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Abstract The present investigation consists of an analytical treatment of a steady boundary layer flow of
an Eyring–Powell model fluid due to a stretching cylinder with temperature dependent variable viscosity.
The heat transfer analysis is also taken into account. Using usual similarity transformations the governing
equations have been transformed into non-linear ordinary differential equations and are solved by a
powerful technique; the homotopy analysis method. Two models of variable viscosity, namely, Reynolds’
and Vogel’s are considered. The convergence is carefully checked by plotting h-curves. The emerging
parameters intrinsic to the problem are discussed through graphs.
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1. Introduction

Viscosity is physical property of fluids. It is the ratio of
shear stress to the shear strain. A large number of papers have
been discussed in which fluid viscosity is considered to be
constant. However, in nature, we find a very few examples
of fluids possessing this property. In certain situations, it is
not necessary that the fluid viscosity is constant. It may vary
with distance, temperature or pressure. For example in coal
slurries the viscosity of the fluid varies with temperature.
In general the coefficients of viscosity for real fluids are
functions of temperature. Inmany thermal transport processes,
the temperature distribution with in the flow field is not
uniform, i.e., the fluid viscosity may be changed noticeably if
large temperature differences exist in the system. Therefore,
it is highly desirable to take into account the temperature
dependent viscosity in momentum as well as in the energy
equation. Fluids which do not obey Newton’s law of viscosity
are known as non-Newtonian fluids. Massoudi and Christie [1]
have studied the effects of variable viscosity and viscous
dissipation on the flow of a third grade fluid in a uniform
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pipe. They found the numerical solutions with the help of the
straight forward finite difference method. They also discussed
that the flow of a fluid-solid mixture is very complicated and
may depend on many variables such as physical properties
of each phase, size and shape of solid particles. Later on,
the influence of constant and space dependent viscosity
on the flow of a third grade fluid in a pipe has been
discussed analytically by Hayat et al. [2]. The approximate
and analytical solutions of non-Newtonian fluid with variable
viscosity have been analyzed by Yursoy and Pakdemirili [3] and
Pakdemirili and Yilbas [4]. The pipe flow of non-Newtonian
fluid with variable viscosity keeping no slip and partial slip
has been discussed analytically by Nadeem and Ali [5] and
Nadeem et al. [6]. More recently, Nadeem and Akbar [7]
studied the effects of temperature dependent viscosity on the
peristaltic flow of a Jeffrey-six constant fluid in a uniform
vertical tube. Keeping this in mind, we are considering
temperature dependent viscosity in our study. Stretching is
another important phenomena. A Newtonian fluid flow over
a linear stretching surface was first studied by Crane [8].
Various aspects of the flow for stretching surfaces have been
discussed in many investigations [9–17]. Wang [18] considered
the steady flow of a viscous and incompressible fluid outside a
stretching hollow cylinder in ambient fluid at rest. Motivation
from above mentioned works leads us to consider a steady
boundary layer flow of an Eyring–Powell model fluid due to
a stretching cylinder with temperature dependent variable
viscosity. The highly non-linear problem is transformed into
ordinary differential equations with the help of usual similarity
transformations. Reynolds’ and Vogel’s models of temperature
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dependent viscosity are considered. The analytical solution is
obtained using a powerful technique; the homotopy analysis
method [19–25]. At the end, the physical behavior of various
parameters is depicted through graphs.

2. Mathematical model

For an incompressible fluid the balance ofmass andmomen-
tum are given by:

div V̄ = 0,

ρ
dV̄
dt

= −∇P̄ + div S̄,
(1)

where ρ is the density, V̄ is the velocity vector, P̄ is the
pressure S̄ is the Cauchy stress tensor, and d/dt represents
the material time derivative. The constitutive equation for the
Eyring–Powell fluid model is given by [26]:

S̄ = µ∇V̄ +
1
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sinh−1
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. (2)
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where µ is the coefficient of shear viscosity, and β and c1 are
the material constants of the Eyring–Powell fluid model.

2.1. description of the problem

Consider the steady flowof an incompressible Eyring–Powell
model fluid flow caused by a stretching tube of radius ‘‘a’’ on the
axial direction, where z is the axis along the tube length and r
is the axis in the radial direction. The surface of the tube is at
temperature Tw and the ambient fluid temperature is T1, where
Tw > T1. The governing equations are:
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subject to the boundary conditions

u = 0, w = ww, at r = a (5)
w → 0, T → T∞, as r → ∞
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where u andw are the velocity components along the r and z di-
rections respectively, and ww = 2cz where c is a constant with
positive value. Further α, ν, ρ, T , k and µ are thermal diffu-
sivity, the kinematic viscosity, fluid density, fluid temperature,
thermal conductivity and viscosity of the fluid. The dimension-
less problemwhich can describe the boundary flow is given by:
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Here prime denotes differentiation with respect to η. The
dimensionless parameters used are:
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The boundary conditions in dimensionless form are:

f (1) = 0, f ′ (1) = 0, θ (1) = 1,

f ′ (∞) → 0, θ (∞) → 0.
(10)

3. Series solutions for Reynolds’ model

Here, the temperature dependent viscosity is expressed in
the form:

µ = e−Pθ , (11)

which by Maclaurin’s series can be written as:

µ = 1 − Pθ + O(θ2). (12)

It is worth mentioning that M = 0 corresponds to the case
of constant viscosity. Invoking the above equation into Eqs. (6)
and (7) one has:
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For the HAM solution, we choose the following initial
guesses
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where qϵ[0, 1] is the embedding parameter and h̄f and h̄θ are
auxiliary non-zero operators.

The mth order deformation equations are defined as:
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We now use the symbolic software MATHEMATICA and
solve the set of linear differential equations (25) and (26)
subject to relevant boundary conditions up to the first few
order of approximations. It is found that fm(η) and θm(η) can
be written as:
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4. Series solutions for Vogel’s model

Here
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Figure 1: h-curve for velocity profile for Reynolds model.

Invoking the above expression, Eqs. (6) and (7) become:
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Using the similar procedure as discussed in the previous
section, the solution of this case is straightforward written as:

fm(η) =
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where a′
m, n and b′

m, n are constants.

5. Graphical results and discussion

The governing non-linear partial differential equations of
the boundary layer flow and heat transfer of an Eyring–Powell
model fluid caused by a stretching tube in the axial direction
is presented. First, the governing equations are simplified by
using similarity transformation and then the reduced highly
nonlinear coupled differential equations are solved analytically
with the help of the homotopy analysis method. For the
convergence of the HAM solution the h-curves are plotted for
velocity and temperature (See Figures 1–4). Figures 1 and 2
correspond to the Reynolds’ model which as Figures 3 and 4
relate to Vogel’s model. The horizontal lines in these Figures
present the convergence region defined by the HAMmethod.
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Figure 2: h-curve for temperature profile for Reynolds’ model.

Figure 3: h-curve for temperature profile for Vogel’s model.

Figure 4: h-curve for velocity profile for Vogel’s model.

In order to report the effects of sundry parameters in the
present investigation we plotted Figures 5–23. Figure 5 shows
the f (η) profile for different values of P for the Reynolds’
model. It is observed that f (η) increases from zero. Figure 6
exhibits the velocity profile for different values of Re for the
Reynolds’ model. It can be seen that velocity decreases as Re
increases. Figure 7 shows the f (η) profile for the different
values of Re for the Reynolds’ model. Figure 8 presents velocity
profile for different values of A for the Reynolds’ model. The
Figure 5: f (η) profile for different values of P for Reynolds’ model.

Figure 6: Velocity profile for different values of Re for Reynolds’ model.

Figure 7: f (η) profile for different values of Re for Reynolds’ model.

velocity profile decreases from 1 to zero as η increases from
1 to ∞. This shows that velocity of the fluid reduces gradually
away from the tube surface. Also note that velocity ismaximum
at the surface of the cylinder. Figure 9 reveals the f (η) profile
for different values of A for the Reynolds’ model. It is concluded
that this profile decreases with increase in A. The f (η) profile
for different values of Pr for the Reynolds’ model is displayed in
Figure 10. Here, in this case, f (η) increases with an increase in
Pr. Figure 11 gives the temperature profile for different values
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Figure 8: Velocity profile for different values of A for Reynolds’ model.

Figure 9: f (η) profile for different values of A for Reynolds’ model.

Figure 10: f (η) profile for different values of Pr for Reynolds’ model.

of Pr for the Reynolds’ model. The temperature profiles for air
(Pr = .7) and for water (Pr = 7) can be observed here. The
temperature profile decreases from 1 to zero as η increases
from 1 to ∞. The fluid temperature depends upon the distance
from the surface of the tube. The fluid temperature attains
maximum value at the surface of the tube. It is noticable that
the temperature profile decreases with an increase in Pr. In
Figure 12 temperature profile for different values of Re for
Figure 11: Temperature profile for different values of Pr for Reynolds’ model.

Figure 12: Temperature profile for different values of Re for Reynolds’ model.

Figure 13: f (η) profile for different values of A for Vogel’s model.

the Reynolds’ model can be seen. Figure 13 exhibits the f (η)
profile for different values of A for Vogel’s model. Figure 14
presents the velocity profile for different values of L for Vogel’s
model. Figure 15 predicts the f (η) profile for different values
of M for Vogel’s model. Figure 16 is plotted in order to see the
f (η) profile for different values of n for Vogel’s model. Effects
of different values of Re on velocity profile for Vogel’s model
are displayed in Figure 17. Figure 18 shows the f (η) profile
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Figure 14: Velocity profile for different values of L for Vogel’s model.

Figure 15: f (η) profile for different values of M for Vogel’s model.

Figure 16: f (η) profile for different values of n for Vogel’s model.

for different values of n for Vogel’s model. Figure 19 reveals
the velocity profile for different values of M for Vogel’s model.
Figure 20 gives the f (η) profile for different values of M for
Vogel’s model. Temperature profiles for different values of A, Pr
and Re for Vogel’s model can be observed in Figures 21–23. It is
concluded that temperature decreases with an increase in A, Pr
and Re . Similar to the case of the Reynolds’ model of variable
viscosity, the temperature decreases from 1 to zero as the fluid
gets away from the outer surface of the cylinder. Maximum
temperature is attained at the surface of the tube.
Figure 17: Velocity profile for different values of Re for Vogel’s model.

Figure 18: f (η) profile for different values of n for Vogel’s model.

Figure 19: Velocity profile for different values of M for Vogel’s model.

6. Conclusions

In this paper, we have investigated analytically the heat
transfer flow of an Eyring–Powell model fluid due to a stretch-
ing cylinder. The heat transfer is also taken into account. Two
models of variable viscosity, namely, Reynolds’ model and
Vogel’s model are considered. Using usual similarity trans-
formations the governing equations have been transformed
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Figure 20: f (η) profile for different values of M for Vogel’s model.

Figure 21: Temperature profile for different values of A for Vogel’ model.

Figure 22: Temperature profile for different values of Pr for Vogel’ model.

into non-linear ordinary differential equations. The highly non-
linear problem is then solved by the homotopy analysismethod.
Effects of the various parameters such as Re , A, P, L, n,M and Pr
are examined. The velocity and temperature profiles decreases
from 1 to zero as η increases from 1 to ∞. The similarity pro-
files f (η) increases from zero, and f ′(η) decreases from unity.
The thermal boundary layer decreases with increased Prandtl
number and Reynolds number.
Figure 23: Temperature profile for different values of Re for Vogel’s model.
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