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Loss-of-Function Mutations in TBC1D20 Cause Cataracts
and Male Infertility in blind sterile Mice
and Warburg Micro Syndrome in Humans

Ryan P. Liegel,1,15 Mark T. Handley,3,15 Adam Ronchetti,1 Stephen Brown,3 Lars Langemeyer,4

Andrea Linford,4 Bo Chang,5 Deborah J. Morris-Rosendahl,6,14 Sarah Carpanini,3 Renata Posmyk,7

Verity Harthill,8 Eamonn Sheridan,8,9 Ghada M.H. Abdel-Salam,10 Paulien A. Terhal,11

Francesca Faravelli,12 Patrizia Accorsi,13 Lucio Giordano,13 Lorenzo Pinelli,13 Britta Hartmann,6

Allison D. Ebert,1 Francis A. Barr,4 Irene A. Aligianis,3,* and Duska J. Sidjanin1,2,*

blind sterile (bs) is a spontaneous autosomal-recessive mouse mutation discovered more than 30 years ago. Phenotypically, bs mice

exhibit nuclear cataracts and male infertility; genetic analyses assigned the bs locus to mouse chromosome 2. In this study, we first posi-

tionally cloned the bs locus and identified a putative causative mutation in the Tbc1d20 gene. Functional analysis established the mouse

TBC1D20 protein as a GTPase-activating protein (GAP) for RAB1 and RAB2, and bs as a TBC1D20 loss-of-function mutation. Evaluation

of bsmouse embryonic fibroblasts (mEFs) identified enlarged Golgi morphology and aberrant lipid droplet (LD) formation. Based on the

function of TBC1D20 as a RABGAP and the bs cataract and testicular phenotypes, we hypothesized that mutations in TBC1D20 may

contribute to Warburg micro syndrome (WARBM); WARBM constitutes a spectrum of disorders characterized by eye, brain, and endo-

crine abnormalities caused by mutations in RAB3GAP1, RAB3GAP2, and RAB18. Sequence analysis of a cohort of 77 families affected

by WARBM identified five distinct TBC1D20 loss-of-function mutations, thereby establishing these mutations as causative of WARBM.

Evaluation of human fibroblasts deficient in TBC1D20 function identified aberrant LDs similar to those identified in the bsmEFs. Addi-

tionally, our results show that human fibroblasts deficient in RAB18 and RAB3GAP1 function also exhibit aberrant LD formation. These

findings collectively indicate that a defect in LD formation/metabolismmay be a common cellular abnormality associated withWARBM,

although it remains unclear whether abnormalities in LD metabolism are contributing to WARBM disease pathology.
Introduction

Warburg micro syndrome (WARBM1 [MIM 60011],

WARBM2 [MIM 614225], WARBM3 [MIM 614222]) is a

heterogeneous autosomal-recessive disorder characterized

by eye, brain, and endocrine abnormalities.1 Causative

loss-of-function mutations have been identified in three

genes: RAB3GAP12–5 (MIM 602536), RAB3GAP25,6 (MIM

609275), and RAB185,7 (MIM 602207), which all result in

clinically indistinguishable WARBM phenotypes. Oph-

thalmological findings in WARBM children are character-

ized by bilateral congenital cataracts, microphthalmia,

microcornea, small atonic pupils, progressive optic atro-

phy, and severe cortical visual impairment that results in

very poor visual prognosis despite early cataract sur-

gery.2–7 Neurological features include postnatal micro-

cephaly, profound mental retardation, severe truncal

hypotonia, and progressive limb spasticity that leads to

spastic quadriplegia.2–7 Nerve conduction studies have

shown evidence of a progressive axonal peripheral neurop-
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athy.7 Brain MRI scans show bilateral polymicrogyria with

hypogenesis of the corpus callosum and cerebellar and

cerebellar vermis hypoplasia.2–7 Boys present with micro-

penis and cryptorchidism resulting from hypothalamic

hypogonadism and girls have hypoplastic labia minora,

clitoral hypoplasia, and small introitus.2–7 Martsolf syn-

drome (MS [MIM 212720]), a clinically overlapping yet

milder disorder, has been attributed to mutations in

RAB3GAP15 and RAB3GAP2.2,8 Functional studies have

established that WARBM and MS represent a phenotypic

spectrum where the clinical outcome is related to the

severity of the mutational effects on protein function.

Thus, mutations that result in residual protein function

cause MS whereas loss-of-function mutations cause

WARBM.2–7,9–16 Currently mutations in RAB3GAP1,

RAB3GAP2, and RAB18 account for about 50%5 ofWARBM

cases, suggesting that mutations in additional genes also

cause WARBM.

The blind sterile (bs) mouse was identified in 1983 as

a spontaneous autosomal-recessive mutation;17 the initial
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report showed that bsmice exhibit embryonic nonprogres-

sive nuclear cataracts and spermatid abnormalities associ-

ated with bs male infertility.17 Additional morphological

studies of bs seminiferous tubules identified the failure of

acrosome formation in spermatids.18,19 Although sperma-

tozoa were absent in the majority of bs males, a few

nonmotile spermatozoa with severely misshaped heads

were seen; thus, it was proposed that the bs gene plays a

role in acrosome formation and spermatozoa head

shaping.18 Another study examined bs seminiferous

tubules and identified round spermatids as the most

advanced spermatogenic cell present, but did not identify

the presence of either elongating spermatids or spermato-

zoa.20 This discrepancy was attributed to individual varia-

tions among animals or the difference in age of the

animals evaluated.20 Initial linkage analysis established

bs as an autosomal-recessive locus that maps to the distal

region of mouse chromosome 2 near the agouti locus.17

Subsequent genetic analysis narrowed it to a ~10 cM region

between the hydroxyl acid oxidase 1 (Hao1) and non-

agouti (a) loci syntenic with human HSA20q11–q13.21

Although the bs eye and testis phenotypes were inherited

collectively as a single autosomal-recessive trait,17,21 it re-

mained unclear whether the bs phenotypes were associ-

ated with a mutation in a single gene or mutations

affecting the function of several tightly linked genes.

The initial goal of this study was to further characterize

the bs phenotypes and to positionally clone the bs locus.

We identified a loss-of-function mutation in the Tbc1d20

gene as responsible for the bs phenotypes. TBC1D20 is a

member of a superfamily of highly evolutionarily con-

served proteins containing TBC (Tre-2/Bub2/Cdc16)

domains. TBC family members have a role in the

regulation of RAB GTPases. All RAB GTPases function as

molecular switches alternating between a GTP-bound

active state and a GDP-bound inactive state.22–24 The

activation of RAB GTPases is mediated by guanine nucle-

otide exchange factors (GEFs) that facilitate GDP dissocia-

tion; GTP-activating proteins (GAPs) accelerate the slow

intrinsic RAB GTP hydrolysis from the GTP-bound

‘‘active’’ form to the GDP-bound ‘‘inactive’’ form.22–25

The role of TBC1D20 has been established as a GAP

for RAB1 that facilitates COPII-mediated ER-to-Golgi

trafficking.26–28

Our findings in bsmice prompted us to a screen a cohort

of individuals presenting with clinical manifestations

consistent with WARBM for mutations in TBC1D20. We

identified five distinct TBC1D20 loss-of-function muta-

tions. Molecular evaluations of mouse and human cells

deficient for TBC1D20 function and of human cells defi-

cient for RAB3GAP1 and RAB18 function provided evi-

dence that the aberrant formation of lipid droplets (LDs)

is a common cellular phenotype in all these cell lines.

Although these findings further imply that WARBM pro-

teins may function in a common yet unknown pathway,

it still remains unclear whether observed abnormalities

in LD are associated with WARBM disease pathology or
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whether the disease pathology is a consequence of another

still unidentified cellular deficit.
Subjects and Methods

Animals, Phenotypic Evaluation, and Positional

Cloning of the bs Locus
CAST/EiJ, AKR/J, and bs mice as well as genomic DNA for C57BL/

6J, C3H/HeJ, RIIIS/J, and DBA/2J mouse strains were obtained

from The Jackson Laboratory. All mice were used with strict adher-

ence to the guidelines set forth by the Institutional Animal Care

and Use Committee (IACUC) at the Medical College of Wisconsin.

Mouse eyes were examined with a Topcon SL-D8Z slit lamp bio-

microscope with a Nikon SLR-based Photo Slit Lamp imaging sys-

tem after mydriasis with 1% atropine sulfate (Bausch & Lomb).

WT and bs testes weights were measured in age-matched pairs

between 4 and 8 weeks of age. Significance was calculated via a

t test (GraphPad), where p < 0.05 was considered significant.

For linkage studies, bs/bs female mice, on the congenic AKR/J

background, were outcrossed to CAST/EiJ; the resulting F1 prog-

eny were subsequently intercrossed to generate 1,177 F2 progeny.

At 4 weeks of age, F2 progeny were clinically evaluated for the

presence of cataracts, euthanized, and genotyped as previously

described.29 Linkage data were analyzed with MapManager QTX

software. cDNA and genomic DNA sequencing from bs/bs and

bs/þ mice was utilized to screen open reading frames and

intron/exon junctions of candidate genes listed in Table S1 (avail-

able online). Primers were designed with Primer3 software and

comparative sequence analysis was performed with DNAStar soft-

ware. Primer sequences are listed in Table S2.
Histology and Immunohistochemistry
Tissues were collected, paraffin embedded, and H&E stained as

previously described.30,31 For immunohistochemistry we used

E-cadherin (Cell Signaling), MIP (Milipore), DAZL (Abcam), and

TRA54 (B-Bridge) as primary antibodies and DyLight 488 goat

anti-rat or goat anti-rabbit (Abcam) as secondary antibodies

according to the manufacturers’ recommendations. TUNEL and

PNA staining was performed with the ApopTag Plus In Situ

Apoptosis Fluorescein Detection Kit (Chemicon) and Lectin

PNA-Alexa-488 conjugate (Life Technologies), respectively,

according to the manufacturers’ recommendations. For prolifera-

tion studies, EdU was injected intraperitoneally at a concentration

of 100 mg/kg 3 hr prior to euthanizing the mice; EdU detection

was performed with the Click iT EdU Alexa Fluor 488 Imaging

Kit and counterstained with Hoechst 33342 or DAPI according

to the manufacturer’s recommendations (Life Technologies). All

cell-counting measurements were performed on sections from a

minimum of three separate genotypes with at least ten sections

per genotype. Significance was calculated via a Student’s t test

(GraphPad), where p < 0.05 was considered significant. All slides

were mounted with Vectashield and imaged with a Nikon DS-Fi1

camera on a Nikon Eclipse 80i microscope with NIS-Elements

software (Nikon).
Protein Expression and RAB GTP Hydrolysis Assays
RAB family GTPases were cloned into a hexahistidine-GST tag bac-

terial expression vector pFAT2 expressed in BL21(DE3) cells and

proteins were purified with nickel-NTA as described previously.32

WT or bs Tbc1d20 cDNA was cloned in the hexahistidine tag
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bacterial expression vector pQE32, expressed in JM109 cells, and

purified with nickel-NTA agarose. For mammalian expression,

WT or bs Tbc1d20 cDNA was cloned into the pcDNA4 vector con-

taining an eGFP tag. GTP-hydrolysis assays were performed as pre-

viously described.26,32
Cell Culture and Immunocytochemistry
HeLa and HEK293 cells were cultured in DMEM containing 10%

fetal bovine serum at 37�C and 5% CO2. mEFs were isolated

from E13.5 mouse embryos and maintained as previously

described.30,31 Human fibroblasts were cultured in DMEM supple-

mented with 20% fetal calf serum and 1% penicillin/streptomycin

at 37�C and 3% O2, 5% CO2.

Plasmid transfection of HeLa cells was done with Mirus LT1

transfection reagent (Mirus Bio LLC) and immunocytochemistry

was done with primary antibodies (EEA1 [Cell Signaling], SEC31

[BD Biosciences], GM130 [BD Biosciences]) and secondary anti-

bodies, raised in donkey, to mouse, rabbit, and sheep/goat conju-

gated to HRP, Alexa Fluor 488, Alexa Fluor 555, Alexa Fluor 568,

and Alexa Fluor 647 (all from Life Technologies) according toman-

ufacturers’ recommendations. Imaging was done on an Olympus

BX61 upright microscope system with a camera (CoolSNAP

HQ2; Roper Industries) and MetaMorph imaging software (Molec-

ular Dynamics). Illumination was provided by a Lumen 200 Watt

metal halide light source (Prior Scientific Instruments).

WT and bs mEFs were immunostained with GM130 (Abcam),

Golgin-97 (Abcam), or ERp72 (Cell Signaling) primary antibodies

and Alexa 488-conjugated goat-anti-rabbit secondary antibody

(Invitrogen) according to manufacturers’ recommendations. LDs

were evaluated as described previously33 utilizing media supple-

mented with 400 mM oleic acid (Sigma Aldrich) for 6, 18, or

24 hr and stained with 1 mg/ml BODIPY 493/503 (Life Technolo-

gies). All slides were mounted via Vectashield with DAPI (Vector

Labs). Imaging was done with a Nikon DS-Fi1 camera on a Nikon

Eclipse 80i microscope with NIS-Elements software (Nikon).

Quantification of lipid droplets was performed as previously

described34 with ImageJ (National Institutes of Health) and NIS-

Elements software. For each analysis at least 30 cells per genotype

were evaluated.

Human fibroblasts cells were fixed and stained as described pre-

viously.35 We used primary antibodies to PDI (Abcam), GM130

(BD Biosciences), Golgin-97 (Transduction Laboratories), p115

(Abcam), or EEA1 (New England Biolabs) and Alexa Fluor 488-

conjugated donkey anti-mouse or anti-rabbit secondary antibody

as appropriate (Life Technologies) and costained with DAPI. For

LD analysis, human fibroblasts were treated with 400 mM oleate

for 6, 18, or 24 hr and stained with 1 mg/ml BODIPY 493/503

(Life Technologies) as previously described.33 In order to analyze

LDs, five frames/slide were imaged under identical microscope set-

tings and LD area was quantified with the ‘‘Analyze particles’’

function on ImageJ Fiji software.36 Imaging was carried out on a

Nikon A1R confocal microscope with a 603 oil immersion objec-

tive with a 1.4 numerical aperture. The pinhole was set to airy1.

Data sets shown are representative of at least three independent

experiments.
Protein Stability Assay and Immunoblotting
Tbc1d20mouse full-length clone (MGC: 25843/IMAGE: 4192736)

was obtained from Open Biosystems and cloned into pFLAG-

CMV-2 (Sigma) to generate an N-terminal FLAG-tagged Tbc1d20

clone. Mutagenesis to introduce the bs mutation was performed
The American Jou
in a two-step process utilizing the QuikChange Site-Directed

Mutagenesis Kit (Stratagene) and the Phusion Site-Directed Muta-

genesis Kit (Finnzymes) with primers in Table S2. For protein

stability studies, HEK293 cells were transfected with either

FLAG-Tbc1d20WT or FLAG-Tbc1d20bs treated with cycloheximide

(Sigma) according to manufacturers’ recommendations.

For immunoblot analyses, primary antibodies anti-FLAG(Sigma),

GM130 (Abcam), HRP-conjugated b-actin (Abcam), Syntaxin

VI (New England Biolabs), RAB5 (New England Biolabs), and

a-Tubulin (Abcam) and secondary antibodies peroxidase-

conjugated AffiniPure Donkey Anti-Rabbit IgG (HþL) (Jackson

ImmunoResearch), peroxidase-conjugated anti-mouse, anti-Rabbit

(Amersham), and anti-Goat (Life Technologies) were used as

previously described.31 Each lane on the blots shown corresponds

to an individual lysate sample, and each blot is representative of

at least three independent experiments. For the protein stability

assays, immunoblots were quantified with ImageJ software,

normalizingFLAGtob-actin, andeach timepoint represents at least

three independent experiments done in triplicate.

Subjects and Mutation Screening
Our cohort consists of 77 individuals with a spectrum of WARBM

disorders including ‘‘typical’’ WARBM (59 cases), MS (5 cases), and

13 atypical cases as previously described.5 These individuals do not

carry mutations in the coding sequences of previously analyzed

genes, specifically RAB3GAP1, RAB3GAP2, and RAB18. Informed

consent was obtained from all participating families, and the

studies were approved by the Scottish Multicenter Research Ethics

Committee (04:MRE00/19). Permission to publish photographs

from WARBM individuals was obtained from the parents. Muta-

tion screening of the complete coding region of TBC1D20,

RAB1A, RAB1B, and RAB2A was performed by direct sequence

analysis in both directions by using genomic DNA extracted

from venous blood according to standard procedures. Primers

with M13 tags (Table S3) were designed from the genomic

sequences to flank all coding exons and include all intron-exon

boundaries by means of ExonPrimer software. Sequencing data

was analyzed with Mutation Surveyor software (SoftGenetics).

qPCR analysis of genomic DNA from individual 5 was carried

out on a LightCycler 480 (Roche) with primers designed to amplify

coding regions of TBC1D20 as well as the 50 and 30 genes RBCK1
(RefSeq accession number NM_031229.2) and CSNK2A1 (RefSeq

NM_177559.2). PCR amplification was quantified through bind-

ing of specific monocolor hydrolysis probes (Roche) and analyzed

with LightCycler 480 software (Roche). Primers were designed

with the Universal Probe Library Assay Design Center and are

listed in Table S3.
Results

The bs Lens and Testes Phenotypes

As a starting point, we expanded on the previous character-

ization of the bs cataract and testes phenotypes. Examina-

tion of bs eyes at P14 identified nuclear opacities that

progressed by P28 to total opacities with irregularly

patterned vacuoles (Figure 1A). An initial report on bs

stated that cataracts could be identified at E16 through

the eyelids of bs embryos,17 and therefore we expected to

observe bs lens morphological abnormalities at E15.5.

Histological analysis of E15.5 bs lenses did not detect any
rnal of Human Genetics 93, 1001–1014, December 5, 2013 1003



Figure 1. bs Eye and Testes Phenotypes
(A) Clinical image of nuclear cataracts in bs
evident at P14 (top) that progress to severe
vacuolated cataracts (bottom).
(B) At E17.5, H&E staining showed smaller
bs lens axial lengths (top, arrows); at
higher magnification (bottom), disorga-
nized lens fiber cells (asterisk) and cortical
vacuoles (arrowhead) were noted. Scale
bars represent 100 mm.
(C) At P10 bs lenses exhibited severely de-
generated TUNEL(þ) nuclear fibers. Scale
bars represent 100 mm.
(D) At P28, H&E staining revealed severely
degenerated bs lenses, large vacuoles, and
ruptured lens capsule (arrow) with lentic-
ular material present in the vitreous cavity
(asterisk). Scale bars represent 100 mm.
(E) Adult bs testes were significantly
smaller when compared to WT (n ¼ 6).
Scale bar represents 1 mm.
(F) H&E analysis (top) of adult bs seminif-
erous tubules (n ¼ 20) identified signifi-
cant germ cell depletion and some tubules
contained multinucleate cell clusters
(arrowhead) consistent with previous re-
ports.18 Scale bars represent 50 mm. A
significantly greater number of TUNEL(þ)
cells (bottom) were present in bs than
in WT tubules (n ¼ 15). Scale bars repre-
sent 25 mm.
(G) TRA54 immunostaining inWT tubules
revealed small punctae and crescent-
shaped staining consistent with spermato-
cytes and round spermatids, respectively,
and in bs only TRA54-positive small punc-
tae were present, consistent with sper-
matocytes (top). PNA staining identified
the presence of acrosomes in WT tubules,
whereas no PNA-positive cells were noted
in bs tubules (bottom). Scale bars repre-
sent 25 mm. DNA was stained with
DAPI (blue). p values were determined
by Student’s t test and error bars repre-
sent SEM.
morphological abnormalities (not shown), and immuno-

staining with E-cadherin and MIP did not identify any

abnormalities in bs lens epithelial and lens fiber cells; no

difference in the number of proliferating cells or in the

number of TUNEL(þ) cells were noted between WT and

bs lenses at E15.5 (Figure S1A). In contrast, at E17.5, bs

lenses appeared smaller in size and exhibited degenerated

nuclear fibers with small vacuoles between cortical fibers

(Figure 1B). By P10, the bs lens phenotype was character-

ized by severely degenerated TUNEL(þ) nuclear fiber cells

(Figure 1C). By P28, severe lens degeneration with large

vacuoles was present throughout the lens body accompa-

nied by rupture of the lens capsule and lenticular material

in the vitreous cavity (Figure 1D). At later time points (12–

24 months), the bs lens phenotype did not progress

beyond that observed at P28 (not shown). These findings

indicate that bs cataracts are associated with a defect in
1004 The American Journal of Human Genetics 93, 1001–1014, Dece
lens fiber cell maturation with an embryonic onset similar

to that initially reported.17

Adult bs testes were significantly smaller than WT testes

(Figure 1E) and exhibited a significant depletion of germ

cells (Figure 1F). However, the numbers of spermatogonia

or Sertoli cells determined after immunostaining with

DAZL did not differ betweenWTand bs nor was there a dif-

ference in the number of proliferating spermatogonia

(Figure S1B). A significantly greater number of TUNEL(þ)

cells were observed in bs seminiferous epithelia (Figure 1F),

though TUNEL(þ) cells did not appear restricted to specific

cell types. Two previous studies have reported that bs testes

contain elongated spermatids and very small numbers of

deformed spermatozoa,18,19 although a third study identi-

fied round spermatids as the most advanced bs spermato-

genic cells.20 Immunostaining for TRA54 identified large

TRA54-positive granules in the second and third layers of
mber 5, 2013



Figure 2. Positional Cloning of the bs Mutation
(A) c.691T>A substitution and subsequent c.692_703del deletion
in exon 6 of Tbc1d20 was identified in bs (bottom); WT sequence
matched the Tbc1d20 reference sequence (top).
(B) The bs mutation resulting in p.Phe231Met substitution fol-
lowed by an in-frame p.Arg232 _Val235 deletion affects five
evolutionarily highly conserved amino acids within the TBC
domain (bold gray shaded). Numbers on top of the figure refer
to the amino acids from the mouse TBC1D20 protein (RefSeq
NP_077158.1).
WT seminiferous epithelium, consistent with the staining

of spermatocytes and round and elongating spermatids.37

In contrast, TRA54 immunostaining in bs showed only

discrete punctae consistent with the expected staining

of spermatocytes37 (Figures 1G and S1B). RT-PCR and

subsequent sequence analysis identified the presence of

Tnp1 and Prm2 transcripts in both WT and bs testes

(not shown), indicating the presence of post stage 7 sper-

matids in bs.38 PNA staining (Figure 1G) confirmed the

previously reported failure of acrosome formation in bs

spermatids18,19

Positional Cloning of the bs Locus

By using recombination analysis of 1,177 F2 (bs 3 CAST/

EiJ) intercross progeny, we narrowed the bs critical region

to 416 kb between rs27385663 and rs27343710 (Figures

S2A–S2D). Evaluation of the mouse reference genome

sequence (GRCm38/mm10) identified 16 RefSeq candidate

genes (Table S1). Sequence analysis of the candidate genes

identified a c.[691T>A; 692_703del] mutation in Tbc1d20

exon 6 (Figure 2A). No other mutations were identified

in bs. The identified Tbc1d20 mutation segregated with

all bs F2 intercross progeny and was absent in the mouse
The American Jou
dbSNP database. In addition, Tbc1d20 sequences were

independently evaluated in the C57BL/6J, C3H/HeJ,

CAST/EiJ, RIIIS/J, and DBA/2J strains and were identical

to the Tbc1d20 mouse reference sequence (RefSeq NM_

024196.3). The bs mutant Tbc1d20 transcript encodes the

mutant p.[Phe231Met; p.Arg232 _Val235del] TBC1D20-

bs protein with the mutation residing within the evolu-

tionarily highly conserved TBC domain24 (Figure 2B).

These findings together suggested that the identified

Tbc1d20 mutation in bs is most likely not a rare polymor-

phism.

Functional Analysis of the bs Mutation

WTmouse TBC1D20 has high GAP activity in the presence

of RAB1 and RAB2, consistent with previous reports26,27

(Figure S3). The TBC1D20-bs mutant protein showed

strongly reduced activity in the presence of both RAB1

and RAB2, but was more active in comparison to a catalyt-

ically inactive TBC1D20 p.Arg105Ala (RA)26 mutant (Fig-

ure 3A). To investigate stability of the TBC1D20-bs mutant

protein, HEK293 cells were transfected with WT or bs

mutant FLAG-tagged mouse Tbc1d20 clones and protein

stability was evaluated through a cycloheximide chase

study. The stability of TBC1D20-bs mutant protein was

significantly lower than that of the WT protein at 6 hr

after cycloheximide treatment (Figure S4). Similar to WT

human TBC1D20,26 overexpression of the WT mouse

TBC1D20 caused the disruption of COPII ER-Golgi

transport vesicles; in contrast, the overexpression of

TBC1D20-bs mutant protein had little effect on the COPII

vesicles resembling the COPII vesicular phenotypes ob-

served after overexpression of catalytically inactive

TBC1D20-RA mutant (Figure 3B). Consistent with these

findings, overexpression of the WT mouse TBC1D20 also

led to a disruption of the Golgi morphology without

disruption of endosomes, whereas overexpression of the

TBC1D20-bs mutant protein, similar to the overexpression

of the catalytically inactive TBC1D20-RAmutant, had little

effect on Golgi or endosomal markers (Figure 3C). These

data collectively indicate that bs is a Tbc1d20 loss-of-func-

tion mutation.

Cellular Phenotypes of bs Mouse Embryonic

Fibroblasts

In HeLa cells, siRNA-mediated depletion of TBC1D20 re-

sults in alteration of the Golgi complex;26 thus, we pro-

ceeded to evaluate Golgi morphology in the bs mouse

mEFs. Immunostaining for the cis-Golgi marker GM130

(Figure 4A) and trans-Golgi marker golgin 97 (Figure S5A)

identified expanded Golgi morphology in bs mouse em-

bryonic fibroblasts (mEFs) when compared to WT. How-

ever, the Golgi phenotypes observed in bs mEFs differed

from those observed in TBC1D20-depleted HeLa cells,26

possibly because of the complete absence of functional

TBC1D20 protein in bs mEFs. Immunoblot analysis of

WT and bs mEF cell lysates confirmed higher levels of

GM130 in bs mEFs lysates (Figure 4B).
rnal of Human Genetics 93, 1001–1014, December 5, 2013 1005



Figure 3. Functional Analysis of the bs
Mutation
(A) In the presence of RAB1B or RAB2A,
mouse TBC1D20 protein has a high rate
of GTP hydrolysis; bs mutant protein
results in much lower GTP hydrolysis
rate when compared to WT and slightly
higher rate than a catalytically inactive
RA mutant. Each point on the graph
represents the mean values from three
independent experiments and error bars
indicate SD.
(B and C) Overexpression of mouse WT
TBC1D20 caused disruption of COPII ER-
Golgi transport vesicles as evident after
immunostaining with SEC31 marker (B)
and disruption of cis-Golgi as evident after
immunostaining with GM130 without
disruption of endosomes as evident after
immunostaining with EEA1 (C). The
TBC1D20-bs mutant protein, like the cata-
lytically inactive RA mutant protein, had
little effect on COPII, Golgi, or endosomal
markers. Scale bars represent 10 mm.
Recently it was shown that after hepatitis C infec-

tion, TBC1D20 was recruited to LDs;39 additionally, in

Drosophila RAB1 was shown to influence LD size.40 These

findings implicated TBC1D20 in LD metabolism, so we

proceeded to evaluate LD formation in bs mEFs. Staining

of WT and bs mEFs with the neutral lipid dye BODIPY

493/503 did not identify any LDs (Figure S5B). However,

after treatment with oleic acid for 6 hr and subsequent

staining with BODIPY 493/503, bs mEFs exhibit a signifi-

cantly (p ¼ 0.0126) greater number of LDs (n ¼ 255 5

12.68 SEM; >30 cells) when compared to number of LDs

in WT mEFs (n ¼ 158 5 27.68 SEM; > 30 cells). Addition-

ally, 6 hr after oleic acid treatment, LDs in bs mEFs

exhibited a significantly greater total area per cells as well

as significantly increased LD fluorescence intensity when

compared to WT mEFs (Figure 4C). Oleic acid treatment

for 18 hr or 24 hr resulted in further expansion and merg-

ing of LDs in both WT and bs mEFs (Figure S5B); a signifi-

cantly greater LD area per cell and significantly increased

LD fluorescence was noted in bs when compared to WT

mEFs (Figure 4C).

Mutations in TBC1D20 Cause WARBM

Congenital cataracts and testicular abnormalities observed

in bs mice resemble the cataracts and testicular abnormal-

ities observed in individuals affected with WARBM.

WARBM is considered a monogenic disorder resulting

from RAB GTPase aberrations.41 Given that bs mouse
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lens and testicular phenotypes were

due to a mutation in TBC1D20, a

protein that is involved in regulation

of RABGTPases, we wanted to explore

whether mutations in TBC1D20

(RefSeq NM_144628.2) could cause

WARBM. Therefore, we proceeded to
screen a cohort of 77 families diagnosed with a spectrum

of WARBM disorders. We identified five distinct germline

homozygous TBC1D20 loss-of-function mutations (Fig-

ure 5A). Two affected siblings from a Polish family (individ-

uals 1.1 and 1.2) had a homozygous c.199C>Tmutation in

exon 2 leading to a premature stop at amino acid 67

(p.Arg67*). In an affected girl from the Netherlands (indi-

vidual 2), a homozygous c.292C>T mutation in exon 3

was identified, resulting in a putative protein with a pre-

mature stop at amino acid 98 (p.Gln98*). Two affected sis-

ters from a Pakistani family (individuals 3.1 and 3.2) had a

homozygous CA deletion (c.352_353delCA) in exon 4

resulting in a putative protein with a frame shift at amino

acid 118, the addition of nine novel amino acids, and a

premature stop (p.Gln118Glufs*9). In an affected boy

from Egypt (individual 4), a homozygous c.672G>A muta-

tion was identified in exon 6 resulting in a putative protein

with a premature stop at position 224 (p.Trp224*). Finally,

an affected girl from Pakistan (individual 5) had a homozy-

gous microdeletion, c.?�175_1113þ?del, indicating a loss

of exons 2–8, which was further verified by quantitative

PCR (not shown), most probably leading to a complete

protein loss. Parents for all individuals except individual

5 were heterozygous for the respective mutations in keep-

ing with their carrier status; parental DNA from individual

5 was not available for sequence analysis. None of the iden-

tified TBC1D20 mutations were present in Exome Variant

Server (ESP6500SI-V2) or in our in-house panel of 200



Figure 4. bs mEFs Cellular Phenotypes
(A) GM130 immunostaining (green) re-
vealed enlarged cis-Golgi in bs mEFs,
when compared toWTmEFs. ER immuno-
staining with ERp72 (red) did not identify
any differences between WT and bs mEFs.
DNA was stained with DAPI (blue).
(B) Immunoblot analysis revealed greater
levels of GM130 protein present in bs
than in WT mEF cell lysates relative to
b-actin.
(C) Oleic acid treatment for 6 hr after stain-
ing with the neutral lipid dye BODIPY
493/503 revealed expanded LD structures
in bs when compared to WT mEFs.
(D) Quantification analyses after oleic acid
treatment for 6, 18, and 24 hr confirmed
significantly greater size and fluorescence
intensity of LDs in bs mEFs when
compared to WT mEFs. Shown in the
graphs are mean values per cell (>30 cells).
p values shown on top of each graph were
determined by Student’s t test and error
bars represent SEM.
Scale bars represent 5 mm.
controls. Because both human26 and mouse TBC1D20

(Figure 3A) regulate RAB1 and RAB2, we expanded our

screening to include RAB1A (RefSeq NM_004161.4),

RAB1B (RefSeq NM_030981.2), and RAB2A (RefSeq

NM_002865.2). However, no pathogenic mutations were

identified.

All individuals with TBC1D20mutations show the same

range of clinical features (Figures 5B–5G and Table S4) as do

WARBM-affected individuals with RAB3GAP1, RAB3GAP2,

or RAB18 mutations.2–7 Shortly after birth, individuals

with TBC1D20 mutations presented with congenital cata-

racts and microphthalmia. Despite cataract surgery they

have poor vision resulting from optic atrophy and several

affected children have also developed glaucoma. All

individuals with TBC1D20 mutations have severe to pro-

found developmental delay (not having learned to walk

and speaking 4–5 words at most) with autistic features.

Although their head circumferences were normal at birth,

they later developed postnatal microcephaly. Facial fea-

tures included deep-set eyes, ptosis, wide nasal bridge, rela-

tively narrowmouth, low anterior hairline, and prominent

subnasal region. Boys with TBC1D20 mutations had both

micropenis and cryptorchidism. In the first year of life,

all individuals with TBC1D20 mutations had severe axial
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hypotonia then gradually developed

lower and upper limb spasticity lead-

ing to spastic quadriplegia.

Brain Phenotypes in Individuals

with WARBM and in bs Mice with

TBC1D20 Mutations

Cranial MRIs were available from four

individuals with TBC1D20 mutations

(Figure 6). The MRI analysis revealed
predominantly frontal polymicrogyria (Figure 6A), corpus

callosum hypogenesis particularly affecting the splenium

(Figures 6B and 6M), widened lateral ventricles, and mega-

cisterna magna as a consequence of cerebellar vermis

hypoplasia (Figures 6B, 6G, and 6M). Follow-up MRIs on

individuals 3.1 and 3.2 revealed atrophy of the cerebellar

vermis and hemispheres (Figures 6C and 6E). Given the

severe brain abnormalities observed in individuals with

TBC1D20 mutations, we also evaluated brains from bs

mice. However, no obvious morphological abnormalities

were identified (Figure S6).

Cellular Phenotypes of Fibroblasts from Individuals

with WARBM

We proceeded to evaluate fibroblasts from an individual

with a TBC1D20 mutation (p.Gln98*) to determine

whether these cells exhibited Golgi and LD abnormalities

like those observed in bsmEFs (Figure 4C). Without a treat-

ment with oleic acid, we didn’t observe any LDs in control

or TBC1D20 (p.Gln98*) fibroblasts after staining with

BODIPY 493/503 (Figure S7). However, a significant in-

crease in the size of LDs was observed in TBC1D20

(p.Gln98*) cells compared to control fibroblasts after treat-

ment for 18 or 24 hr with oleic acid (Figures 7A and 7B). To
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Figure 5. Pedigrees, TBC1D20 Muta-
tions, and Clinical Features of Individuals
with WARBM
(A) Filled symbols indicate individuals
with WARBM and numbers represent
individual identifiers. Chromatograms of
germline TBC1D20 mutations in exons 2,
3, 4, and 6 are shown below each pedigree
(top) and controls (bottom). The TBC1D20
mutation in individual 5 is amicrodeletion
encompassing exons 2 thorough 8 con-
firmed by qPCR.
(B–G) Predominant clinical features of
individuals with WARBM with TBC1D20
mutations included microcephaly, low
anterior hairline, broad dense laterally de-
scending eyebrows, microphthalmia, low
anterior hairline, prominent subnasal re-
gion and chin, kyphoscoliosis, severe spas-
tic quadriplegia with contractures, and
diminished muscle bulk. Permission was
obtained from parents of individuals with
WARBM for publication of these images.
(B) Individual 3.1 shown at age 3 (first two
panels) and age 13 (last three panels).
(C) Individual 3.2 (sister of individual 3.1
shown in B) at age 1 (first two panels)
and at age 11 (last three panels).
(D) Individual 4 is shown at age 3 (first
panel) and age 14 (second panel).
(E) Individual 5 is 15 years old.
(F) Individual 1.1 is 21 years old.
(G) Individual 1.2 (brother of individual
1.1 shown in F) is 16 years old.
determine whether altered LDs are a common WARBM

feature, we additionally evaluated LD formation in fibro-

blasts from individuals with RAB18 (p.Leu24Gln) or

RAB3GAP1 (c.649�2A>G) mutations.2,7 After oleic acid

treatment for 18 and 24 hr, these cell lines also ex-

hibited greater size of LDs when compared to controls

(Figure 7B). Of note, TBC1D20 (p.Gln98*), RAB18

(p.Leu24Gln), and RAB3GAP1 (c.649�2A>G) fibroblasts

did not exhibit any differences in Golgi, ER, or endosomal

structures from control cell lines after immunocytochem-

ical and immunoblot evaluation (Figures 7C and 7D).

It is particularly interesting that the altered Golgi

phenotypes observed in HeLa cells after siRNA-mediated

depletion of TBC1D2026 and in bs mEFs (Figure 4A) were

not observed in the human TBC1D20 (p.Gln98*) cells

(Figure 7). Because the phenotype is shared by human-

and mouse-derived cells, it is possible that its absence in

the TBC1D20-deficient fibroblasts reflects compensatory
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mechanism acting in these cells

rather than species-specific differ-

ences. Notwithstanding this, we

identify aberrant LD formation as a

cellular phenotype common to

WARBM fibroblasts with mutations

in TBC1D20, RAB18, and RAB3GAP1

and in bs mEFs. Thus, the aberrant

LD phenotype is seen in multiple
genotypes in two species and is unaffected by any compen-

satory mechanism.
Discussion

In this study, we report that loss-of-function mutations in

TBC1D20 are responsible for lens and testes phenotypes in

bs mice and cause WARBM in humans. Clinical evaluation

of individuals carrying pathogenic TBC1D20 mutations

is sufficient to conclude that they cause a disease pheno-

type indistinguishable to that caused by mutations in

RAB3GAP1, RAB3GAP2, or RAB18.4–6 As in these cases,

congenital cataracts were apparent shortly after birth and

was accompanied by microphthalmia, microcornea, and

small atonic pupils. Despite early cataract surgery, vision

in these individuals remains poor. They also exhibit a gen-

eral pattern of brain abnormalities including postnatal



Figure 6. Brain MRIs from Individuals
with TBC1D20 Mutations
(A–E) Individual 3.1 at age 2 years (A–C)
and at age 4 years and 11 months (D, E).
(F–J) Individual 3.2 at age 6 months (F–I)
and at 2 years and 8 months (H, J).
(K–N) Individual 2 at age 2 years and
6 months.
(O–S) Individual 4 at age 7 months.
The general pattern is similar in all individ-
uals: predominantly frontal polymicrogy-
ria (arrows in A), which sometimes extends
to the Sylvian fissures and temporal and
occipital lobes (E–G), corpus callosum
hypogenesis, particularly of the splenium
(B, G, M, Q), and enlarged cisterna magna
(asterisks in B and G and also shown in C,
H, M, and Q) due to cerebellar vermis hy-
poplasia. Follow-up of the two sisters 3.1
(C and E) and 3.2 (H and J) showed clear
atrophy of the cerebellar vermis and hemi-
spheres in both individuals. The optic
chiasm was also hypoplastic in both these
individuals (arrowheads in C and H).
microcephaly, bilateral predominantly frontal polymicro-

gyria with hypogenesis of the corpus callosum, and cere-

bellar vermis hypoplasia. Additionally, they suffer from

profound developmental delay and have not learned to

crawl, pull up to a standing position, walk, or talk. Charac-

teristically, these individuals showed congenital hypotonia

from about 8–12 months and then progressive spasticity

that leads to contractures and spastic quadriplegia later

in life. Furthermore, WARBM boys with mutations in

TBC1D20 exhibited micropenis and cryptorchidism. It

was reported recently that mutations in RAB3GAP1,

RAB3GAP2, and RAB18 collectively contribute to more

than 50% of all WARBM cases.5 The identified human

TBC1D20 mutations account for approximately an addi-

tional 5%, but a sizable proportion of WARBM cases still

remain unexplained at the genetic level. This suggests

that WARBM may be associated with yet further genetic

heterogeneity.

This study has also established bs as a WARBM mouse

model. The bs mice recapitulate the lens and testes pheno-

types observed in individuals with WARBM although

cryptorchidism was not observed in bs mice. Additionally,

no obvious bs brain or neuromuscular abnormalities were

identified in these animals. The embryonic bs lenses

undergo normal development and differentiation, suggest-

ing that maturation of fiber cells is the underlying defect

associated with bs cataracts. Similarly, the bs testes undergo

normal development and differentiation, with the failure

of acrosome formation in bs spermatids ultimately result-

ing in bs male infertility. The role of TBC1D20 in the
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lens or testis has never been investi-

gated. In general, the role of RAB

GTPases is to regulate vesicular traf-

ficking and organelle remodeling.22

As a part of their maturation pro-
cesses, both lens and testis cells undergo a unique organ-

elle-remodeling process that is mechanistically poorly

understood. In lens fiber cells, organelle degradation is

essential for the development of the organelle-free zone

and lens transparency.42,43 In spermatogenesis, the acro-

some is a Golgi-derived organelle with an important role

at fertilization.44,45 Therefore, it is possible that TBC1D20

has a critical role in organelle remodeling in maturing

lens and testis cells in both humans and mice as evident

by the lens and testicular phenotypes observed in bs

mice and individuals with WARBM resulting from a loss

of TBC1D20 function. However, Rab3gap1-deficient mice

do not exhibit any gross eye, brain, or genital abnormal-

ities, but exhibit abnormal release of synaptic vesicles

and altered hippocampal synaptic plasticity.46 This phe-

notypic difference between mice and individuals with

WARBM resulting from RAB3GAP1 mutations was previ-

ously attributed to the differential species-specific pathway

redundancy.5 Collectively these findings suggest that addi-

tional factors such as genetic modifiers may have a role in

regulating the onset and severity of the disease phenotype.

An association between the molecular function of

TBC1D20 and that of RAB3GAP1, RAB3GAP2, and

RAB18 is implied by the indistinguishable effects of their

functional loss in humans. However, functional studies

have not linked these genes to a common molecular

pathway. RAB3GAP1 and RAB3GAP2 form a complex

known to regulate RAB3 function in neurotransmitter

release.46,47 Indeed, RAB3GAP1 is thought to be essential

for modulation of neurotransmitter release via a process
93, 1001–1014, December 5, 2013 1009



Figure 7. WARBM Fibroblasts Cellular Phenotypes
(A) Treatment of TBC1D20 (p.Gln98*) fibroblasts with 400 mM oleic acid for 18 hr resulted in a significantly greater size of LDs when
compared to identically treated controls. LDs were stained with the neutral lipid dye BODIPY 493/503 (green) and DNA was stained
with DAPI (blue).
(B) Oleic acid treatment of RAB18 (p.Leu24Gln) and RAB3GAP1 (c.649�2A>G) fibroblasts for 18 or 24 hr also resulted in significantly
larger LDs when compared to controls (>30 cells); the error bars indicate SEM.
(C) Immunofluorescence analysis with PDI as an ER marker; GM130, Golgin-97, and p115 as Golgi markers; and EEA1 as an endosomal
marker did not identify any difference between TBC1D20 (p.Gln98*), RAB18 (p.Leu24Gln), RAB3GAP1 (c.649�2A>G), and control
fibroblasts. Scale bars represent 10 mm.
(D) Immunoblot analysis of cell lysates from TBC1D20 (p.Gln98*), RAB18 (p.Leu24Gln), RAB3GAP1 (c.649�2A>G), and control fibro-
blasts did not identify any differences in expression of GM130, Golgin-97, p115, Syntaxin 6, PDI, and RAB5 proteins.

1010 The American Journal of Human Genetics 93, 1001–1014, December 5, 2013



known as synaptic homeostasis.48 RAB18 has been linked

to regulation of diverse processes including LD meta-

bolism,49–54 endocytosis,55 exocytosis of secretory gran-

ules,56,57 and ER-to-Golgi trafficking.58 TBC1D20 is an ER

protein that, via its GAP regulation of RAB1, facilitates

ER-to-Golgi trafficking and organization of the Golgi com-

plex in both yeast and HeLa cells.26–28 Altered Golgi

morphology observed in bs mEFs is consistent with these

findings, although the aberrant Golgi morphology is

more severe in bs mEFs when compared to the aberrant

Golgi morphology observed in HeLa cells after siRNA-

mediated TBC1D20 depletion.26 In contrast, we observed

no Golgi abnormalities in the human fibroblasts deficient

for the TBC1D20 function. In yeast, both Gyp5p and

Gyp8p RABGAPs can act on the RAB1 ortholog Ypt1.28

Therefore, it is possible that differentially expressed addi-

tional RAB1GAPs may be responsible for full or partial

compensation of the TBC1D20 function, facilitating Golgi

organization in some TBC1D20-deficient cell lines.

Although differentially expressed RAB1GAPs may be

compensating for the role of TBC1D20 in Golgi organiza-

tion, our results show that TBC1D20 is indispensable for

proper LD formation. Here, we show that a defect in LD

formation is a common cellular feature not only in

bs mEFs and human fibroblasts deficient in TBC1D20

but also in fibroblasts deficient in RAB3GAP1 and

RAB18. Thus, we provide evidence for a common WARBM

cellular pathway. The role of RAB18 as an LD protein

involved in lipid metabolism has already been estab-

lished.49–54 In a study in Drosophila, overexpression of

‘‘dominant-negative’’ and ‘‘constitutively active’’ RAB1

mutants resulted in increased LD size,40 additionally sup-

porting a role of TBC1D20 in LD formation and/or

metabolism. However, in the same study overexpression

of dominant-negative and constitutively active RAB18

mutants did not influence the LD size.40 The discrepancy

between these findings and those of this study where LD

size was increased in RAB18 (p.Leu24Gln) cells may be ex-

plained by the fact that WT RAB18 protein is completely

absent in these cells. Further studies will be required to

determine whether the role of TBC1D20 as a regulator of

RAB1 can explain its involvement in LD formation or

whether in vivo regulatory activity of TBC1D20 toward

RAB18 is the underlying mechanism. Unlike TBC1D20

and RAB18, the RAB3GAP complex has never been

directly associated with a role in LD formation and/or

metabolism. Interestingly though, SNPs in linkage

disequilibrium with RAB3GAP1 have been associated

with total cholesterol and high-density lipoprotein choles-

terol levels in a genome-wide association study.59 There-

fore, additional studies are needed to determine the

molecular relationships between TBC1D20, RAB18, and

the RAB3GAP complex during LD formation and/or

metabolism.

LDs are ER-associated organelles and store triacylgly-

cerols and cholesteryl esters used in metabolism and

membrane and steroid synthesis.60–63 Though the roles
The American Jou
of LDs are incompletely understood, a number of findings

are suggestive of their involvement in disease. The accu-

mulation of LDs has been associated with two different

forms of complicated hereditary spastic paraplegias

(HSPs). Mutations in BSCL2 (MIM 606158) cause congen-

ital generalized lipodystrophy type 2 (CGL2 [MIM

269700]) and spastic paraplegia 17 (SPG17 [MIM

270685]) whereas mutations in SPG20 (MIM 607111)

cause spastic paraplegia 20 (SPG20 [MIM 275900]).64

Hereditary spastic paraplegias share some resemblance to

WARBM in that they are characterized by lower limb spas-

ticity and progress to affect the upper limbs.64 At this point

it is not certain whether the LD phenotype in WARBM cell

lines underlies the associated pathology or whether it is in

turn the consequence of another underlying yet unidenti-

fied cellular deficit. Nevertheless, it may provide a context

for future investigations at themolecular level. Further, the

potential identification of additional unknown genes and

mutations resulting in WARBM could inform their charac-

terization. In combination, these approaches could pro-

vide additional valuable information about the molecular

mechanisms underlying WARBM disease pathology.
Supplemental Data

Supplemental Data include seven figures and four tables and can

be found with this article online at http://www.cell.com/AJHG/.
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products/lightcycler14301-480-gene-scanning-software
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software/meta-imaging-series/metamorph.html

Mouse Genome Browser, http://genome.ucsc.edu/cgi-bin/

hgGateway?hgsid¼336780771&clade¼mammal&org¼Mouse&

db¼0

Mutation Surveyor, http://www.softgenetics.com/mutation

Surveyor.html

NHLBI Exome Sequencing Project (ESP) Exome Variant Server,

http://evs.gs.washington.edu/EVS/

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org/

Primer3, http://bioinfo.ut.ee/primer3-0.4.0/primer3/

RefSeq, http://www.ncbi.nlm.nih.gov/RefSeq

Universal ProbeLibrary Assay Design Center, http://www.

roche-applied-science.com/webapp/wcs/stores/servlet/Category

Display?catalogId¼10001&tab¼AssayþDesignþCenter&identifier¼
UniversalþProbeþLibrary&langId¼-1
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11. Dursun, F., Güven, A., and Morris-Rosendahl, D. (2012).

Warburg Micro syndrome. J. Pediatr. Endocrinol. Metab. 25,

379–382.

12. Graham, J.M., Jr., Hennekam, R., Dobyns, W.B., Roeder, E.,

and Busch, D. (2004). MICRO syndrome: an entity dis-

tinct from COFS syndrome. Am. J. Med. Genet. A. 128A,

235–245.
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28. De Antoni, A., Schmitzová, J., Trepte, H.H., Gallwitz, D., and

Albert, S. (2002). Significance of GTP hydrolysis in Ypt1p-

regulated endoplasmic reticulum to Golgi transport revealed

by the analysis of two novel Ypt1-GAPs. J. Biol. Chem. 277,

41023–41031.

29. Talamas, E., Jackson, L., Koeberl, M., Jackson, T., McElwee, J.L.,

Hawes, N.L., Chang, B., Jablonski, M.M., and Sidjanin, D.J.

(2006). Early transposable element insertion in intron 9 of

the Hsf4 gene results in autosomal recessive cataracts in

lop11 and ldis1 mice. Genomics 88, 44–51.

30. Hassemer, E.L., Le Gall, S.M., Liegel, R., McNally, M., Chang,

B., Zeiss, C.J., Dubielzig, R.D., Horiuchi, K., Kimura, T., Okada,

Y., et al. (2010). The waved with open eyelids (woe) locus is a

hypomorphic mouse mutation in Adam17. Genetics 185,

245–255.

31. Liegel, R., Chang, B., Dubielzig, R., and Sidjanin, D.J. (2011).

Blind sterile 2 (bs2), a hypomorphic mutation in Agps, results

in cataracts and male sterility in mice. Mol. Genet. Metab.

103, 51–59.

32. Fuchs, E., Haas, A.K., Spooner, R.A., Yoshimura, S., Lord, J.M.,

and Barr, F.A. (2007). Specific Rab GTPase-activating proteins

define the Shiga toxin and epidermal growth factor uptake

pathways. J. Cell Biol. 177, 1133–1143.

33. Listenberger, L.L., and Brown, D.A. (2007). Fluorescent detec-

tion of lipid droplets and associated proteins. Curr. Protoc.

Cell Biol. Chapter 24, 2.

34. Li, Q., Pène, V., Krishnamurthy, S., Cha, H., and Liang, T.J.

(2013). Hepatitis C virus infection activates an innate

pathway involving IKK-a in lipogenesis and viral assembly.

Nat. Med. 19, 722–729.

35. Jadeja, S., Mort, R.L., Keighren, M., Hart, A.W., Joynson, R.,

Wells, S., Potter, P.K., and Jackson, I.J. (2013). A CNS-specific

hypomorphic Pdgfr-beta mutant model of diabetic retinop-

athy. Invest. Ophthalmol. Vis. Sci. 54, 3569–3578.

36. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Long-

air, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S.,

Schmid, B., et al. (2012). Fiji: an open-source platform for

biological-image analysis. Nat. Methods 9, 676–682.

37. Pereira, L.A., Tanaka, H., Nagata, Y., Sawada, K., Mori, H.,

Chimelli, L.M., and Nishimune, Y. (1998). Characterization

and expression of a stage specific antigen bymonoclonal anti-

body TRA 54 in testicular germ cells. Int. J. Androl. 21, 34–40.

38. Mali, P., Kaipia, A., Kangasniemi, M., Toppari, J., Sandberg, M.,

Hecht, N.B., and Parvinen, M. (1989). Stage-specific expres-

sion of nucleoprotein mRNAs during rat and mouse spermio-

genesis. Reprod. Fertil. Dev. 1, 369–382.

39. Nevo-Yassaf, I., Yaffe, Y., Asher, M., Ravid, O., Eizenberg, S.,

Henis, Y.I., Nahmias, Y., Hirschberg, K., and Sklan, E.H.

(2012). Role for TBC1D20 and Rab1 in hepatitis C virus

replication via interaction with lipid droplet-bound non-

structural protein 5A. J. Virol. 86, 6491–6502.

40. Wang, C., Liu, Z., and Huang, X. (2012). Rab32 is important

for autophagy and lipid storage in Drosophila. PLoS ONE 7,

e32086.

41. Mitra, S., Cheng, K.W., and Mills, G.B. (2011). Rab GTPases

implicated in inherited and acquired disorders. Semin. Cell

Dev. Biol. 22, 57–68.

42. Bassnett, S., Shi, Y., and Vrensen, G.F. (2011). Biological glass:

structural determinants of eye lens transparency. Philos.

Trans. R. Soc. Lond. B Biol. Sci. 366, 1250–1264.

43. Vrensen, G.F., Graw, J., and DeWolf, A. (1991). Nuclear break-

down during terminal differentiation of primary lens fibres in
The American Jou
mice: a transmission electronmicroscopic study. Exp. Eye Res.

52, 647–659.

44. Moreno, R.D., Ramalho-Santos, J., Sutovsky, P., Chan, E.K.,

and Schatten, G. (2000). Vesicular traffic and golgi apparatus

dynamics during mammalian spermatogenesis: implications

for acrosome architecture. Biol. Reprod. 63, 89–98.

45. Berruti, G., and Paiardi, C. (2011). Acrosome biogenesis: Revis-

iting old questions to yield new insights. Spermatogenesis 1,

95–98.

46. Sakane, A., Manabe, S., Ishizaki, H., Tanaka-Okamoto, M.,

Kiyokage, E., Toida, K., Yoshida, T., Miyoshi, J., Kamiya, H.,

Takai, Y., and Sasaki, T. (2006). Rab3 GTPase-activating protein

regulates synaptic transmission and plasticity through the

inactivation of Rab3. Proc. Natl. Acad. Sci. USA 103, 10029–

10034.

47. Sudhof, T.C. (2004). The synaptic vesicle cycle. Annu. Rev.

Neurosci. 27, 509–547.

48. Müller, M., Pym, E.C., Tong, A., and Davis, G.W. (2011). Rab3-

GAP controls the progression of synaptic homeostasis at a late

stage of vesicle release. Neuron 69, 749–762.

49. Pulido, M.R., Diaz-Ruiz, A., Jiménez-Gómez, Y., Garcia-
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