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A b s t r a c t  

Let {Pk(X)} be any system of the classical orthogonal polynomials, and let {Pk(x; c)} be the corresponding associated 
polynomials of order c (c ~ t~). Second-order recurrence relation (in k) is given for the connection coefficient (c) in £ / n -  1 ,k 

n - 1  

P. l(x;c) E (c, = a,_l,kPk(x ). 
k = O  

This result is obtained thanks to a new explicit form of the fourth-order differential equation satisfied by P,_ ~ (. ; c). 
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1. Introduction 

Let {Pk(X)} be any system of the classical orthogonal polynomials (i.e., associated with the names 
of Jacobi, Hermite, Laguerre and Bessel), 

f p(x) Pk(x)Pt(x) d x =  6kzhk (k, l = O, 1 ), (1.1) 

where hk ~ 0 (k = O, 1, ... ); the support I of the weight function p is [ -  1, 1], ( -  ~ ,  ~) ,  [0, oo) and 
{z~ C: Izl = 1}, respectively. Besides the three-term recurrence relation 

XPk(X) = {o(k)Pk l(x) + ~l(k)Pk(X) + {2(k)Pk+ 1(x) 

(k = O, 1, ... ; P - l ( x )  - O, no(x) - 1), (1.2) 
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these polynomials enjoy a number of similar properties which in turn provide characterizations of 
them ([6, pp. 150-152] or [1], or [4]). We shall need three of those properties. 

First, the weight function p satisfies a differential equation of the Pearson type, 

(trp)' = ~p, (1.3) 

where cr is a polynomial of degree at most 2, and z is a first-degree polynomial. 
Second, for arbitrary n, the polynomial P, obeys the second-order differential equation 

D_,P.(x) - [rrD a + zD + 2,D]P,(x) = 0, (1.4) 

where D := d/dx, D is the identity operator, and 

±n[(n - 1)o-" + 2z']. (1.5) '~n : =  - -  2 

Third, we have the so-called structure relation 

a(x) 13Pk(X) = do(k)Pk- 1 (x) + dl (k)Pk(X) + dz (k) Pk +, (x). (1.6) 

Recently, Y/tfiez et al. [16] (see also [17]) have shown that the coefficients, ~i(k) and di(k) of the 
relations (1.2) and (1.6), respectively, can be expressed in terms of the coefficients tr and z of Eq. (1.3). 

The associated polynomials ( Pk(X; C)} of order c (c ~ N) are defined recursively by 

XPk(X; c) = {o(k + C)Pk-I(X; C) + ~x(k + C)Pk(X; c) + ~2(k + C)Pk+I(x;c) 

(k = 0,1 . . . .  ; P_,(x;c)  - O, Po(x;c) =- 1). (1.7) 

They are known to belong to the Hahn-Laguer re  class of orthogonal polynomials (see, e.g., [3]). 
For  arbitrary n and c, P,_ 1 ( ' ;  c) satisfies a fourth-order differential equation 

4 

M~) f  - • p~( ' ;c )Di f= O, (1.8) 
i=O 

where p~(-; c) are polynomials of degree independent of n and c (see [3, 12]). For  the history of 
searching this equation see [18]. For  the Jacobi case (even for the arbitrary real positive c) it was 
obtained in [15] using MACSYMA. For  each of the four classical polynomial families it was given 
in [3, 12]. Recently, Zarzo et al. [18] used MATHEMATICA to obtain the coefficients pi(-; c) in terms 
of a and z. 

In this paper we show that the fourth-order differential operator M(~ ) can be written in the form 

~j~(c) = ~/~(1) @ ,ql(c)(l-D 
n /1 v t l  ~ n ,  

where M ~1) is the well-known fourth-order operator  corresponding to the special case c = 1 [11], 
and where 

(c) ._  (1 - - 2)o-" + 2r ' ] ,  0 . . -  c)[(n + c 

Q. :=  2rrD 2 + 3cr'D - (n 2 - 1)rr"D; 

see Theorem 4.3. This result will help us to construct a second-order recurrence relation of the form 

~L P(O'(O Ao(k)a(~)-l,k-1 + Al(k)a~)-t,k + A2(k)a/1-a,k+X = 0 (1 ~< k ~< n 2 - / 1 - 1 , k  = (O - -  1 )  ( 1 . 9 )  
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for the connection coefficients . (o in Un- l ,k 

n-1  
P,-I(x;c) = ~ ,(c) -,-1,kPk(X). (1.10) 

k = O  

The coefficients of this recurrence relation are expressed in terms of a, v, ~i(k) and di(k); see 
Corollary 4.7. In Section 5, we apply the results obtained to each of the four classical families. 

2. Identities involving the Fourier coefficients 

We shall need certain properties of the Fourier  coefficients of a function f, defined by 

1 
ak[f]  := ~ bk[f],  (2.1) 

where 

bk[f]  "= f ,  p(X)Pk(X)f(x)dx (k = O, 1, ...), (2.2) 

i.e., the coefficients in the formal expansion 

f "~ ~, ak[f]Pk. 
k = O  

Let f and ~ be the difference operators  defined by 

f : =  ~o(k)g -1 + {l(k)~- + {2(k)& (2.3) 

9 : =  do(k)o ~-~ + dl(k)J- + d2(k)g (2.4) 

(cf. (1.2) and (1.6)) where 3-  is the identity operator,  and gm the ruth shift operator:  
~--bk[f] = bk[f],  Nmbk[f]  = bk+m[f] (me 7/). For  the sake of simplicity, we write ~ in place of 

Further ,  let us define the differential operator  U by 

a(x)I3 + 

We prove the following lemma. 

L e m m a  2.1. The coefficients (2.2) obey the identities: 

bk[Xf] = f b k [ f ] ,  

~bk[Df] = 2kbk[f  ], 

b k [ U f ]  = -- ~ b k [ f ] ,  

bk[L , f ]  = (2, - 2k)bk[f]. 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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Proof. In view of (1.2) and (2.3), identity (2.6) is obviously true. 
We will prove the identity (2.7). Using (1.6), integrating by parts, and then using the equation 

(apP'k)' = -- 2kPPk, (cf. (1.4) and (1.3)), we get 

~ b k [ ~ f ]  = ~ f lPP,  f ' =  f P a P i f '  

=f pe f:a b lfl 
In a similar way, using (apPk)' = p(aP~ + ZPk), we obtain 

bk[af']= frpaPkf'= fi(PaPkf)'-- f (aPPk)'f 

= 

Hence follows the identity (2.8). 
As we can write 1_, = U D + 2,1, we have, using (2.8) and (2.7), 

bk[l_.f] = bk[Uf'] + 2.bk[ f ] = -- ~ b k [ f ' ]  + 2.bk[ f ] = (2. -- 2,)bk[ f ]. 

This proves the validity of (2.9). []  

Remark 2.2. Identity (2.6) can be easily generalized to the form 

bk[ q f  ] = q ( f )bk[  f ], 

where q is any polynomial. 

(2.10) 

3. First associated polynomials 

As we have already remarked, the case c = 1 plays an exceptional role in these considerations. 
The operators M (7) and 5°(2 c), defining the left-hand sides of the Eqs. (1.8) and (1.9), respectively, are 
given in terms of  the operators ~/1 (1) and ~¢ (21), associated with this special case. 

The first associated polynomials (or numerator polynomials) {Pk(X; 1)} are defined recursively by 
(1.7) with c = 1, i.e., 

XPk(X; 1) = ~o(k + 1)Pg-a(X; 1) ÷ ~a(k + 1)ek(X; 1) ÷ ~e(k + 1)Pk+~(x; 1) 

(k = O, 1, ... ; P-x(x; 1) - 0, Po(x; 1) -= 1). (3.1) 

3.1. Differential equation 

We have the following. 

Theorem 3.1 (Ronveaux [11]). For arbitrary n, P,-x(x;  1) satisfies the fourth-order differential 
equation 

~ ' ) P , - l ( X ;  1) = 0, (3.2) 
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where 

~ ) : =  N,I*, 

and 

1_*'= 0.~2 + (20.' - r )D + (2, + 0." - z')O, 

N , : =  0.132 + (0.' + "c)D + (2, + "c')0. 

The coefficients Pi(" ; 1) in 

4 
~) = Z pi( .  ; 1 ) ~  i 

i=0  

are given by 

P4(" ; 1) = 0 "2, 

/93(", 1) = 50.0.', 

P2(" ; 1) = (0.' + z)(30.' - z) + 2o-(2, + 30." - ~'), 

p~(. ; 1) = 3z(0." -- z') + 30.'(2, + 0."), 

Po(" ; 1) = / ] . n _  1/~.+ 1 . 

219 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

Remark 
two,  three  and  five, respect ively (see, e.g., [11, 13]: 

I_*Pn_I(X;1)=o)Dpn(x  ) (o9 - _ (0." j~2z ' ) ) ,  

U [L*P._ t(x;  1) = -- 2,o)P,(x), 

-~(nl )pn- l (X;  1 ) = 0  (~-(1):~_ l_nUl_n,). 

(By the way,  it can  be checked  tha t  L. U = U N. ,  hence  T ~1) 

3.2. Let  us no te  tha t  P , , ~ ( x ;  1) satisfies also the fol lowing differential equa t ions  Of order  

= ~ ~ ~.'.) 

(3.11) 

(3.12) 

(3.13) 

3.2. Recurrence relation for the connection coefficients 

Let us cons t ruc t  a recurrence  re la t ion 
connec t i on  coefficients {a (1) 1, k } in 

n--1 
P,-t(x;  I) -- ~ a~l)-x,kPk(X). 

k=0 

Let us deno te  

b ~  1,k :=  bk[e,-  , ( . ;  1)] = hka~,~ 1,k" 

for the Four i e r  coefficients ak[P,-~(.; 1)], i.e., the 

(3.14) 

(3.15) 
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Theorem 3.3. 

j~(1)~(1) 0 (1 ~< k ~< n -- 1), 2 U n -  1 ,k  

where 

,//'/(21) :=  ~ ( / t k J  ) + 22k[O"(f  ) -- "C(5~')], 

whereas t tk:= 2, -- Zk -- a" + z'. 

Proof.  By virtue of T h e o r e m  3.1, we have 

S. Lewanowicz /Journal of Computational and Applied Mathematics 65 (1995) 215-231 

The coefficients h (1) satisfy the second-order recurrence relation ~n-  1,k 

(3.16) 

(3.17) 

R e m a r k  3.4. It should be r emarked  that  the result given in the above theorem can also be obta ined  
using any  of the differential equat ions  (3.11)-(3.13). Indeed,  (3.11) implies the ident i ty  ~ b  k IlL* f ] 
- - m ~ b k [ D P , ]  with f - -  P,_ 1(" ; 1), which by (3.20) and  (2.7) reduces to Jgt21)bk[f] = 2kmbk[P,]. 
Now,  it remains  to observe that  bk[Pn] = hnbkn. 

As for using Eqs. (3.12) and  (3.13), it suffices to observe that  

(u b - bk[Uk* f ] =  -~bk[O_* f ] =  - J g 2  kL f ] ,  

bkET~l) f ]  = b k E U ~ l ) f  ] = - ~bkEM~U f ] = (2, -- 2.)J~21)bkE f ]. 

Corol lary 3.5. The connection coefficients #1) obey the second-order recurrence relation ~n-- 1,k 

~V~zr'(1)a,-1.,(1) _ So(k)a,-1,k-l" (1) + B l ( k ) a ~  1,k + Bz(k)a~lJl,k+l -- 0 (1 ~< k ~< n - 1), (3.21) 

with the initial conditions 

a(1) _ ~z(O) a ~  O, (3.22) 
, - 1 , , - a  ~2(n -- 1)' 1,, = 

where 

B,(k) := hk+~- 1 {di(k)gk+~-, + 22k~i(k)(a" -- z') + 26,12k [a'(O) -- z(O)] } 

(i = O, 1, 2). (3.23) 

(2.9), (2.7), (2.10), we obtain  

~ b k E l_ * f ] = J//{ ~2U b k [ f ] , 

where  ~'~21) is the difference opera to r  (3.17). 
theorem.  [ ]  

(3.20) 

This together  with (3.18) and  (3.19) implies the 

bk[M~l)f] = 0 (3.18) 

with f =  P ,_  1(" ; 1). Wri t ing the opera to r  (3.5) in the form N,  = D(U + 2 ,0 ,  we obtain  - -  in view 
of (2.7) and  (2.8) - -  the identi ty 

~ b ,  [M ~l)f] = ~bk [N ,  L* f ]  = (2, -- 2k)~bk [L* f ]. (3.19) 

Similarly, writ ing the opera tor  (3.4) in the form L* = D_, + 2 D ( [ a '  -- z] D) + (z' -- a")D, and  using 
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Proof. Substituting b(,, a)- 1 , k  : hka (1).- 1,k into (3.16), we obtain (3.21) with 5e<21) := .///[~)(hkJ). For- 
mula (3.23) follows by using explicit form of the difference operators ~ and X. 

Initial conditions (3.22) are obtained by equating the leading coefficients of the polynomials on 
both sides of (3.14). These coefficients can be deduced from (3.1) and (1.2). []  

4. Associated polynomials of arbitrary order 

The associated polynomials {Pk(X; C)} of order c (c ~ ~) are defined recursively by the formula 
(1.7). 

Let Pk:= 7r~- 1pk, where rCk denotes the leading coefficient of Pk (k = 0, 1 . . . .  ). The monic poly- 
nomials {Pk} obey the recurrence relation 

&+ = (x + 

(k = O, 1, ... ; P -  l(x) -- O, ZOo(X) ---- 1), 

where ilk, ~k can be expressed in terms of ~o(k), 41 (k), ~2(k) (cf. (1.2)) and ~k. Let the corresponding 
associated polynomials be denoted by {Pk(X; C)} (C 6 ~). 

4.1. Differential equation 

Let the first-degree polynomials {Ck} and the constants {Dk} be defined recursively by 

Co := z - a', (4.1) 

Ck+, := -- Ck + 2 Ok(x -- ilk) (k >/0), (4.2) 
7k 

D _ I : =  0, Do:=  z' - - -  (4.3) 
2 '  

Ok-  1 
Dk+l := - - a  + ? t - -  + D k ( x - -  flt) 2 - Ck(x - flk ) (k/>0). (4.4) 

~k- 1 7k 

Lemma 4.1 (Ronveaux [12] and Belmehdi and Ronveaux [3]). Thefol lowin9 differential relations 
hold: 

( C )  ^ ~_, P . (x ,  c) = KcDP,-I (x;  c + 1), x~:= 2 7~ D~_I, (4.5) 
~c-  1 

Oc n_,(c) ~, , . . r~_~tx,  c + l ) = ~ * g P ~ ( x ; c ) ,  ~ * . -  2 
~c 

where 

Q_~c~._ o.D2 + (Co + a ' ) •  + (2, nca")D, n - - -  

[1 *(c):= aid 2 + (a' -- Cc)D + (2" -- (n + 1)ea")l 

with 2 " : =  2, + a" -- z'. 

(4.6) 
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L e m m a  4.2 (Ronveaux  [-12] and Belmehdi  and R o n v e a u x  [-3]). For h e n  and c = O, 1 , . . . ,  the 
following fourth-order differential equations hold: 

M*(c)P,(x; c) = 0, (4.7) 

~x/O~nC+l)pn_l(X;C + 1) = 0, (4.8) 

where 

~ / ~ * ( c ) .  ~ * ( c ) H ( c )  l ~ c l ~ *  c ~ 2  

(c)H *(c) tCct¢* c I) 2. M(f+l):=,~. ~ .  -- 

Here ~(~)n and ~,~*(c) are the following differential operators: 

~(c). G~2 Ar (C c + 2 a ' ) D  + (2, + (1 - nc)o-" + C'c)fl, n , - -  

~*(~):= o-/3 2 + (2a' - C~)~ + (2* + (1 - (n + 1)c)a" - C'c)L 

Proof. Obvious ly ,  it suffices to show that  the Eqs. (4.7) and (4.8) hold in the monic  po lynomia l s  
case. 

It can be checked  that  

N(c)~ = nn(~) ~ , ( c ) ~  = Dn_,(r) (c = 0, 1, ). (4.9) 

Using L e m m a  4.1 and (4.9), we ob ta in  

~q,(c)H(c)~ ( . .  C) . ~.,,(c)r~, = r~c~, ~ r , - a ( x ;  c + 1) ~ : ~ * ( r ) P  l(X;C + 1) K~C* ~2fi , (x;c) ;  

hence, Eq. (4.7). Similarly, we have 

NIc)n*(c)P  ( x ; c +  1) K * ~  ~) ^ • . P P . ( x ,  c )  . (r) ^ = = K~ ~0_, P,(x;c) = K~K* D2pn_I(X;C -'~ 1), ' ~ n  ~ t l  ~ n - - 1  

and  Eq. (4.8) follows. [ ]  

We  prove  the following. 

Theorem 4.3. The differential operator ~ (,~) can be written in the form 

[~(c) ___ ~(1)  + .~(c)~ (4.10) 
n ~ n  ~ n ~  

where 

,9(,~) := (1 - e)[(n + c - 2)o-" + 2z '] ,  (4.11) 

Q , ' =  2o-D 2 + 3o-'D - (n 2 - 1)o-"L (4.12) 

Proof. Not ice  that  Eqs. (4.7) and (4.8) are equivalent ,  so that  M,(c) = ,~0.-1.~ *(c) Thus,  we must  have 

[ ~ +  1) ~,/n (c) N (c) n *(~) N ,(c) ,(~) (4.13) 
n - -  ' ~ ' n  ~ n ~ n  - -  n - l V ' - n - 1  • 

A simple a lgebra  shows that  the r ight -hand side of  the above  equa t ion  can be wri t ten as 

-- (no-" + 2C'e)[-2o'D 2 + 3o-'D -- (n 2 -- 1)O'"l]. 
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It can be deduced  f rom (4.1)-(4.4) that  C'~ = (c - 1)a" + z' (cf. [12]). Thus,  using the no ta t ion  of 
(4.11) and  (4.12), we obtain  

_ 

where  q ~ ) : =  - [(n + 2c - 2)o-" + 2z'], and  

~.d] (c) ~ ~1) ) = ,q(c)(~ 

\ i = 1  

[] 

R e m a r k  4.4. In [18], a p r o g r a m  wri t ten in MATHEMATICA was used to obta in  the coefficients of  
Eq. (4.7). However ,  the form (4.10) of  the opera to r  M (7) remained  unnot iced.  

R e m a r k  4.5. An al ternat ive p roof  of the T h e o r e m  4.3 is given in the Appendix.  

4.2. Recurrence relation for  the connection coefficients 

We are going to cons t ruct  a recurrence  relat ion for the Four ie r  coefficients a k [Pn- 1 (" ;c ) ] ,  i.e., the 
connec t ion  coefficients ~ to) ~a,-1,k} in 

n - 1  

P . - 1  (x; c) ~ _(0 = u.-1,kPk(X). (4.14) 
k = O  

Let us denote  

b(O 1, , :=  b k [ P . - l ( ' ; c ) ]  " (o (4.15) n -  ~ n k a n -  1,k .  

Theorem 4.6. The coefficients tin- l~(c) 1.k obey the second-order recurrence relation 

J///t2°h(° 0 (1 ~< k ~< n - 1), (4.16) ~ n -  1,k 

where 

_ a (~) ~r ( 4 . 1 7 )  (4. + 

where in turn 

J//t2° := ~(/~k~--) + 22k(0" -- Z)(f ) ,  

J f 2  := ~(VkJ- )  + 2k(3o.' -- 2Z)(f) ,  

and /~k:= 4, -- 2k -- O." + Z', Vk:= 2Z' -- 22k -- (n 2 + 2)o-". Here ,9(. ° is the constant given by (4.11). 

P r o o f .  W e  w i l l  show that  

~bk [M (2)f ] = ~ (2 c) b, [ f 3. 

Recall the ident i ty  

~ b k [ ~ ) f ]  = (2. -- 2 k ) ~ ) b k [ f ]  

obta ined  in the p roof  of T h e o r e m  3.3. 

(4.18) 

(4.19) 
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Writing the operator  Q, (cf. (4.12)) in the form 

Q, = 2L, + D([3a '  - 2~]D) + vkD, 

we observe that  

~bkEQ,  f ]  = JV2bk[ f ]. 

This together with (4.19), in view of the obvious equat ion 

~bk[~V~)f] = ~bk[~(nl) f ]  + ,9(nC) ~ b k [ Q n f  ], 

implies (4.18). By virtue of Theorem 4.3, f =  P,_ 1 (" ; c) satisfies the identity ~bk [M (c)f ] = 0 which 
by (4.18) can be written as J/l(2C)bk[f] = O. [] 

Proceeding as in the case of Corollary 3.5, we prove the following. 

Corollary 4.7. The connection coefficients ,(o satisfy the second-order recurrence relation Un- 1,k 

~ (c )  (c) A o ( k ) a ~ ) - l , k - 1  -k- Al(k)a(nc}-l,k -k- A z ( k ) a n - l , k +  1 = 2 a ,_  1,k ~ (c) 0 (1 ~< k ~< n -- 1), 

with the initial conditions 

, - 2  ~2(j) 
. (c) ~ (c) O, 
~n--l,n--1 = H ~ 2 ( j  "-~ C)' "n-- l ,n = 

j = 0  

where 

A,(k) '= (2, - 2k)B,(k) + O~)Ci(k) (i = 0, 1, 2), 

where in turn 

Bi(k) := hk + i- 1 {di(k)pk +i-~ + 22k ~,(k)(a" -- ~') + 26~12k [a'(0) -- ~(0)] }, 

C,(k) := hk+,-,  {d,(k)Vk+,-1 + 2k~,(k)(3a" -- 2z') + 6,~2kE3a'(O) - 2~(0)] }. 

5. Applications 

Now, we can consider separately the cases of the Jacobi, Hermite, Laguerre and Bessel 
polynomials.  Substi tuting in Corollary 4.7 the pert inent expressions for o-, z, f ,  ~ and hk (see 
Tables 1 and 2), we obtain the results given below. The compute r  algebra system MAPLE [5] has 
been quite useful for detailed computat ions .  

We employ the nota t ion  of [6] for the classical or thogonal  polynomials.  The P o c h h a m m e r  
symbol (a),, has the following meaning: 

( a ) o : = l ,  ( a ) m : = a ( a + l ) . . . ( a + m - 1 )  ( m = l ,  2 , . . . ) .  

5.1. Bessel polynomials 

The coefficients 6~n-1, (c) in 
n - 1  

= a. -a ,kYk(x)  yn~_ l(X;C) ~ (c) 
k=O 
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Table  1 
Da ta  for the Hermite  and  Bessel polynomials  

H e r m i t e  Besse l  

a 1 
r -- 2x 

2k 2k 

Yg k g  - ~ +½8 

_@ 2kg  - 1 

ha x /~  2k k ! 

X 2 

( ~ + 2 ) x + 2  

- k ( k + c ~ +  1) 

- 209£- 1 {k(2k + c¢ + 2)8 - 1 
+ a ( 2 k + a +  1 ) J - - ( k  + c~+ 1)(2k + ~)8} 

- 22k0)£- 1 { (2k + :~ + 2) 8 - 1 
- - 2 ( 2 k + ~ +  1 ) Y + ( 2 k + ~ ) 8 }  

k~ 
( - 1 )  k+l  

( 2 k + ~ +  1)(~+ 1)k 

Note:  C0k := (2k + 003. 

Table 2 
D a t a  for the Jacobi  and  Laguerre  polynomials  

Jacobi  Laguerre  

o" x2- -1  

z ( 7 + 1 ) x + 6  

2 k - k ( k + 7 )  

f ¢ o ; ' { 2 ( k + ~ ) ( k + f l ) ( 2 k + 7 + l ) 8  -1 
- 6 ( 7 - 1 ) ( 2 k  + y)~- 
+ 2 ( k +  1 ) (k+y) (2k+7  - 1)8} 

- 2(k + 7)o)[ X { (k +a)(k + fl) 
x ( 2 k + 7 +  1 ) 8 - 1  + 6 k ( 2 k + 7 ) J -  
- (k)2(2k  + 7 -  1)8} 

F(k + ~ +  1)F(k + fl + 1) 
h k 2 ~ 

(2k + 7)k!F(k + 7) 

X 

l + a  - - x  

k 

- ( k + ~ ) 8  - t  + ( 2 k + a + l ) ~ - -  
- (k + 1)8 

- ( k + c 0 8  -1 + k J -  

F ( l + a + k )  

k! 

Note:  7 := c~ + fl + 1, 6 :=  a -  fl, o k :=  (2k + 7 -- 1)3. 

o b e y  the  r e c u r r e n c e  r e l a t i on  

Ao(k)a~)_ l,k_X + Al(k)a~c)_ l,k + A2(k)a( f_  l,k+ l = O, 

w h e r e  

Ao(k)  = (k + ~)2(2k + c~ + 2)2[k  2 - (n + 2c + ~ - 1)Z](k 2 - -  n2) ,  

A~(k)  = - k (k  + ~ + l ) (2k  + ~ -  l ) (2k  + ~ + 3) 

x { ( k + c t + l + n ) ( k - n ) [ n ( n + c t + l ) + c t + 3 k ( k + a +  1)] 

- 2(c - 1)(n + c + cO[2k(k + ~ + 1) + 2n z + c¢]}, 

A2(k) = (k)2(2k + a - 1 ) 2 [ ( k  + a + 1) 2 - n 2 ] [ ( k  + ~ + 1) 2 - (n  + 2 c  + a - 1 ) 2 ] ,  
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with the initial condi t ions  

.(c) (o~ + l )n - l (c  + ½a + ½)n-l(C + ½~ + l ) . - x  .(c) O. 
1 1 t ~ n - - l ' n - - I  = (½~ + ~ ) . - 1 ( ~  + 1) . -1(c + ~ + 1).-1 " " - L "  = 

The above  result  seems to be new. It should  be c o m p a r e d  with the one  given in [14],  where  the 
special case c = 1 is treated;  a fourth-order recurrence relat ion for -.-Lk"(~) is ob ta ined  using 
MATHEMATICA, under  the a s sumpt ion  that  bo th  Y~, and Y.~_ 1(" ;1) are monic.  

5.2. Laguerre polynomials 

The coefficients .to) in t~n -  l , k  

n - 1  

= an_l ,kLk(X ) L. y , 
k = O  

obey  the recurrence relat ion 

( k 2  2 "  (c) - n ~a. -1 ,k-1  -- [ ( k - -  n)(n + 3k + 1) + 2(1 - c)(2k + 1)]a~)_1,, 
. ,  (C) + 2(k - n - 2c + 2)(k + ~ + l)a,,_ 1,k+ 1 = O, (5.1) 

with the initial condi t ions  

a(C) _ ( n -  1)! "(~) 0. (5.2) 
. - 1 , . - 1  (c + 1 ) . -1 '  - . - 1 , .  = 

This results agrees with the explicit formula  for a(.~l,k given in [10]. In [-14], a third-order 
recurrence relat ion for _(a) - . - l , k  is ob ta ined  using MATHEMATIeA, under  the a s sumpt ion  that  bo th  
L~ and L~_ 1 ( "; 1) are monic.  

Not ice  that  in case ~ ½, Eq  (5.1) implies the existence of  a first-order recurrence for - (~) t*n_  l ,  k . 

Indeed,  (5.1) can be wri t ten in this case as 

( ~ - 1  ~r~O~atC) O, 
- -  ~" I ~1-~ n - l , k  = 

where  

2 : =  [(k + l) 2 - n Z ] J  - - (2k + 3 ) ( k -  n - 2c + 2)~. 

It can be seen that  the equa t ion  o~,(~) -~- . -1 ,k  = 0 holds. Us ing  the first condi t ion  of  (5.2), we ob ta in  the 
formula  

L1/2 tv. c) -- (n -- 1)! ,~1 (½ _ n)R(2C)kL1/2 tXX 
" - " ~ '  (c +- ])-~-1 k=O k!(1 ~2--~k . - l - k ,  ,. 

5.3. Hermite polynomials 

The coefficients #c) in t ~ n -  l , k  

n - 1  

n n _ l ( X ; C  ) = ~ a(nC)--1,kHk(X) 
k = O  
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obey  the recur rence  re la t ion 

(k 2 n2)a~.C)-l,k_l + 4(k)z (k  n 2c .,. ~c) . . . .  Z ) a n -  l , k  + 1 ~ 0, 

with initial condi t ions  

a(C) 1, ~ (c) = O. 
n -  l , n - 1  ~ C t n -  l , n  

This  toge the r  with the s y m m e t r y  p r o p e r t y  Hk(--x;  c )= (--1)kHk(X;C) (k >1 0; c ~> 0) yields 
arC) = 0 (k = 1, 2, ] n/21), and  n - l , n - 2 k  " " 7  

a~C) (C)k(n - - k  -- 1)! (k = 0, 1, L ½ ( n -  1)J). 
, -1 , , -Zk-1  = (--2)kk!(n-- ---2-k- 1)! -..7 

This  result  was given in [2].  

5.4. Jacobi polynomials 

The  coefficients ,,-1,g-(C) in 

n - 1  
P . -  1 (x; c) = ~ . . . -  a, k 

k=O 

obey  the recur rence  re la t ion 

(¢) Al(k)a~c)_l,k Az(k)a~ )_ = 0, (5.3) Ao(k)a,-1,k-1 + + 1,k+l 

where  

Ao(k) = (k + 7 - 1)2(2k + y + 1)z(k 2 - n2)[k  2 - (n + 7 + 2c - 2)3, 

Al(k) = (fl - cO(k + 7)[(2k + 7) 2 - 4] 

× {(k - n)(k + n + y)[(n + 1)(n + 7 - 1) + 3k(k + 7)] 

- 2(c - 1)(n + y - 1)[2k(k + 7) + 2n2 + Y - 1]}, 

Az(k) = - (k + 7 + 1)(k + fl + 1)(2k + 7 - 2)2 

X [ (k  -k- 7) 2 - -  n Z ] [ ( k  q- 7) 2 - (n q- 7 -k- 2c - 2)2]7 

with initial condi t ions  

_¢o _ (n - -  1 ) ! (7 )n -  1(C + ½7)n-1 (  ¢ "-[- ½7 + 2)nl _ 1 .(c) 0, 
" n - l , n - 1  (½y).- l(½Y + ½).- 1(c + 1),,- 1(c + y).- 1 

where  y := ~ + fl + 1. This  result  is in ag reement  with the one  ob ta ined  by  the a u t h o r  in [8] for 
c = 1, and  in [9] - -  for  a rb i t r a ry  posi t ive c ~ ~. F o r  ~ = fl the middle  t e rm in (5.3) vanishes,  hence  
this e qua t i on  is in fact of  the first order ,  which yields explicit  fo rmulae  for -(~) and  _(o t ~ n - l , 2 k  U n - l , 2 k -  1. 
Defining the associated Gegenbauer polynomials by 

C~(x; c ) : -  (2v + C)k p~v- 1/2 ,v-  1/2)(X; C) (k ~ 0; v > - -  1;  c ~ 0), 
(c + v + 
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we obtain the formula,  a l ready given in [9]: 

C~_ 1 (x; c) = (n - 1)[(v + c) ._  1 L(.- 1)/zj g t f  - 
(y)n(C + 1)n_ 1 Z 1, kCv-2k-l(X)' 

k=0 

where  

g(C) . _  n-l,k'-- 
(n + v - 2k - 1)(1 - V)k(1 - -  n - -  V)k(C)k(2 - -  n - -  2v  - -  2C)k 

kI(1 - n)k(V + C)k(2 - -  n - -  v - -  C)k 

(k = o ,  1, . . . ,  L½(n  - 1 )3) .  

Appendix .  An alternative proof  o f  T h e o r e m  4.3 

Let us define Fk,  Gk and  H k  (k >~ 0) by 

1 n + k -  1 Ok 
F k : = - ~ ( C ' , + k  + C'k) - -  ~ - - ,  (A.1) 

j=k ~;k 

Gk :---- 4 D k -  1D__k C2k, (A.2) 
7k- 1 

H k  := C'kCk.  (A.3) 

It has been shown in [3] that  the differential equa t ion  (4.7) can be wri t ten in the form 
4- 
Z pi (x;  e ) ~ ) i P , - a ( x ;  c) = O, 

i=0 

where  

P4( ' ;  c) = a 2, (A.4) 

P3(" ; C) = 50"0", (A.5) 

P2( ' ;  c) = 2a(Fc  + 2a") + 4a 2 + Gc, (A.6) 

P l ( "  c) = 3a ' (Fc  + a " )  - 3He, (A.7) 

P0( ' ;  c) = F~(Fc + a "  - 2C'¢). (A.8) 

We will show that  these formulae  can be simplified to the form given in the theorem.  We start  
f rom an observat ion  m a d e  in [12]. By differentiating formulae  (4.2) (once) and  (4.4) (twice), we 
obtain  

C'k + 1 + C'k = 2 - - ,  Dk (A.9) 
7k 

C k = (  2Dk]lk Ctk) (X ~k) at, (A.10) 

= Dk , (A.11) 2C~ 2 - tr , 
7k 
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h e n c e  - -  i n  v i e w  o f  ( 4 . 1 )  - -  t h e  f o r m u l a e  

C i  = (k  - 1 ) a "  + z ' ,  

Dk 1 
- -  ( 2 k -  1)a" + z' 

Yk 2 

and  

(A.12) 

(A.13) 

C k  = ( k a "  + z ' ) ( x  - -  i lk )  - -  a ' .  (A.14) 

Now,  we want  to express the b inom x - f ik in terms of a, z and  their  derivatives. Po lynomia l  
Pl(X) = x - f lo  s a t i s f i e s  ( 1 . 4 )  w i t h  n = 1, hence x - f lo  = - z/).l = z/z'. Equat ing  the expressions 
for C k + I ,  implied by (4.2), (A.10) and  (A.14), we obtain  

[(k - 1)a" + z ' ] ( x  - i lk )  + a '  = [(k + 1)a" + z ' ] ( x  - -  f i g + l )  - -  a ' .  (A.15) 

Thus,  we have 

z ( z '  - a " )  + a ' k [ ( k  - 1)o'" + 2z'] 
x - -  fig = (k > 0). (A.16) 

[(k - 1)a" + z'] [ k a "  + z ' ]  

Subst i tut ing this into (A.14) and  using the no ta t ion  (1.5), we get 

z ( z '  - a " )  - -  2 a ' 2 k  
C k  = - -  a ' .  (A. 17) 

(k - 1)a" + z' 

It is easy now to obta in  the formulae  

F k  = - -  ½(n - -  1)[(n + 2k -- 2)a" + 2z'], (A.18) 

H k  = r ( z '  - -  a " )  - -  a ' [ ( k  - -  1)a" + z' + 22k]. (A.19) 

The  only lacking expression for Gk m a y  be ob ta ined  using the following equa t ion  implied by (4.2) 
and  (4.4): 

Gk+ 1 -- Gk = -- 4 a  Dk 
~k 

see [3, Eq. (9)1. As Go = - C 2 = - (z - a ' )  2, we have 

Gk = - -  ( z  - -  a')  2 -- 2ak [ (k  - 2 ) a "  + 2 z ' ]  (k ~> 0). (A.20) 

Eqs (A.4)-(A.8), (A.18)-(A.20) and  L e m m a  3.1 imply 

P4(" ;C) ----- P4(" ; 1), 

P3( ' ; c )  = P3( ' ;  1), 

p~(. ;c) = p~(. ; 1) + 2o-o~. c), 

p l ( . ; c )  = P l ( ' ;  1) + 3a'~gt, °,  

Po(" ;c) = Po(" ; 1) -- (n 2 -- 1)a"O~, c), 
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~9(, ° being given by (4.11). This - -  in view of the form (4.12) of the opera tor  Q,  - -  completes the 
proof. []  

Rema rk  A.1. The formula  

7k-1 ~ 7k Yk-1 ) 

can be obta ined  using (A.2). M a k i n g  use of  (A.20), (A.17) and  (A.13), we arrive at the formula  

k(k + 1) { [  2a'2k+l -- Z(z' -- (r") j2 k ~ l }  
- -  - -  0 " t  - -  (27  - -  0 " )  2 - -  4 )].k , 

7k 2k-12k+l ( k + l )  ( k + l ) z + 2 2 k + l  

which can be compared  to the al ternat ive formulae due to Ma g n u s  (see, e.g., [-18]) and  Yfifiez 
et al. [,-16]. 
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