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In this paper we discuss the radiation equation of state p = ρ/2 in (2 + 1)-dimensions. In (3 + 1)-
dimensions the equation of state p = ρ/3 may be used to describe either actual electromagnetic radiation
(photons) or a gas of massless particles in a thermodynamic equilibrium (for example neutrinos). In this
work it is shown that in the framework of (2+1)-dimensional Maxwell electrodynamics the radiation law
p = ρ/2 takes place only for plane waves, i.e. for E = B . Instead of the linear Maxwell electrodynamics, to
derive the (2+1)-radiation law for more general cases with E �= B , one has to use a conformally invariant
electrodynamics, which is a (2 + 1)-nonlinear electrodynamics with a trace free energy–momentum
tensor, and to perform a volumetric spatial average of the corresponding Maxwell stress–energy tensor
with its electric and magnetic components at a given instant of time t.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

It is well known that radiation or black body radiation (as a su-
perposition of plane waves of different frequencies) from the point
of view of a perfect fluid obeys the equation of state p = ρ/3.
Additionally, there are massless particles which in the standard
framework may be treated in terms of a fluid with energy den-
sity ρ and isotropic pressure p, which satisfies the same equation
of state. This law of radiation has been established in the theory of
gases, in particular, by means of the virial theorem [1,2]. The virial
theorem to describe radiation of electromagnetically interacting
ultra-relativistic particles has been used in Ref. [1] (Ch. 5), where
it is pointed out that one arrives at the 1/3-radiation law since the
Maxwell energy–momentum tensor is characterized by the vanish-
ing of its trace. This property plays a crucial role in establishing the
correspondence “gas–particle–field”. In (3 + 1)-dimensions within
nonlinear electrodynamics there is no way to establish the quoted
radiation law by averaging the corresponding energy–momentum
tensor with non-vanishing trace.

To obtain in (2+1)-spacetime the radiation law p = ρ/2, which
can be established from the corresponding formal gas thermo-
dynamics, from the view point of electrodynamics, one has to
construct an energy–momentum tensor by means of the electro-
dynamics we proposed previously [3]. If one were averaging the
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(2 + 1)-(linear) Maxwell energy–momentum tensor Tμν one never
should obtain the relation p = ρ/2 for ultra-relativistic particles
interacting via this electrodynamics. This fact compelled us to
search for an equivalent to the (3 + 1)-radiation formulation.

The main goal of this paper is just to establish a parallelism
between radiation equation of states p = ρ/3 and p = ρ/2 in (3 +
1)- and (2 + 1)-gravities respectively.

From Cosmology, described by the Friedmann–Robertson–
Walker (FRW) model,

ds2 = dt2 − a(t)2
(

dr2

1 − kr2
+ r2(dθ2 + sin2 θdϕ2)), (1)

where k = −1,0,1 and a(t) is the scale factor, one can eas-
ily obtain the 1/3-state equation for radiation: In this model all
distances are proportional to the scale factor a(t), thus the vol-
ume V scales as a(t)3, and the wavelength λ of electromagnetic
waves is proportional to a(t), therefore the corresponding radi-
ation energy density of one photon in a volume V is given by
ρphoton = hν

V = hc
λV , this means that this energy density behaves like

ρphoton = ρ0a(t)−4. On the other hand, using the energy conserva-
tion equation of a perfect fluid,

ρ̇ + 3
ȧ

a
(p + ρ) = 0, (2)

one derives the expression of the pressure in terms of the density,
which occurs to be just

p = 1
ρ, (3)
3
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and with the help of the Friedmann equation

3

(
ȧ

a

)2

+ 3k

a2
= κ4ρ, (4)

where κ4 = 8πG , we may find, for example, that for a flat FRW
model the scale factor is given by a(t) = a0t1/2, where a0 is a con-
stant.

In (2 + 1)-FRW cosmology

ds2 = dt2 − a(t)2
(

dr2

1 − kr2
+ r2dθ2

)
, (5)

one may accomplish a similar treatment for (2 + 1)-radiation. In
this case the radiation energy density ρphoton = hν

S = hc
λS amounts

to ρphoton = ρ0a(t)−3. Hence by using the energy conservation
equation of a perfect fluid,

ρ̇ + 2
ȧ

a
(p + ρ) = 0, (6)

one obtains that the pressure fulfills

p = ρ

2
, (7)

and with the help of the 3-dimensional Friedmann equation

(
ȧ

a

)2

+ k

a2
= κ3ρ, (8)

we may find, for example, that for a flat FRW model the scale
factor is given by a(t) = a0t2/3, where a0 is a constant.

In Section 2 we briefly recall the averaging of the energy–
momentum tensor approach to radiation in (3 + 1)-dimensions.
In Section 3 the averaging approach is applied to the (2 + 1)-
Maxwellian tensor and also to the (2+1)-nonlinear electrodynam-
ics tensor singled out by the vanishing of its trace: in the Maxwell
case one arrives at the stiff matter state equation p = ρ , which
is far from being the 1/2-radiation law, while for the energy–
momentum tensor of a conformally invariant electrodynamics,
which is a (2 + 1)-nonlinear electrodynamics with vanishing trace,
one obtains the radiation law p = ρ/2. The Cornish–Frankel cos-
mological radiative solution is commented and some concluding
remarks are added.

2. Radiation in (3 + 1)-dimensions

Many years ago, in 1930, Tolman and Ehrenfest [4] analyzed
the problem of the black body radiation in the framework of ther-
modynamic equilibrium of a matter distribution described by a
perfect fluid energy–momentum tensor, using a static spherically
symmetric spacetime. These authors established the black body
radiation state equation (3) by treating this phenomenon from
Maxwell electrodynamics via an averaging procedure of the com-
ponents of the Maxwell energy–momentum tensor.

For the sake of reference, we repeat this procedure in details:
the electromagnetic field is specified at any point by the Maxwell
tensor Fαβ , and the Maxwell energy–momentum tensor is given
by

Tαβ = −Fαγ Fβ
γ + 1

4
gαβ Fγ δ F γ δ, (9)

where Fγ δ F γ δ = 2(B2 − E2) is an invariant of the electromagnetic
field.

It is well known that electromagnetic fields are not compatible
with highly symmetric spacetimes, such as isotropic and homo-
geneous FRW spacetimes, due to inherent anisotropic nature of
Maxwell field sources. This electromagnetic field can be included
as a source of such spacetimes through an averaging procedure,
yielding then to an effective perfect fluid source with an isotropic
pressure. In order to achieve the isotropy of the fields one has to
require that the electric and magnetic fields components do not
possess preferred directions thus the mean values fulfill the fol-
lowing relations [4]

Ei = Bi = Ei Bi = 0, (10)

and

Ei E j = −1

3
E2 gij, Bi B j = −1

3
B2 gij, (11)

where the bar over physical quantities stands for volumetric spatial
average of the corresponding quantities at a given instant of time t .

Then, considering the metric (+1,−1,−1,−1), one has that

E2
i = E2/3, and B2

i = B2/3. Using the above average relations, one
obtains by averaging the energy–momentum tensor (9), the follow-
ing perfect fluid configuration

T 00 = ρem, T 11 = T 22 = T 33 = pem, (12)

where

pem = 1

3
ρem = 1

6

(
E2 + B2), (13)

hence the radiation state equation (3) takes place.
Note that the state equation (13) is not only valid for a field of

plane waves, for which E = B . In the deduction of Eq. (13) we did
not say anything about the properties of the electromagnetic field,
so the strengths of the electric and magnetic fields may take any
value. It may be in particular a chaotic magnetic field (for which
E = 0, B �= 0) or a random magnetic field [5].

Consequently, “radiation” may be used to describe either ac-
tual electromagnetic radiation (for massless photons and neutrinos
this state equation is exactly valid), or massive particles moving
at relative velocities sufficiently close to the speed of light for
which the state equation (3) takes place asymptotically. In this
case due to that the velocities of the gas particles approach that
of light their rest energy becomes negligible compared to their to-
tal energy. Thus by neglecting their rest masses fluid behaves like
electromagnetic radiation.

Although radiation is a perfect fluid and thus has an energy–
momentum tensor given by T PF

μν = (p + ρ)uμuν − pgμν (with

trace T PF = ρ − 3p), we also know that T μν can be expressed
in terms of the field strength (9). The trace of this is given by
T μ

μ = 1
4π [F μν Fμν − 1

4 (4)F λσ Fλσ ] = 0. But this must also equal
T PF = ρ − 3p, so the equation of state is (3).

From here we deduce that the term “radiation”, or more exactly
the state equation (3), is used in a more general sense. Effectively,
a such interpretation of “radiation” state equation can be intro-
duced into the study of cosmological models in the early universe,
where matter should be identified with a primordial plasma. This
is equivalent to put the squared electric field E2 = 0 in Eq. (13),
neglecting bulk viscosity terms in the electric conductivity of the
primordial plasma [6].

Also one can study a universe filled with a non-interacting
chaotic or random magnetic field and radiation.

3. Radiation in (2 + 1)-dimensions

Now we shall treat the (2 + 1)-dimensional case. Usually one
considers the same Maxwell electromagnetic energy–momentum
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tensor (9) to describe electromagnetic phenomena in (2 + 1)-di-
mensions. In these dimensions the Maxwell tensor Fαβ has only
three independent components, two for the vector electric field
Ei and one for the magnetic field B , which now is a pseudo-
scalar field, in contrast to 4-dimensional Maxwell field. Neverthe-
less, the use of the Maxwell electrodynamics in different dimen-
sions deserves some attention. From Eq. (9) we obtain that in
an (N + 1)-dimensional spacetime the energy–momentum tensor
trace is given by

T N+1 = Tαβ gαβ =
(

−1 + N + 1

4

)
Fγ δ F γ δ. (14)

It becomes clear that in (3 + 1)-dimensions the electromagnetic
tensor has a vanishing trace; this property, being an invariant
one, singles out the Maxwell theory as the only trace free lin-
ear theory in (3 + 1)-dimensions. Additionally, the propagation
velocity of electromagnetic waves coincides with the velocity of
propagation of the gravitational waves. Moreover, the eigenvalue
problem, as it should be, presents its own features depending on
the dimensionality. On the other hand, from Eq. (14) we see that
T2+1 = −1/4 Fγ δ F γ δ , hence in (2 + 1)-dimensions the Maxwell
energy–momentum tensor possesses a non-vanishing trace. As we
shall see below, this implies that, in the framework of Maxwell
electromagnetism, the equation of state p = ρ/2 takes place only
for plane waves.

Notice that any comparison of the velocity of the electromag-
netic waves with gravitational waves in (2 + 1)-dimensions is
empty, since there are no (vacuum) gravitational waves in these
dimensions.

In what follows, we shall extend the well-established averaging
procedure of the (3 + 1)-theory to the (2 + 1)-case for linear and
conformally invariant nonlinear electrodynamics.

3.1. Maxwell electrodynamics; stiff matter and dust

Assuming (29) in (2 + 1)-gravity that electrodynamics is de-
scribed by Maxwell theory with the energy–momentum tensor (9),
the averaging procedure yields

Ei = Ei B = 0, (15)

and

Ei E j = −1

2
E2 gij, B2 = B2 (16)

(E2
i = E2/2, for the metric (+1,−1,−1)). Hence the averaging

of the (2 + 1)-Maxwell electromagnetic energy–momentum tensor
yields

T 00
2+1 = ρem

2+1, T 11
2+1 = T 22

2+1 = pem
2+1, (17)

where

ρem
2+1 = 1

2

(
E2 + B2), pem

2+1 = 1

2
B2. (18)

Consequently, from Eqs. (18), if E = 0 one concludes that a stiff
matter state equation arises:

pem
2+1 = ρem

2+1 = B2/2, (19)

which can be called plasma, in correspondence with the termi-
nology used in (3 + 1)-dimensions. In this case, by using the
3-dimensional Friedmann equation (8) with k = 0, we have that for
a flat FRW model the energy density takes the form ρ(t) = ρ0a−4,
i.e. B ∼ a−2 and the scale factor is given by a(t) = a0t1/2, where a0
is a constant.
Next, if B = 0 the matter distribution can be viewed as dust:

ρem
2+1 = E2/2, pem

2+1 = 0. (20)

In this case, by using Eq. (8) with k = 0, we have that for a flat
FRW model the energy density takes the form ρ(t) = ρ0a−2, i.e.
E ∼ a−1 and the scale factor is given by a(t) = a0t , where a0 is a
constant.

Notice that in general, the Maxwell electromagnetic tensor
has only three independent components, two for the vector elec-
tric field �E = (E1, E2) and one for the magnetic field B . Thus,
in (2 + 1)-dimensions only the electric component is inherently
anisotropic. If E1 = E2 = 0 the magnetic component behaves like a
perfect fluid with an equation of state of the stiff matter. Thus, in
(2 + 1)-dimensions, the equation of state (19) with ρ(t) = ρ0a−4,
B ∼ a−2 and a(t) = a0t1/2 provide the general solution for flat FRW
cosmologies sourced by a magnetic field.

From Eq. (18) the standard state equation p = ρ/2 is ob-
tained only if one considers a sum of plane waves, i.e. incoherent
isotropic black body radiation, where we have vacuum transverse
electromagnetic waves with E = B . Thus, as well as we have in
(3+1)-dimensions for incoherent isotropic black body radiation, in
(2 + 1)-dimensions the radiation equation of state (7) is also ful-
filled for plane waves. However, in (3+1)-dimensions we have that
the radiation equation of state (3) is also fulfilled for B �= E = 0,
E �= B = 0; and E �= B with non-vanishing magnetic and elec-
tric fields, thus the whole parallelism with the 4-dimensional case
does not extend to Maxwell electromagnetic fields satisfying the
relation E �= B in 3-dimensional gravity.

3.2. (2 + 1)-FRW cosmologies with a mixture of non-interacting
electric and magnetic fields

In the framework of FRW spacetimes the 3-dimensional Max-
well electromagnetic field may be interpreted as a cosmologi-
cal configuration with a mixture of two barotropic perfect fluids:
a matter component

ρ1(t) = B(t)2

2
(21)

with a stiff equation of state (p1 = ρ1) representing the magnetic
field, and a fluid

ρ2(t) = E(t)2

2
(22)

with a dust equation of state (p2 = 0) representing the electric
field. In this case both components ρ1 and ρ2 satisfy the conser-
vation equation

ρ̇1 + ρ̇2 + 2
ȧ

a
(ρ1 + ρ2 + p1 + p2) = 0, (23)

implying that the sum of two fluids is conserved.
In order to find solutions, formally we can consider scenarios

where the electric field does not interact with the magnetic field,
and scenarios where the electric and magnetic fields interact with
each other.

Let us now consider the Maxwell equations for the studied
gravitational configuration. For the metric (5) we may write

F = E1θ
(1) ∧ θ(0) + E2θ

(2) ∧ θ(0) + Bθ(1) ∧ θ(2), (24)

where we have introduced the proper orthonormal basis θ(0) =
dt , θ(1) = a(t)/

√
1 − kr2 dr and θ(2) = a(t) rdθ . Thus, the Maxwell

tensor, in the coordinate basis, takes the form
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F μν =

⎛
⎜⎜⎜⎝

0 (1−kr2)E1

a
√

1−kr2

E2
ra

− (1−kr2)E1

a
√

1−kr2
0 (1−kr2)B

ra2
√

1−kr2

− E2
ra − (1−kr2)B

ra2
√

1−kr2
0

⎞
⎟⎟⎟⎠ ,

and the Maxwell equations F μν ;ν = jμ and Fαν;μ + Fμα;ν +
Fνμ;α = 0 are respectively given by (the Greek indices run from
0 to 2)

F μν ;ν =
⎛
⎜⎝

√
1−kr2

ra E1

−
√

1−kr2

a2 (aĖ1 + E1ȧ)

− 1
ra2 (aĖ2 + E2ȧ)

⎞
⎟⎠ = jμ, (25)

E2 + r√
1 − kr2

(aḂ + 2Bȧ) = 0. (26)

Let us first consider the case of a vanishing electric field. We
obtain from Eq. (25) that jμ = 0, while Eq. (26) implies that aḂ +
2Bȧ = 0, which is consistent with the homogeneity and isotropy
of the FRW metric. Hence, the magnetic field is given by B(t) =
B0/a2(t), in agreement with what we have stated above, in the
previous section, for the (2 + 1)-FRW magnetic solution.

We consider next the inclusion of the electric field into the
study. It becomes clear that its vector character breaks the isotropy
and homogeneity symmetries of the FRW spacetimes. For non-
vanishing electric and magnetic fields, the inhomogeneous char-
acter of Eq. (26) requires first that

Ḃ + 2B
ȧ

a
= 1

2

d

dt

(
B2) + 2

ȧ

a
B2 = 0, (27)

and second that the electric component E2 = 0. Consequently in
Eq. (25) F 2ν ;ν = 0 = j2. Now, by taking into account Eq. (21) and
that

ρ̇1 + 2
ȧ

a
(ρ1 + p1) = 1

2

d

dt

(
B2) + 2

ȧ

a
B2 = 0, (28)

from Eqs. (22) and (23) we obtain that

ρ̇2 + 2
ȧ

a
(ρ2 + p2) = 1

2

d

dt

(
E2) + ȧ

a
E2 = 0. (29)

These two equations indicate us that the electric and magnetic
fields are conserved separately, and hence the conservation equa-
tion (23) is fulfilled.

Notice that due to that E2 = 0 the RHS of Eq. (29) implies that

aĖ1 + E1ȧ = 0, (30)

then in Eq. (25) we have that F 1ν ;ν = 0 = j1. Thus, the radial
electric field takes the form E1 = E0/a. Since, for time dependent
electric and magnetic fields, the Maxwell equations impose a re-
striction only on the non-radial electric component E2, which must
vanish, then the Lorentz invariant is given by F/2 = E2 − B2 =
E2

1 − B2. We can have pure electric field for B2 = 0 or pure mag-
netic field for E2

1 = 0, as well as a mixture of both fields.
The presence of the radial electric component E1 clearly breaks

the symmetries of the FRW spacetime. In order to fulfill them we
conclude that an average procedure must be applied for the ra-
dial electric component E1, and consequently in Eq. (25) F 0ν ;ν =
0 = j0.

However, it must be remarked that this scenario requires that

E2
2 = 0, therefore it is not related to the requirements of the spa-

tial averaging procedure defined before in Eqs. (15) and (16), since

this one requires that E2
1 = E2

2 = E2/2, and E2 = E2
1 + E2

2, for a
non-vanishing electric field. In this case the Maxwell equations are
trivially fulfilled since for a such spatial averaging procedure we
have that E1 = E2 = 0, as we can see from Eq. (15). In what follows
we shall discuss FRW solutions fulfilling the average procedure de-
fined in Eqs. (15) and (16).

From Eqs. (28) and (29) we conclude that for non-interacting
electric and magnetic fields we have that

B(t) = B0

a2(t)
, (31)

E(t) = E0

a(t)
, (32)

respectively. The Friedmann equation (8) in this case takes the fol-
lowing form:

2

(
ȧ

a

)2

= κ3

(
B2

0

a4
+ E2

0 − 2k/κ3

a2

)
. (33)

It becomes clear, for example, that for a flat FRW cosmology
at early times the magnetic component dominates over the elec-
tric field, while for late times the electric field dominates over the
magnetic field. Note that from Eq. (33) we have that the general
form of the scale factor is given by

a2(t) = κ3(E2
0 − 2k/κ3)

2
(C + t)2 − B2

0

(E2
0 − 2k/κ3)

, (34)

where C is a constant of integration.
For B �= 0 and E �= 0 the invariant F/2 is given by

B2 − E2 = B2
0

a4
− E2

0

a2
, (35)

then if 0 < a ≤ B0/E0, B2 ≥ E2, while if B0/E0 ≤ a < ∞, B2 ≤ E2.
It is useful to remark that, in the case of 3-dimensional static

Einstein–Maxwell spacetimes, there exist the (2 + 1)-analog of
the magnetic Reissner–Nordström spacetime, and separately the
electric Reissner–Nordström analog [7]. It is noteworthy that the
(2 + 1)-magnetic Reissner–Nordström analog is not a black hole
in contrast with the (2 + 1)-electric Reissner–Nordström analog,
where a black hole is present [7].

In order to close this subsection, we want to make some com-
ments on the possibility of considering (2 + 1)-FRW cosmologies
with a mixture of interacting electric and magnetic fields. In prin-
ciple one can introduce more general scenarios where the mag-
netic and electric fields do not conserve separately and are coupled
to each other. One coupling mechanism can be formally introduced
into the Friedmann equations by defining a homogeneous interact-
ing term Q (t) in the following form [8]:

ρ̇1 + 2
ȧ

a
(ρ1 + p1) = Q (t), (36)

ρ̇2 + 2
ȧ

a
(ρ2 + p2) = −Q (t), (37)

In this case Q > 0 is interpreted as a transfer of energy from fluid
ρ2 to fluid ρ1, while for Q < 0, we should have an energy transfer
from fluid ρ1 to fluid ρ2. With the help of Eqs. (21) and (22), and
by taking into account that p1 = ρ1 and p2 = 0, Eqs. (36) and (37)
may be rewritten in the form

1

2

d

dt

(
B2) + 2

ȧ

a
B2 = Q (t), (38)

1

2

d

dt

(
E2) + ȧ

a
E2 = −Q (t). (39)

The interpretation of these equations is direct: for the case Q > 0
we have a transfer of energy from the electric field E to the mag-
netic field B , while if Q < 0, we should have an energy trans-
fer from the magnetic to the electric fields. Notice that Eqs. (38)
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and (39) imply that the whole conservation equation (23) is satis-
fied.

Nevertheless, in this case the inhomogeneous character of
Eq. (26) requires that aḂ + 2Bȧ = 0, implying that Q (t) = 0, so
we are not allowed to consider such interacting scenarios for
time-dependent electric and magnetic fields in the framework of
homogeneous and isotropic cosmologies. However, it must be no-
ticed that, in principle, such an interaction between electric and
magnetic fields can be appropriately introduced in the framework
of more general metrics than FRW ones, such as for example in-
homogeneous circularly symmetric spacetimes depending, as well
as the electric and magnetic fields, on the time and radial coor-
dinates. For these interacting models the interacting term must
be considered in the form Q = Q (t, r). This work is currently in
progress.

3.3. 3-dimensional conformally invariant electrodynamics

In (3 + 1)-dimensions the equation of state p = ρ/3 is a
direct consequence of the conformal invariant character of the
Maxwell equations. Effectively, it can be shown that Maxwell equa-
tions in four dimensions are invariant under conformal trans-
formation g̃αβ = Ω2 gαβ and F̃μν = Fμν [9]. The conformal in-
variance of these equations is encoded by the traceless condi-
tion T = Tμν gμν = 0 of the energy–momentum tensor (9) in
(3 + 1)-dimensions. Thus, the Maxwell field in four dimensions
has conformal symmetry. This result is true regardless of whether
spacetime is flat or curved. In spacetime dimensions with N �= 3
this is not true anymore because the Maxwell energy–momentum
tensor possesses a non-vanishing trace [9].

Fortunately, we can take advantage of this conformal symme-
try by using an extension of the Maxwell action that possesses the
conformal invariance in an arbitrary dimension. The Maxwell ac-
tion in (N + 1)-dimensions may be written as [10]

SM = α

∫ √−g
(

Fμν F μν
) N+1

4 dN+1x, (40)

where Fμν = ∂μ Aν − ∂ν Aμ . It is simple to see that under a con-
formal transformation acting on the metric and the electromag-
netic fields as g̃αβ = Ω2 gαβ and Aμ → Aμ , this action remains
unchanged [10]. The energy–momentum tensor associated to the
action (40) is given by

Tαβ = 4α
(

Fγ δ F γ δ
) N+1

4

×
[
− N + 1

4
Fαγ Fβ

γ
(

Fγ δ F γ δ
)−1 + 1

4
gαβ

]
. (41)

It can be shown that the traceless condition for energy–momentum
tensor (41) is fulfilled.

The Maxwell action (40) in (2 + 1)-dimensions takes the form

SM = α

∫ √−g
(

Fμν F μν
)3/4

d3x, (42)

hence the energy–momentum tensor associated to the action (42)
is given by

Tαβ = 3α
(

Fγ δ F γ δ
)− 1

4

[
−Fαγ Fβ

γ + 1

3
gαβ

(
Fγ δ F γ δ

)]
. (43)

It is interesting to note that this (2 + 1)-electrodynamics is a non-
linear electrodynamics. Such 3-dimensional nonlinear electrody-
namics was discussed before in the literature [3,11–13]. In general,
one can construct a (2 + 1)-Einstein theory coupled with nonlinear
electrodynamics starting from the action
SNL =
∫ √−g L(F )dx3, (44)

where the electromagnetic Lagrangian L(F ) depends upon a single
invariant

F = 1

4
F μν Fμν = 1

2

(
B2 − E2). (45)

Physically one requires the Lagrangian to coincide with the lin-
ear Maxwell L(F ) = −F/4π at small values of the electromagnetic
fields. The energy–momentum tensor associated to action (44) is
given by

Tμν = gμν L(F ) − Fμγ Fν
γ L,F , (46)

where L,F denotes the derivative of L(F ) with respect to F . The
trace of this tensor is given by

T = 3 L(F ) − 4 F L,F , (47)

therefore, by requiring T to vanish, we establish the existence
of the unique (2 + 1)-nonlinear electrodynamics, with vanishing
energy–momentum trace, given by the action (42). This nonlin-
ear electrodynamics was considered first for obtaining a (2 + 1)-
dimensional static black hole with Coulomb-like field [3].

Thus, the conformally invariant (2 + 1)-electrodynamics (42) is
a particular case of 3-dimensional nonlinear electrodynamics de-
scribed by the action (44). The same can be said about any higher
dimension as well. Indeed, any (N + 1)-electrodynamics described
by the action (40) is a particular case of (N + 1)-nonlinear elec-
trodynamic theories, characterized by having a traceless energy–
momentum tensor, and hence by being conformally invariant.

The averaging procedure, applied to the electric component Ei
and the magnetic field B , yields relations (15) and (16), namely,

for the metric (+1,−1,−1): Ei = Ei B = 0, E2
i = E2/2, B2 = B2.

Consequently the average of the energy–momentum tensor of
the nonlinear electrodynamics under consideration gives rise to the
relations

T 00
2+1 = ρnonlE

2+1 , T 11
2+1 = T 22

2+1 = pnonlE
2+1 , (48)

pnonlE = 1

2
ρnonlE = α(E2 + 2B2)

2|4F γ δ Fγ δ|1/4
(49)

as one should expect. Note that Eqs. (45) and (49) imply that in
this specific electrodynamics we may consider only cases with
E �= B in order to have finite energy density and pressure in
Eq. (49).

Therefore, we conclude that if one considers a 3-dimensional
perfect fluid with the radiation equation of state p = ρ/2, this
must be done in the framework of the nonlinear conformally in-
variant electromagnetic theory described by the action (42) and
energy–momentum tensor (43).

Cornish and Frankel [14] derived, among others, a cosmolog-
ical solution, using the (2 + 1)-FRW metric, which fulfills the
law (7), referring to it as radiation-dominated FRW universe, see
Eqs. (4.1)–(4.7) of the quoted work. On the light of the present re-
sults, the Cornish–Frankel solution (see also Ref. [15]) has to be
associated, from the point of view of electrodynamics, to plane
waves in the framework of the linear Maxwell electrodynamics,
and for more general cases with E �= B to the nonlinear confor-
mally invariant electrodynamics exhibited above.
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