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Abstract

Let { P,(x)} be any system of the classical orthogonal polynomials, and let {P,(x; c}} be the corresponding associated
polynomials of order ¢ (c e N). Second-order recurrence relation (in k) is given for the connection coefficient a:f)_ 1.k 10

n—1
P i(x;0)= Z a:lC)—l,kPk(x)'
k=0
This result is obtained thanks to a new explicit form of the fourth-order differential equation satisfied by P, _,{(-;c¢).
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1. Introduction

Let { P,(x)} be any system of the classical orthogonal polynomials (i.e., associated with the names
of Jacobi, Hermite, Laguerre and Bessel),

Lp(x) Pu(x)Pi(x)dx = Suhy - (k,1=0,1,...), (1.1)

where b, # 0 (k = 0,1, ...); the support I of the weight function pis[— 1,1], (— o0, o), [0, c©)and
{zeC: |z| = 1}, respectively. Besides the three-term recurrence relation

xPy(x) = Eo (k) Py 1(x) + &1(k) Pi(x) + E2(k) Py 4 1 (X)
(k=0,1,...; P_i(x) =0,Py(x) = 1), (1.2)
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these polynomials enjoy a number of similar properties which in turn provide characterizations of
them ([6, pp. 150-152] or [1], or [4]). We shall need three of those properties.
First, the weight function p satisfies a differential equation of the Pearson type,

(op) = p, (1.3)

where ¢ is a polynomial of degree at most 2, and 7 is a first-degree polynomial.
Second, for arbitrary n, the polynomial P, obeys the second-order differential equation

L, P.(x) = [6D? + D + A,1]P.(x) =0, (1.4)
where D := d/dx, [ is the identity operator, and
A= —3n[(n—1a” + 2] (1.5)
Third, we have the so-called structure relation
a(x)DPy(x) = do(k) Py —1(x) + d1 (k) Po(x) + dz(k) Py s 1 (x). (1.6)

Recently, Yafiez et al. [16] (see also [17]) have shown that the coefficients, £;(k) and d;(k) of the
relations (1.2) and (1.6), respectively, can be expressed in terms of the coefficients o and 7 of Eq. (1.3).
The associated polynomials { Pi(x;c)} of order ¢ (ceN) are defined recursively by

xPy(x; ¢) = olk + )Py 1(x50) + Ealk + ) Pelx; ¢) + E2(k + ) Pev1(X50)
(k=0,1,...; P_(x;0) =0, Po(x;c) = 1). (1.7)

They are known to belong to the Hahn—Laguerre class of orthogonal polynomials (see, e.g., [3]).
For arbitrary n and ¢, P,_ {(-; ¢) satisfies a fourth-order differential equation

M f = ._io pi(-;0)D'f =0, (1.8)

where p;(-; ¢) are polynomials of degree independent of n and ¢ (see [3, 12]). For the history of
searching this equation see [18]. For the Jacobi case (even for the arbitrary real positive c) it was
obtained in [15] using MACSYMA. For each of the four classical polynomial families it was given
in [3, 12]. Recently, Zarzo et al. [18] used MATHEMATICA to obtain the coefficients p;(-; c) in terms
of ¢ and .

In this paper we show that the fourth-order differential operator M can be written in the form

MY = Mg+ 900,

where M (" is the well-known fourth-order operator corresponding to the special case ¢ = 1 [11],
and where

3= —)[(n+ c —2)0” + 27],
Q,:=20D2 4+ 3¢'D — (n* — Na"[;
see Theorem 4.3. This result will help us to construct a second-order recurrence relation of the form

g(zc)affll,k = AO(k)aﬁtd—l,k—l + A1(k)a£xc)—1,k + Az(k)afnc)—l,kﬂ =0 (I<k<sn-1) (1.9)
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for the connection coefficients a- Lk In

P,_1(x;c) = z aﬁf) 1.xP (1.10)

The coefficients of this recurrence relation are expressed in terms of a, 7, &;(k) and d;(k); see
Corollary 4.7. In Section 5, we apply the results obtained to each of the four classical families.

2. Identities involving the Fourier coefficients

We shall need certain properties of the Fourier coefficients of a function f, defined by

alf]= hikbk[f], @1
where
b[f]:= j PP f)dx (k=0,1,..), 22)

i.e., the coefficients in the formal expansion

f~3 alf1P.
k=0

Let Z and 2 be the difference operators defined by
Zi=Co(k)E ™! + & (k)T + &, (K6, (2.3)
D:=do(k)6 ' +d (k)T + dy(k)& (2.4

(cf. (1.2) and (1.6)) where 7 is the identity operator, and &™ the mth shift operator:
TIbh[f1=b[f], E™bl f] = bi+m[f] (meZ). For the sake of simplicity, we write & in place of
&L
Further, let us define the differential operator U by
U:=0ox)D + z(x)l. (2.5)

We prove the following lemma.

Lemma 2.1. The coefficients (2.2) obey the identities:

blxf1=Zb[f], (2.6)
Db [Df ] = Acbie[ f ], (2.7)
bi[Uf 1= —2b [ f1], (2.8)

bi[lyf1= (4 — A)be[ /] (2.9)
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Proof. In view of (1.2) and (2.3), identity (2.6) is obviously true.

We will prove the identity (2.7). Using (1.6), integrating by parts, and then using the equation
(6pPy) = — Ly pP, (cf. (1.4) and (1.3)), we get

GnIDf1= | phf' = Lpo*Pkf’

_ f (poPLfY — f (poPLY S = iy f pPuf = bl f 1.
I I I

In a similar way, using (6pP,) = p(cP; + tP,), we obtain

bular') = | pobas’ = | (popusy - | ooy

- | plePitpif = — | pTPS = | peis= - IBLAT - DL
I 1 I
Hence follows the identity (2.8).
As we can write [, = UD + 4,0, we have, using (2.8) and (2.7),

bl f1=blUf" ] + Abi[f 1= — Db f'] + Aubi [ f 1= (4 — 2D [ f].
This proves the validity of (2.9). [

Remark 2.2. Identity (2.6) can be easily generalized to the form
bilaf 1=q(@)bl f], (2.10)

where ¢ is any polynomial.

3. First associated polynomials

As we have already remarked, the case ¢ = 1 plays an exceptional role in these considerations.
The operators M and #%, defining the left-hand sides of the Eqs. (1.8) and (1.9), respectively, are
given in terms of the operators M{" and .# 4", associated with this special case.

The first associated polynomials (or numerator polynomials) { P,(x; 1)} are defined recursively by
(1L.7Y withc =1, i.e,,

xP(x; 1) = Eolk + D) Pr— 1 (x5 1) + &y (k + D) Pe(x; 1) + Eatk + 1) Py 1(x; 1)
k=0,1,...; P_;(x; 1) =0, Py(x; 1) = 1). (3.1)

3.1. Differential equation
We have the following.

Theorem 3.1 (Ronveaux [11]). For arbitrary n, P,_(x; 1) satisfies the fourth-order differential
equation

M{PP,_1(x; 1) =0, 3.2)
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where
M= N, L¥, (3.3)
and
L¥:=0D*+ 26 — 1)D + (4, + 6" — )], (3.4)
N,:=06D? + (' +1)D + (4, + )L (3.5)

The coefficients p;(-; 1) in
M(l) Z pz I)Dt

are given by

pa(-31) = a2, (3.6)
pa(-;1) = So0’, : (3.7
p2(-;1) = (0" + 1)(3¢" — 1) + 26(A, + 36" — 71'), ‘ (3.8)
pi(-;)y=31(¢" - 1)+ 30’4, + "), 3.9
Pol31) = An—1lns1. | | (3.10)

Remark 3.2. Let us note that P,_(x; 1) satisfies also the following dlfferentlal equatlons of order
two, three and five, respectively (see, e.g., [11, 13]: : :

L¥P,—1(x; 1) = oDP,(x) <a):= M)’ ' (3.11)
f1p

UL¥P,_(x;1) = — L,wP,(x), (3.12)

TOP, (1) =0 (TP:=L,ULY. (3.13)

(By the way, it can be checked that L,U = UN,, hence TV = UM V. )

3.2. Recurrence relation for the connection coefficients

Let us construct a recurrence relation for the Fourier coefficients a,[P,—(-;1)], i.e., the
connection coefficients {a,, 1k In

P,_y(x; 1) = Z afnl-)r,kPk(x)- (3.14)
k=0

Let us denote

o1 = be[Po-1(-31)] = lat . (3.15)
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Theorem 3.3. The coe]ﬁcients bl . satisfy the second-order recurrence relation
MPDH =0 1<k<n—1), (3.16)
where
MP =D (T ) + 24[6'(X) — ()], (3.17)

whereas = A, — Ay — 0" + 7.

Proof. By virtue of Theorem 3.1, we have
b [M"f] =0 (3.18)

with f= P,_(-; 1). Writing the operator (3.5) in the form N, = D(U + 4,0), we obtain — in view
of (2.7) and (2.8) — the identity

Db [M}f 1 = Db [N, LY f1= (A — A)DB[LY £ ] (3.19)

Similarly, writing the operator (3.4) in the form L} =L, + 2D([¢’ — t]1) + (' — ¢”)1, and using
(2.9), (2.7), (2.10), we obtain

Ib[LE f1= M bl [ ], (3.20)

where .#$" is the difference operator (3.17). This together with (3.18) and (3.19) implies the
theorem. []

Remark 3.4. It should be remarked that the result given in the above theorem can also be obtained
using any of the differential equations (3.11)—(3.13). Indeed, (3.11) implies the identity 2b,[L} 1]
=wPb[DP,] with f= P,_,(-; 1), which by (3.20) and (2.7) reduces to .#3"b.[ f 1= Awb,[P,].
Now, it remains to observe that b, [P,] = h,dy,.

As for using Eqgs. (3.12) and (3.13), it suffices to observe that
b[ULF f1= — Db [Li f1=— b f],
blT 1= b [UMf ] = — Db [MLVf T = (A — An) b [ ]

Corollary 3.5. The connection coeﬁiczents al | i obey the second-order recurrence relation

3(21)(1;1)1 « = Bo(k)al k-1 + B 1 (k)al? 1 « + By(k)ai? 1k+1=0 (I<k<s<n-—1), (3.21)
with the initial conditions
2(0)
1) _ (- _ 22
An—-1,n—1 éz(n_ 1)a n—1,n Oa (3 )

where
Bi(k):= hy i1 {di(k),uk+i—1 + 24 &i(k)(0” — T') + 26: A0’ (0) — T(O)]}
i=0,1,2). (3.23)
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Proof. Substituting b{"; , = lal”; , into (3.16), we obtain (3.21) with % := .#(h.T). For-
mula (3.23) follows by using explicit form of the difference operators 2 and Z.

Initial conditions (3.22) are obtained by equating the leading coefficients of the polynomials on
both sides of (3.14). These coefficients can be deduced from (3.1) and (1.2). [

4. Associated polynomials of arbitrary order

The associated polynomials {P,(x; c)} of order ¢ (c € N) are defined recursively by the formula
(1.7).

Let Pk:f i ' Py, where m, denotes the leading coefficient of P, (k = 0,1, ...). The monic poly-
nomials {P,} obey the recurrence relation

Piii(x) = (x — Bu) Pu(x) + 1P 1 (x)
(k=0,1,...; P_i(x) =0, Py(x) = 1),

where f, v, can be expressed in terms of &y (k), &, (k), &, (k) (cf. (1.2)) and 7. Let the corresponding
associated polynomials be denoted by {P,(x; ¢)} (ceN).

4.1. Differential equation

Let the first-degree polynomials {C,} and the constants {D,} be defined recursively by

Co=1—0, 4.1)
D, .
Civ1:= _Ck+2y_(x_ﬂk) (k= 0), 4.2)
K
D_1:=0, D():: T,—'%, (43)
D,_ D
Dysyi=—0+ 7% £ 1+y—k(X—Bk)2—Ck(X—ﬁk) (k = 0). (4.4)
k—1 k

Lemma 4.1 (Ronveaux [12] and Belmehdi and Ronveaux [3]). The following differential relations
hold:

LOP(x; ¢) = k,DP,_y(xsc + 1), K= 2% D._,, 4.5)
c—1
*© p i T D (o . D,
Ly “P_i(x;c+ 1) =¥ DP,x;¢c), K¥:= —2—, (4.6)
where

LY := ¢D? + (C. + ¢')D + (A, — nca”)l,
L¥9=6D% 4+ (¢’ — C)D + (A¥ — (n + 1)ce”)l
with A¥ . =1, +¢" — 1’
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Lemma 4.2 (Ronveaux [12] and Belmehdi and Ronveaux [3]). For neN and ¢ =0, 1,..., the
following fourth-order differential equations hold:

M*P,(x;c) =0, 4.7)
MEFVP, (e +1)=0, (4.8)
where

ME@:= NFOLY — k¥ D?,
METD = NOLFO — k¥ D2

Here N and N*© are the following differential operators:
N©:=¢D? + (C, + 26")D + (A, + (1 — ncyo” + C)I,
N¥9:= D2 4+ 20" — C.)D + (A* + (1 — (n + 1)c)a” — CLI.

Proof. Obviously, it suffices to show that the Eqgs. (4.7) and (4.8) hold in the monic polynomials

case.
It can be checked that
NOD =DLY, N¥D=DL¥ (=0,1,...) (4.9)

Using Lemma 4.1 and (4.9), we obtain

N¥OLOP (x;¢) = k, N¥ODP,_ (s c + 1) = k. DLXOP,_ (x;¢ + 1) = K.k D?P,(x; c);
hence, Eq. (4.7). Similarly, we have

NEOL¥OP, _(x;c+ 1) = k*NEPDP,(x; ¢) = k*DLY P,(x;¢) = k.x* D2P,_ (x;¢ + 1),
and Eq. (4.8) follows. [

We prove the following.

Theorem 4.3. The differential operator MY can be written in the form

MO =MD 4+ 89Q,, (4.10)
where
3= —o)[(n+c—2)0" + 2], (4.11)
Q,:=20D? + 36¢'D — (n* — )" 1. (4.12)

Proof. Notice that Eqgs. (4.7) and (4.8) are equivalent, so that M = M **}. Thus, we must have
My — MY = NPLFO — NFIOLE . (4.13)

A simple algebra shows that the right-hand side of the above equation can be written as
— (n6” + 2C.)[26D* + 36'D — (n* — 1)o"1].
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It can be deduced from (4.1)—(4.4) that C, = (c — 1)¢” + 7' (cf. [12]). Thus, using the notation of
(4.11) and (4.12), we obtain

M(c+ 1) M;c) — QDLC)@na
where ¢ := — [(n + 2¢ — 2)¢” + 27'], and

M;C) (1) (z (p(l)> — ‘9;0)@”. 0

Remark 4.4. In [18], a program written in MATHEMATICA was used to obtain the coefficients of
Eq. (4.7). However, the form (4.10) of the operator M remained unnoticed.

Remark 4.5. An alternative proof of the Theorem 4.3 is given in the Appendix.
4.2. Recurrence relation for the connection coefficients

We are going to construct a recurrence relation for the Fourier coefficients a,[P,—,(-;¢)], i.e., the
connection coefficients {a\” | .} in

P,_1(x;¢) Z aif) 1,x P 4.14)

Let us denote

bi.) 1L,k= =b[P,-1(-;0] = hkan 1,k (4.15)

Theorem 4.6. The coe]ﬁcients b{) |  obey the second-order recurrence relation

MDY =0 (1<k<n—1) (4.16)
where
M =y — X)) MP + 3° N5, (4.17)

where in turn
M = DT ) + 24(0 — )X,
N = DT ) + 430" — 20)(T),
and pi= Ay — Ay — 6" + T, vi= 27 — 224 — (n* + 2)6". Here 9 is the constant given by (4.11).

Proof. We will show that

Db MY ] =MEb[ f]. (4.18)
Recall the identity
Db ML S ] = (An — 2) M b [ f ] (4.19)

obtained in the proof of Theorem 3.3.
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Writing the operator Q, (cf. (4.12)) in the form
Q, =21, + D([30" — 27]0) + v,
we observe that
Db [Q, f1= A0 f]
This together with (4.19), in view of the obvious equation
Db [MYf] =20 [M 1+ 97 2b,[Q,f ],

implies (4.18). By virtue of Theorem 4.3, f = P,_,(-; c) satisfies the identity 2b,[M?f ] = 0 which
by (4.18) can be written as .#5b[ f1=0. O

Proceeding as in the case of Corollary 3.5, we prove the following.

Corollary 4.7. The connection coefficients al) | x satisfy the second-order recurrence relation
g(zc)aﬁf)—u = Ao(k)ai:c)—1,k—1 + Ai(k)allyx + Ay(k)ayl o1 =0 (1<k<n-—1),
with the initial conditions
c "2 G () c
=n% a1, =0,
where
Ai(k):= (A — A)Bi(k) + 9V Cilk) (i =0, 1, 2),
where in turn
Bi(k):= My i— 1 {di(R) phe v i -1 + 24 (k) (0" — T') 4 26,1 A [07(0) — 7(0)]},
Cilk):= hivi— 1 {dilk)vier i1 + L &u(k)(Ba” — 2t) + 6; 4[367(0) — 22(0)]}.

5. Applications

Now, we can consider separately the cases of the Jacobi, Hermite, Laguerre and Bessel
polynomials. Substituting in Corollary 4.7 the pertinent expressions for a, t, Z, 2 and h, (see
Tables 1 and 2), we obtain the results given below. The computer algebra system MAPLE [5] has
been quite useful for detailed computations.

We employ the notation of [6] for the classical orthogonal polynomials. The Pochhammer
symbol (a),, has the following meaning:

(@)o:=1, @m=a@+1)..(a+m—-1) m=1,2,..).
5.1. Bessel polynomials

The coefficients a') , , in

n—1
Yo i(x0)= Y afl hYi(x)

k=0
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Table 1
Data for the Hermite and Bessel polynomials
Hermite Bessel
1 x?2
T - 2x (x+2)x+2
e 2k — k(k+a+1)
x k&1 +4e =207 YkQRk+a+2)¢ !
+oak+o+1)T ~(k+a+ D)2k +a)&}
17 2k& 1 —2hog H{2k+a+2)8 !
—2Q2k+a+1)7 +(2k+o)&}
k!
h 2%k! S | L S
g Vr S Tarw Py

Note: wy:= (2k+a)s.

Table 2
Data for the Jacobi and Laguerre polynomials

Jacobi Laguerre
G x2—1 x
T (y+1)x+0 l+a—x
b, —k(k+y) k
¥ o' 2k+0k+B2k+y+ 1) —(k+)E "+ 2k+a+ DT
—o(y—1D(2k+y)T —(k+1)¢
+2(k+ D)(k+7)2k+y — 1)&}
2 2k+po; {k+a)k + p) —k+0)&  +kT
x2k+y+1)E 1+ 5k(Rk+7)T
—(k),2k+y—1)¢}
;  Tk+a+ )M (k+B+1) r(1+o+k)
) (2k+7)k!T (k+7) k!

Note: yi=a+f+1, d:=a—f, w,:=(2k+y —1),.

obey the recurrence relation
AO(k)aLC)—l,k~1 + Al(k)aff)—l,k + AZ(k)a;a—l,k+1 =0,
where
Aolk) = (k + a),(2k + o + 2),[k* — (n + 2¢ + « — 1)*](k* — n?),
A= —k(k+a+ DRk+a— 12k +a+3)
x{tk+a+1+nk—n[nn+o+1)+a+3kk+a+1)]
—2(c—D(mn+c+a)[2k(k +a + 1) + 2n* + o]},
Ax(k) = (k). 2k + oo — D[k + o+ 1)2 —n?J[(k + o + 1)> — (n + 2c + o — 1)?],
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with the initial conditions

a(c) — (O(+ l)n—l(c+%a+%)n—1(c+%a+ 1)n—l a(c) =0
T Gt Daa G Damale Foa+ Dy T T

The above result seems to be new. It should be compared with the one given in [14], where the

special case ¢ =1 is treated; a fourth-order recurrence relation for af,l_’l,k is obtained using

MATHEMATICA, under the assumption that both Y§ and Y%_,(-;1) are monic.

5.2. Laguerre polynomials

The coefficients al | , in

—1(x0)= Z agtC)—l,kL%(x)
k=0

obey the recurrence relation
(k* —n¥)ayl w—r — [k —m)(n + 3k + 1) + 2(1 — )2k + 1)]ay 1
+2(k—n—2c+2)(k+oc+1)a,, Lk+1 =0, (5.1)
with the initial conditions
() (l’l _ 1), (c) =0
ay-— 1,n—1 = (C + l)n L H an—l,n . (52)

This results agrees with the explicit formula for a'”, , given in [10]. In [14], a third-order
recurrence relation for al” 1,x 1s obtained using MATHEMATICA, under the assumption that both
L{and L%_,(-;1) are monic

Notice that in case « = 3, Eq(5.1) implies the existence of a first-order recurrence for al .

Indeed, (5.1) can be written in this case as
(' —T)2a,,=0,
where
2:=[k+1)?—n?]T — Rk +3)k—n—2c+2)86.
It can be seen that the equation 2a | , = 0 holds. Using the first condition of (5.2), we obtain the

formula

L2 (x;c) = L2 (x).

(=Dt "5 (= (20l
(c + D1 56 k(1 — 2n),

5.3. Hermite polynomials

The coefficients a' 1.k 1D

H,_i(x;¢) = Z an 1, Hy(x)
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obey the recurrence relation
(k2 - nz)ale)—l,k—l + 4(k)y(k —n — 2¢ — Z)aff)—Lkﬂ =0,
with initial conditions

(c) (c)
Ap-1,n-1 = la an—l,n':o'

227

This together with the symmetry property H,(— x;c) = (— 1)*H,(x;¢) (k=0; ¢ = 0) yields

aglim-=0(k=12,...,[n/2]) and

(h(n —k —1)!
ki(n — 2k — 1)!

This result was given in [2].

as;c)—l,n—zk—l = (“2)k

(k=0,1,...,[ 2(n—1) .

5.4. Jacobi polynomials

The coefficients a ; , in

n—1
PR o) = ¥ anl 1k PP (x)
k=0

obey the recurrence relation
Ao(k)al® 1 w1 + Ar(k)al 1w + Ay (K)al ;w41 =0,
where
Aolk) =(k +7 — 1),k + y + D)o(k* — nH)[k* —(n + 7 + 2¢ — 2)],
Ak = (B — o)k + 2k + 7)* — 4]
x{(k—n)k+n+y[n+Dn+y—1)+3kk + )]
—2(c—V(n+y—D[2kk +7) +2n* +y— 17},
Aryk)=—(k+oa+Dk+B+ D2k +y—2),
x [k +7)? = n?1[(k +9)* = (n + 7 + 2c — 2)?],
with initial conditions

© _ =) Wh—sle + In-1(c + 37 + D1 ©  _
Ay—1,n—-1~ 1 1 1 5 an—l,n_o’
GEVn-1(7 + 2n-1(c + Dp—1(c + Pn-1

(5.3)

where y:= o + f + 1. This result is in agreement with the one obtained by the author in [8] for
¢ =1, and in [9] — for arbitrary positive c € R. For « = f the middle term in (5.3) vanishes, hence
this equation is in fact of the first order, which yields explicit formulae for a'” | ,, and a'; ,._ ..

Defining the associated Gegenbauer polynomials by

2v + o)

B P )

PY-Y2y=1UD(x ) (k=0;v> —4;¢20),
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we obtain the formula, already given in [9]:
(n - 1)'(‘) + C)n—l Lin- 1)72] (c)

Cro1(x;0) = n-1.kCr— 21— 1(x),

1(x;5¢) e + Dy Z In=1.k 2k-1(%)

where
o . (n+v=2k—1D)1—=v)(l —n—v)(ch(Z—-n—2v—2)
In=1.8-= K —n)e(v + W2 —n—v—0)

k=0,1,...,[3(n — D).

Appendix. An alternative proof of Theorem 4.3

Let us define F;, G, and H, (k = 0) by
1 n+k—1 Dk

=>(Chre +Ci)— Y , (A1)
2 j=k Yk
1D
Gyi= 421Dz (A2)
V-1
It has been shown in [3] that the differential equation (4.7) can be written in the form
4
Z x C)D Pn 1(x C)
where
pa(-;0) = 02, "
ps(+;¢) = Sod’, ")
p2(-5¢) = 20(F, + 20") + 40* + G, (A.6)
pi(-¢) =30'(F. + ¢") — 3H,, (A7)

Po(-;¢) = F(F. + 0" — 2C;). (A.8)

We will show that these formulae can be simplified to the form given in the theorem. We start
from an observation made in [12]. By differentiating formulae (4.2) (once) and (4.4) (twice), we
obtain

Cis1+Cp= 2 D (A.9)
k

C, = (2— - C; >(x — B — o, (A.10)

2C, =2 D _ ¢, (A.11)

Vi
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hence — in view of (4.1) — the formulae

Ci=k—1)c"+1, (A.12)

Dy = l(2k —o" + 7 (A.13)

e 2
and

Ci=(ke" +1)x —py) — 0. (A.14)
_ Now, we want to express the binom x — f in terms of ¢, t and their derivatives. Polynomial
Py(x) = x — By satisfies (1.4) with n = 1, hence x — o = — t/A; = 1/7’. Equating the expressions
for C, 4, implied by (4.2), (A.10) and (A.14), we obtain

[k—1Do"+7YHx—=p) +0 =[k+ 1" +7](x — Pi+1) — 0. (A.15)

Thus, we have

ot —a"y+ a'k[(k—1)o" + 27']

b= oo ke v o7 20 (4.16)
Substituting this into (A.14) and using the notation (1.5), we get
Cp = “Z{:‘i;af fiilk Y (A.17)
It is easy now to obtain the formulae
Fr= —3(n—1[(n+ 2k —2)0" + 277, (A.18)
H,=1(t —¢")—d'[(k—1)o" + 7 + 24] (A.19)

The only lacking expression for G, may be obtained using the following equation implied by (4.2)
and (4.4):

D
Gir1 — G = —40'—k;
Yk

see [3, Eq. (9)]. As Gy = — C§ = — (t — ¢’)?, we have

Gi=—(t—d')* = 20k[(k — 2)6” +2¢'] (k=0). (A.20)
Eqgs (A.4)-(A.8), (A.18)-(A.20) and Lemma 3.1 imply

pa(-5¢) = pa(-; 1),

p3(-5¢) = ps(-;1),

p2(-5¢) = p2(-51) + 209,

pi(-;0) =pi(-;1) + 36" 97,

Po(3¢) = po(-51) — (n* — 1)a" 3},
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3% being given by (4.11). This — in view of the form (4.12) of the operator Q, — completes the
proof. [

Remark A.1. The formula
DDy, !
Ye-1= {g‘—l} (Gi + C)
YeVe-1
can be obtained using (A.2). Making use of (A.20), (A.17) and (A.13), we arrive at the formula

_k(k+1) 206’ sq — (' — 0" P 2 k+1
”"‘zk_lzm{[(k“) (k+ D7 + 2oy "} (F= oV =47 Ay

which can be compared to the alternative formulae due to Magnus (see, e.g., [18]) and Yaiiez
et al. [16].
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