ n + 1.
In this paper we give a complete characterization of the complexity of two-dimensional rotations, and obtain the

complexity of a billiard word in the non-totally irrational cases. Moreover our study allows us to describe the geometry
of a non minimal rotation orbit. In most of the cases it reduces to a one-dimensional translation. The proof could be
generalized to higher dimension, the scheme of the proof is the same using d-dimensional translations instead of
one-dimensional translations.

1.1. Outline of the paper

In this paper, we consider a rotation on the torus T2. This rotation is related to a billiard orbit inside the cube. We
consider a point, and its orbit under the rotation. It gives an infinite word; its complexity is function of the angle of
the rotation. We classify these complexities under the hypothesis fulfilled by the angle of rotation. Since the angle of
rotation is linked to the direction of the billiard orbit, we express the hypothesis in terms of the direction.

In Section 2, we recall some definitions of combinatorics, of the billiard map, and some results about the complexity
of billiard words. In Section 3 we give the statement of the theorem. In Section 4 we prove our result. We split the
proof in different propositions which represent the different cases of the theorem. Most of the time, the proof consists
in a reduction to the one-dimensional case.

2. Background

2.1. Combinatorics

Definition 1. LetA be a finite set called the alphabet. By a language L overA, we always mean a factorial extendable
language: a language is a collection of sets (Ln)n≥0 where the only element of L0 is the empty word, and each Ln
consists of words of the form a1a2 . . . an where ai ∈ A and such that for each v ∈ Ln there exist a, b ∈ A with
av, vb ∈ Ln+1, and for all v ∈ Ln+1 if v = au = u′b with a, b ∈ A then u, u′

∈ Ln .

Remark 2. This definition is closely related to the lamination language defined in [9].

Definition 3. Let L be an extendable, factorial language. The complexity function of the language L is defined by

p : N → N
p(n) = card(Ln).

Definition 4. An infinite word v over the alphabet A is a sequence (vn)n∈N such that vn ∈ A for every integer n.
A subword w of v of length n is a finite word such that there exists n0 ∈ N and w = vn0vn0+1 . . . vn0+n−1. The
set of subwords of length n is denoted by Ln . If v is an infinite word defined over a finite alphabet, then the union
L =

⋃
Ln forms a language. The complexity of u is by definition the complexity of L .

2.2. Billiard map

We recall some facts from billiard theory. Additional details can be found in [18] or [15].

Definition 5. Let C be the cube [0; 1]
3, we denote by (ei )0≤i≤3 the orthonormal basis of R3, and by 〈ei , e j 〉 the square

generated by the vectors ei , e j .

〈ei , e j 〉 = {λei + µe j , 0 ≤ λ ≤ 1; 0 ≤ µ ≤ 1}.

Then ∂C is the union of the following six squares:
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〈e1, e2〉 + (0, 0, 0); 〈e1, e2〉 + (0, 0, 1);

〈e1, e3〉 + (0, 0, 0); 〈e1, e3〉 + (0, 1, 0);

〈e2, e3〉 + (0, 0, 0); 〈e2, e3〉 + (1, 0, 0).

It is the boundary of the cube.

A billiard ball, i.e. a point mass, moves inside C with unit speed along a straight line until it reaches the boundary
∂C (see Definition 5), then instantaneously changes direction according to the mirror law, and continues along the
new line. More precisely, the billiard map T is defined on a subset X of ∂C × RP2 by the following method (where
RP2 is the projective plane):

First we define the set X ′
⊂ ∂C × RP2. A point (m, ω) belongs to X ′ if and only if one of the two following

conditions holds:

(1) The line m + R[ω] intersects an edge of C , where [ω] is a vector of R3 which represents ω.
(2) The line m + R[ω] is included inside the face of C which contains m.

Then we define X as the set

X = (∂C × RP2) \ X ′.

Now we define the map T : Consider (m, ω) ∈ X , then we have T (m, ω) = (m′, ω′) if and only if mm′ is collinear
to [ω], and [ω′

] = s[ω], where s is the linear reflection over the face which contains m′.

T : X → ∂C × RP3

T : (m, ω) 7→ (m′, ω′).

Remark 6. In the sequel we identify RP2 with the unit vectors of R3 (i.e. we identify ω and [ω]).

2.3. Notations for the billiard map

Label the faces of C by three symbols from a finite alphabet A such that two parallel faces of the cube are coded
by the same symbols. To the orbit of a point in a direction ω, we associate a word in the alphabet A defined by the
sequence of faces of the billiard trajectory:

Definition 7. The set of points (m, ω) such that for all integers n, T n(m, ω) ∈ X is denoted by X∞. The infinite word
associated with a point (m, ω) in X∞ is denoted by vm,ω.

We finish by three definitions used in the proof of Lemma 37.

Definition 8. An edge parallel to the axis Ox , respectively, Oy, Oz is called of type 1, (type 2, type 3, respectively).

Definition 9. We label the three different faces of the cube by (vi )i=1...3.

Definition 10. Consider the billiard map T inside the cube, and a point (m, ω) ∈ X∞. We define the complexity
p(n, m, ω) by the complexity of the infinite word vm,ω (see Definition 4). We call it the directional complexity.

2.4. Unfolding: Definition and example

The unfolding is a very useful tool in the study of billiards behavior. Consider a billiard trajectory in a polyhedron.
To draw the orbit, we must reflect the line each time it hits a face of the polyhedron. The unfolding consists in reflecting
the polyhedron through the face and continuing on the same line.

Although we deal with the cube, the figures are made in the case of the square.

Example 11. Example of the cube.
The billiard orbit of (m, ω) appears to be as the sequence of intersections of the line m + Rω with the lattice Z3, see
Fig. 1. In the left picture, we represent one billiard orbit inside the square on dash points. It is unfolded in the line
which intersects with Z2.

On the right picture, we see that the study of the billiard orbit can be made on the big square where we identify the
opposite sides. Then we obtain a torus, and the map is a translation on this torus.
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Fig. 1. Unfolding.

Definition 12. For ω ∈ R3, a translation Tω of the torus is a map defined as follows.

R3/Z3
→ R3/Z3

Tω : (x, y, z) 7→ (x, y, z) + ω.

Fig. 1 explains the following result:

Lemma 13. Let ω ∈ R3, and consider the billiard map T in a cube. Then it is equivalent to study the orbit
(T n(m, ω))n or the orbit (T n

ω (m))n .

2.5. Minimality

Definition 14. A direction ω ∈ RP2 is called a minimal direction if for all point m, the sequence (T n(m, ω)∩∂C)n∈N
is dense in X∞.

The following lemma deals with minimality of billiard words in the one-dimensional case. This minimality depends
on algebraic properties of the translation direction. It will be used in the proof of the last cases of our main theorem.

Lemma 15. Let ω = (a, b) be an unit vector of R2. Consider the billiard map in the square. Then
(i) The direction ω is a minimal direction if and only if a, b are rationally independent over Q.
(ii) If the direction is not a minimal one, then for all point (m, ω) ∈ X∞, the billiard orbit of (m, ω) is periodic.

Lemma 16. In the cube, a direction ω is a minimal direction if and only if the numbers (ωi )i≤3 are independent
over Q.

The proof of this lemma is based on Kronecker’s lemma, see [13].

2.6. Billiard complexity

We consider the coding of the billiard map defined in Section 2.3.

Definition 17. For any n ≥ 1 let s(n) := p(n + 1) − p(n). For v ∈ L(n) let

ml(v) = card{a ∈ A, va ∈ L(n + 1)},

mr (v) = card{b ∈ A, bv ∈ L(n + 1)},

mb(v) = card{a ∈ A, b ∈ A, bva ∈ L(n + 2)}.

A word is called right special if mr (v) ≥ 2, left special if ml(v) ≥ 2 and bispecial if it is right and left special. Let
BL(n) be the set of bispecial words of length n.

Cassaigne [7] has proved the following result, which can be also found in [10]:

Lemma 18.

s(n + 1) − s(n) =

∑
v∈BL(n)

[mb(v) − mr (v) − ml(v) + 1].

Lemma 19 ([18]). For a minimal direction, the directional complexity is independent of the initial point m.
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Fig. 2. Generalized diagonal in the cube.

Notations. This result implies that we can omit the initial point in the notation p(n, m, ω), with the assumption
that the orbit of (m, ω) is dense in X . In other cases we will denote by p(n, ω) the maxima of p(n, m, ω) over all
admissible points m, see Definitions 7 and 10.

Definition 20. In a polyhedron, a generalized diagonal of direction ω between two edges is the union of all the billiard
trajectories of direction ω between two points of these edges. We say it is of length n if each billiard trajectory hits n
faces between the two points.

If we fix the initial edge, we can describe the edges of length n by the following result.

Lemma 21 ([6]). Fix an edge A of the initial cube. The edge B is at length n from the edge A if and only if for all
point (b1, b2, b3) of B, we have

bb1c + bb2c + bb3c = n.

We recall the result of [5] which will be useful in the following.

Proposition 22. Assume the cube is coded with three letters such that two parallel faces correspond to the same letter.
Let ω be a unit vector, which is minimal for the cubic billiard, then for all integer n, we have

s(n + 1, ω) − s(n, ω) = N (n, ω),

where N (n, ω) is the number of generalized diagonals of direction ω and length n.

With the same hypothesis, the next lemma proves that we can construct at most two diagonals of combinatorial
length n in this direction.

Lemma 23. If ω is minimal for the billiard map inside a cube, then we have

N (n, ω) ≤ 2 ∀n ∈ N∗.

Proof. Let O be a vertex of the cube and consider the segment of direction ω which starts from O and ends at a point
M after it passes through n cubes (see Fig. 2). M is a point of a face of an unfolding cube, and if we translate M with
a direction parallel to one of the two directions of the face, we obtain a point A on an edge, and if we call C the point
such that EOC = EM A, then C A is a generalized diagonal, and we have another one, DB in the figure, arising from the
second translation.

The symmetries of the cube imply that these diagonals are the only ones. It remains to prove that the two generalized
diagonals are of combinatorial length n.

The first thing to remark is that the condition of total irrationality implies that a generalized diagonal cannot begin
and end on two parallel edges.
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To see that the combinatorial length is at most n, we can remark that the sum of the length of the projections is
twice the length of the trajectory, so we just have to prove it for the projection, i.e. billiard in the square, where it
follows from the symmetry. �

The following lemma recalls some usual results from [11,18]. It deals with minimality of billiard word in the
one-dimensional case, depending on algebraic properties of the translation direction.

Lemma 24. Consider a square coded with two letters.
(i) If θ is a minimal direction, then we obtain p(n, m, θ) = n + 1 for all m.
(ii) The orthogonal projection of a cubic billiard trajectory on a face of the cube is a billiard trajectory inside a

square.

To conclude this section, we recall a complexity result for a linear flow inside a polygon.

Lemma 25 ([12]). Consider a minimal linear flow on a polygon with parallel opposite sides. Code the flow with a
letter by sides; then the orbit of a point is coded by an infinite word of sub-linear complexity. Moreover, the complexity
does not depend on the initial point and on the direction.

3. Statement of the theorem

Theorem 26. Fix an orthonormal basis of R3 such that the edges of the cube are parallel to the coordinate axis. Let
ω = (ω1, ω2, ω3) be a unit vector of R3 such that ωi 6= 0 for all i . Denote α =

ω2
ω1

, β =
ω3
ω1

. Then assume one of the
following holds:

(1) If α, β are rational numbers, then there exists C > 0, n0 ∈ N such that p(n, ω) = C for all integer n ≥ n0.
(2) If α is an irrational number, and β is a rational number, then there exists C such that p(n, ω) ≤ Cn.
(3) If α, β are irrational numbers such that 1, α, β are linearly dependent over Q, then there exists C such that

p(n, ω) ≤ Cn for all n.
(4) If α, β, 1 are linearly independent over Q, and if α−1, β−1, 1 are linearly dependent over Q, then there exists

C ∈]0; 1[ such that p(n, ω) ∼ Cn2.
(5) p(n, ω) = n2

+ n + 1, in all other cases.

Remark 27. The cases (2) and (3) correspond to the same algebraic condition. We separate them, since in (2) an
orthonormal projection on a face gives a periodic word.

Except in the first case it is clear that the obtained billiard words are not ultimately periodic, thus we have
p(n, ω) ≥ n + 1.

Remark 28. In the two last cases, the complexity is independent of the initial point m, by Lemma 19. In the first
cases, we use the notations explained after Lemma 19.

We study the dependence of the complexity function when the parameters vary.

Corollary 29. In case (2), two directions with the same value of β have the same complexity.

This statement is a consequence of the last sentence of the proof of Case 4.2.

Corollary 30. For the third case, two directions in the same plane have the same complexity. It means if two directions
ω, θ satisfy aω1 + bω2 + cω3 = aθ1 + bθ2 + cθ3 = 0 with a, b, c ∈ Z, then p(n, ω) = p(n, θ).

This point is a consequence of the last sentence of Case 4.3.

Corollary 31. In case (4), we can compute the constant C. If (ωi ) satisfy the equation A
ω1

=
B
ω2

+
C
ω3

, with
A, B, C ∈ N, then we obtain

C = 1 −
1

A(α + β + 1)
.

The other cases are obtained by permutation.

The last point is a consequence of Lemmas 40 and 39, since p = f0.
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Fig. 3. Billiard trajectory inside S, and unfolding.

4. Proof of the theorem

By Lemma 13, we will study the orbit of (m, ω) under the map Tω, see Definition 12. Each case of the theorem will
be treated separately; the first case reduces to a periodic one-dimensional coding, the second case to a billiard word
inside a square, the third case reduces to a linear flow inside a polygon with parallel opposite sides, allowing to apply
a result from Hubert, see Lemma 25. The fourth case studies the complexity function by studying bispecial factors.

4.1. First case

We prove the following result

Proposition 32. Assume the direction ω is such that the numbers α, β are rational numbers. Then there exists
C > 0, n0 such that p(n, ω) = C for all integer n ≥ n0.

Proof. We study the orbit of the point m0 = (x, y, z) under Tω. By unfolding, we must compute the intersections of
the line m0 + Rω with the three sort of faces. The computation is similar in any case; thus we treat only the case of
the intersection with the face Y = k (same thing for the faces X = l or Z = m with m, l, k ∈ Z). Suppose that there
exists λ such that

(
x + λ, y + λα, z + λβ

)
belongs to the face Y = k. We obtain λ =

k−y
α

, we deduce that the
intersection point is (x +

k−y
α

, k, z +
k−y
α

β). The point of the cube which corresponds in the unfolding to this point is
(x +

k−y
α

mod 1, 0, z +
k−y
α

β mod 1).
To obtain the sequence coding the orbit of (x, y, z) by Tω, it remains to make k vary in Z. Since α, β are two

rational numbers, we deduce that the sequence is periodic. Thus the trajectory is periodic, and the complexity is an
eventually constant function. �

4.2. Case number 2

Proposition 33. Assume α is an irrational number, and β is a rational number. Then there exists C such that
p(n, ω) ≤ Cn, for all integer n.

Proof. Consider the projection on the plane Oxz. Since β is a rational number, we have a periodic trajectory in the
square (see Lemma 24). Denote by (ai ) the periodic sequence of points inside the square, such that ap = a1, denote
bi the points of the cube such that (ai bi ) is parallel to the axis Oz. Consider the union S of the intervals

[ai , ai+1], [bi , bi+1], [ai , bi ] i ≤ p − 1.

The trajectory of (m0, ω) is included in S, as can be seen by projection: see the left part of Fig. 3. Now unfold the
trajectory. The unfolding of S is a rectangle. This rectangle is partitioned into several rectangles of the same shape.
The trajectory is a translation in this rectangle: see right part of Fig. 3. This translation is coded with three letters and
it is minimal by hypothesis on α. If the translation were coded by two letters, we would obtain a sturmian word. The
computation of the complexity is reduced to the computation of the complexity of a translation: it is clearly sub-linear.
Moreover, remark that the rectangle S only depends on β by construction. �
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Fig. 4. Billiard map inside the union of polygons.

4.3. Case number 3

Let (x, y, z) ∈ R3, and a, b, c ∈ N. Consider the plane P of equation cX + aY + bZ = cx + ay + bz. Then
consider the canonical projection

π : R3
7→ R3/Z3.

The plane intersects the cubes of Z3 into polygons, and we use this projection to translate the polygons inside the
initial cube. Indeed, the initial cube can be identified with R3/Z3.

Lemma 34. The set π(P) is the union of a finite number of polygons.

Proof. Consider the intersection P of the plane with the initial cube. The other polygons are obtained by translating
the intersection of P with another cube. Thus a study of the edges of the polygons in the face Z = 0 can be made by
looking at the edges in the face Z = k, when k takes values in Z. Consider the intersection of P with the face Z = k.
We obtain a line of equations{

Z = k
cX + aY = cx + ay + bz − bk.

The slope of this line is −c
a . It is a rational number. When k changes this slope is constant; thus all the edges in this

face are parallel. Moreover the intersections of this line with the edges of the cube are obtained by replacing Y or X
by an integer l. For example, we obtain

Xk,l =
cx + a + bz − bk − al

c
=

cx + ay + bz
c

−
bk + al

c
mod 1.

The set of all points is obtained by taking the union of k, l in Z. This gives a finite number of points, since these
numbers are rational. Thus, in each face there are a finite number of parallel edges. Moreover inside two parallel faces
the edges are parallel. �

Proposition 35. Assume that: α, β are irrational numbers such that 1, α, β are linearly dependent over Q. Then, there
exists C > 0 such that p(n, ω) ≤ Cn.

Proof. Consider the relation aα + bβ + c = 0 with a, b, c ∈ Z. We will study the orbit of m0 = (x, y, z) under Tω.
A point on this line has coordinates (λ + x, λα + y, λβ + z). Thus it is in the plane cX + aY + bZ = cx + ay + bz.
This plane intersects each unity cube of the lattice Z3 in a polygon. By a translation, each polygon is shifted to the
initial cube. This union of polygons contains the orbit of a point, see Fig. 4. By Lemma 34, there is a finite number
of polygons. Now, the orbit of a point is included inside this finite union of polygons. The opposite sides of these
polygons are parallel. Thus the billiard flow becomes a linear flow inside a polygon with parallel opposites sides. We
apply the result of Lemma 25. Here we remark that several edges can be coded by the same letter; thus the complexity
can be less than the initial one. To end the proof, we remark that the complexity only depends on the polygon. Hence
it only depends on a, b, c. �

4.4. Case number 4

In this section, we will show that the number of generalized diagonals in the direction ω can be strictly less than
two. First of all we recall the following lemma.



222 N. Bedaride / Theoretical Computer Science 385 (2007) 214–225

Lemma 36. Consider three numbers a, b, c linearly independent over Q. Assume that the following equation

x/a + y/b + z/c = 0,

has an integer solution (x, y, z) with x 6= 0. Then the rational solutions of the equation are:

r
(

x ′,
yx ′

x
,

zx ′

x

)
x ′, r ∈ Q.

Proof. Consider two rational solutions:{
x/a + y/b + z/c = 0
x ′/a + y′/b + z′/c = 0

{
x/a + y/b + z/c = 0
(yx ′

− xy′)/b + (zx ′
− xz′)/c = 0.

Since b/c is an irrational number, we deduce
x/a + y/b + z/c = 0
yx ′

= xy′

zx ′
= xz′{

y′
= yx ′/x

z′
= zx ′/x .

�

Lemma 37. Assume there exists n such that N (n, ω) < 2; then:

s(n + 1, ω) − s(n, ω) = 0.

Moreover there exists a line of direction ω which intersects the three types of edges (see Definition 8) and these three
edges are in a fixed order, given by the direction.

Proof. First recall that the minimality of ω implies that the edges of a diagonal in direction ω cannot be parallel. In
the rest of the proof, we can assume that the edges of the generalized diagonal of direction ω are of type 1 and 3, see
Definition 8.

(1) Consider a trajectory in direction ω between two edges of types 1 and 3, consider the orthogonal reflection over the
plane X = Z . This map exchanges the edges of type 1 and 3, but it leaves invariant edges of type 2. That implies
that N (n, ω) is an even number, thus we cannot have N (n, ω) = 1. Hence we have N (n, ω) = 0. Proposition 22
finishes the first part of the proof.

(2) By applying a translation, we can always assume that the intersection points of the line m + Rω with the edges of
the cube have for coordinates

(x, 0, 0); (a, y, b); (c, d, z),

with x, y, z real numbers and a, b, c, d integers.
We obtain the system

x + λω1 = a
λω2 = y
λω3 = b
x + µω1 = c
µω2 = d
µω3 = z
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where λ, µ are real numbers.

λω2 = y
λω3 = b
µω2 = d
µω3 = z
x = a − b ω1

ω3
a−c
ω1

=
b
ω3

−
d
ω2

.

By hypothesis on ω, we have a relation of the form
A
ω1

+
B
ω2

+
C
ω3

= 0,

where A, B, C ∈ Z are relatively prime.
The last equation of the system is of the same form:

a − c
ω1

+
−b
ω3

+
d
ω2

= 0.

We apply Lemma 36, and one deduces that A is a divisor of a − c, and:{
d = B a−c

A
−b = C a−c

A .

Finally the system becomes

λω2 = y
λω3 = b
µω2 = d
µω3 = z
x = a − b ω1

ω3

d = B a−c
A

−b = C a−c
A .

This system has at least one solution. Hence the existence of the line is proved.
This system allows us to make several remarks. First, the coordinates ωi are positive numbers. This implies

that A, B, C cannot all be positive numbers. Assume that we have A < 0, B > 0, C > 0 (the other cases are
similar). We deduce that a − c and d are of opposite sign, and that a − c and b are of same sign.

(3) Assume a − c ≥ 0; this implies

d ≤ 0, b ≥ 0.

From the system, we deduce

λ ≥ 0, µ ≤ 0.

This implies that the edges appear in the order 3; 1; 2.
(4) On the other hand, if a − c ≤ 0, by a similar argument, we have that the order is 2; 1; 3.

Moreover, the two orders are correlated: it depends on the direction that it used to move along the line. Hence,
we can reduce to one order. �

Corollary 38. Assume ω is a minimal direction and satisying

A
ω1

=
B
ω2

+
C
ω3

A, B, C ∈ N∗.

Then, for all integer n, we have the dichotomy: either the billiard orbit of the origin, at step n, meets a face labelled
by v1 (see Definition 9), and if A divides n, then s(n + 1, ω) − s(n, ω) = 0, or s(n + 1) − s(n) = 2.
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Proof. First we claim that there exist an infinite number of integers n such that s(n) = 0. Indeed, in the last system
obtained in the proof of Lemma 37, we can modify the values of a, c such that A divides a − c . Now we can assume
that the order related to the edges is 3; 1; 2 see Lemma 37. Consider the orbit of the origin, and the intersection
with a face (of a cube of Z3) parallel to X = 0. With the method of Lemma 23, we deduce that the only possibility
for a generalized diagonal is a trajectory between edges 3 and 2. Denote by n the length of the diagonal; from the
previous system we deduce that if A divides n, the trajectory between 3 and 2 passes through the edge 1. We deduce
s(n + 1, ω) = s(n, ω). The first part is proved.

Assume now that we meet another face at step n, for example the face parallel to Z = 0. Then the two associated
diagonals have for order 1; 2 and 2; 1. We prove by contradiction that we cannot have N (n, ω) ≤ 1. Since the order is
unique, see Lemma 37, the only possibility to obtain a third edge is to start from the edge labelled 1. Then the diagonal
which starts form 3 does not intersect another edge. This implies N (n, ω) = 1, but this is a contradiction with the first
part of Lemma 37. �

This corollary implies that the sequence (s(n, ω))n∈N can take only two values. Due to the next lemma, to finish
the proof it remains to obtain the frequency of each value.

Lemma 39. Assume that the sequence (s(n+1, ω)−s(n, ω))n∈N has a value in {0; 1; 2}, and that the numbers 0; 1; 2
have respectively the frequencies l, m, p. Then the complexity satisfies

p(n) ∼
m + 2p

2
n2.

Lemma 40. Assume the direction satisfies the hypothesis A
ω1

=
B
ω2

+
C
ω3

, with A, B, C ∈ N. Then the frequency l of
0 in the sequence (s(n + 1, ω) − s(n, ω))n∈N is:

l =
ω1

A(ω1 + ω2 + ω3)
.

Proof. By Corollary 38, it is equivalent to considering the intersection of the orbit of the origin with the planes parallel
to X = 0. A point in the orbit of the origin has for coordinates:

(λω1, λω2, λω3).

It meets the face X = i A at the point(
i A,

i A
ω1

ω2,
i A
ω1

ω3

)
.

Then we must compute the number of i such that this point is at combinatorial length less than n. By Lemma 21, it
remains to compute

card
{

i
∣∣∣∣i A +

[
i A
ω1

ω2

]
+

[
i A
ω1

ω3

]
≤ n

}
=

nω1

A(ω1 + ω2 + ω3)
+ o(n).

We deduce the value of the frequency

l =
ω1

A(ω1 + ω2 + ω3)
. �

Proposition 41. Assume the numbers α, β, 1 are linearly independent over Q, and α−1, β−1, 1 are linearly dependant
over Q. Then there exists C ∈]0; 1[ such that p(n, ω) ∼ Cn2.

Proof. The proof is a consequence of Corollary 38, Lemmas 39 and 40.

4.5. Last case

The proof can be found in [5] or in [4] for the s-dimensional case. In the first article, the main object of the proof
consists in stating that N (n, ω) = 2 for every integer n. In the second article, the main step of the proof consists in
stating that p(n, ω) does not depend on the direction ω.
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[11] Pytheas Fogg, in: V. Berthé, S. Ferenczi, C. Mauduit, A. Siegel (Eds.), Substitutions in Dynamics, Arithmetics and Combinatorics, in: Lecture

Notes in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002.
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	Classification of rotations on the torus  T2 
	Introduction
	Outline of the paper

	Background
	Combinatorics
	Billiard map
	Notations for the billiard map
	Unfolding: Definition and example
	Minimality
	Billiard complexity

	Statement of the theorem
	Proof of the theorem
	First case
	Case number 2
	Case number 3
	Case number 4
	Last case

	Acknowledgement
	References


