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Summary

Objective: To evaluate the anti-inflammatory effect of the combination of avocado soybean unsaponifiables (ASU) and epigallocatechin gal-
late (EGCG) on cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) production in cytokine-activated equine chondrocytes.

Methods: Production of type II collagen and aggrecan was verified by immunohistochemistry and Western blot. Chondrocytes were incubated
with: (1) control media alone, (2) ASU (4 mg/ml; 8.3 mg/ml), (3) EGCG (4, 40, 400 ng/ml), or (4) the combination of ASU and EGCG for 24 h.
Cells were next incubated with control medium alone or with IL-1b (10 ng/ml) and TNF-a (1 ng/ml). COX-2 gene expression by real-time PCR
analysis and NF-kB nuclear translocation by immunohistochemistry were performed after 1 h of incubation. PGE2 production was determined
by immunoassay after 24 h of incubation.

Results: Equine chondrocytes responded to cytokine activation by up-regulated gene expression of COX-2 and increased PGE2 production.
Activation was associated with NF-kB translocation. Individually, ASU and EGCG marginally inhibited COX-2 expression and PGE2 produc-
tion in activated chondrocytes. In contrast, the combination of ASU and EGCG reduced COX-2 expression close to non-activated control
levels and significantly inhibited PGE2 production. These reductions were statistically greater than those of ASU or EGCG alone. The inhibition
of COX-2 expression and PGE2 production was associated with inhibition of NF-kB translocation.

Conclusion: The present study demonstrates that the anti-inflammatory activity of ASU and EGCG is potentiated when used in combination.
This combination may offer an attractive supplement or alternative to non-steroidal anti-inflammatory drugs (NSAIDs) in the management of
osteoarthritis.
ª 2009 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Osteoarthritis (OA) is the most common cause of morbidity
in horses and accounts for an estimated 60% of lameness
problems1,2. OA compromises performance and ultimately
leads to retirement of many equine athletes3. This degener-
ative condition is characterized by erosion of articular carti-
lage, inflammation of the synovial membrane, and
resorption of the underlying subchondral bone4e6. The
pathological changes in OA are associated with an excess
production of pro-inflammatory mediators which shift the
balance between the synthesis and degradation of matrix
components towards progressive destruction of joint
tissue7e9.

A key player in the pathogenesis of OA is prostaglandin
E2 (PGE2)10. This molecule contributes to several distinct
pathological features of OA including joint inflammation,
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tissue destruction, and inflammatory pain. PGE2 also plays
a regulatory role and can induce the production of other pro-
inflammatory mediators including cytokines, nitric oxide,
and connective tissue degrading enzymes. Due to its ability
to upregulate metalloproteinases (MMPs), PGE2 contrib-
utes to the breakdown of cartilage extracellular matrix9,11.
In addition, PGE2 promotes bone resorption and osteophyte
formation11,12. PGE2 sensitizes nociceptors on peripheral
nerve endings thereby contributing to the development of
inflammatory pain13.

PGE2 levels are locally regulated by the inducible cycloox-
ygenase-2 (COX-2) enzyme, a nitric oxide synthase in chon-
drocytes that inhibit cartilage and proteoglycan degradation
possibly through inhibition of degradative MMPs14e18. In
pathologic conditions such as OA, COX-2 expression is
up-regulated with a concomitant increase in PGE2 produc-
tion. The central role of COX-2 and PGE2 in the pathophys-
iology of OA is reflected in the widespread use of selective
COX-2 inhibitors and a variety of non-selective non-steroidal
anti-inflammatory drugs (NSAIDs) for the treatment of the
disorder. However, prolonged administration of these
drugs has adverse side effects including gastrointestinal
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pathologies and disruption of cartilage proteoglycan metab-
olism19,20. Studies in human and animal models have dem-
onstrated impaired bone healing and repair with the use of
COX inhibitors21,22. Therefore, there is a need for alternative
treatments for the management of OA that do not center on
the use of NSAIDs to inhibit the production of PGE2 and
other pro-inflammatory mediators.

In addition to pro-inflammatory mediators such as cyto-
kines and prostaglandins, reactive oxygen species (ROS)
have also been implicated in the pathogenesis of
OA23e25. Oxidative stress, induced by ROS including nitric
oxide and hydrogen peroxide, have been shown to induce
chondrocyte apoptosis and cartilage degeneration. More-
over, ROS have been reported to activate signal transduc-
tion pathways that lead to an increased production of
pro-inflammatory mediators including cytokines and prosta-
glandins23,26e29. Studies in vitro have demonstrated a link-
age between the pathways involved in the production of
ROS and pro-inflammatory mediators30,31. These studies
support the notion that agents capable of inhibiting both
oxidative stress and inflammation pathways would be
particularly useful in the management of OA.

Many studies have documented the benefits of the nutri-
tional supplement avocado soybean unsaponifiables (ASU)
for promoting joint health and the management of OA. ASU
is derived from avocados and soybeans and has been
used for years to manage joint pain32. ASU is a fraction of av-
ocado and soybean oils which does not produce soap after
hydrolysis32. Clinical studies have reported beneficial effects
of ASU in human and equine OA patients as well as in exper-
imental animal models of OA1,32e35. The mechanisms that
could account for the beneficial effects of ASU for OA have
been studied in vitro using bovine and human joint tissue
cells. These studies showed that ASU inhibits the expression
and production of cytokines, chemokines, PGE2, nitric oxide,
and MMPs36e40. ASU also exerts anabolic effects on carti-
lage metabolism by enhancing synthesis of cartilage matrix
components while suppressing their degradation37.

Evidence indicating that joint diseases are associated
with increased production of ROS suggests that agents
with anti-oxidant activity may have beneficial effects in the
treatment of OA. Epigallocatechin gallate (EGCG), a major
anti-oxidant component of green tea, has been reported to
inhibit the onset and severity of collagen induced arthritis
in mice41,42. In vitro studies have demonstrated both anti-in-
flammatory and anti-oxidant activities of EGCG, and that
EGCG suppresses COX-2. Based on these studies, we hy-
pothesize that the combination of ASU with EGCG may
have a broader spectrum of anti-inflammatory activities
than either preparation alone. In particular, we sought to de-
termine whether EGCG may enhance the anti-inflammatory
effects of ASU by virtue of its suppressive action of COX-2
induction. We utilized the equine chondrocyte culture model
to determine the inhibition of COX-2 expression and PGE2

production. The benefit of combining the two agents to-
gether may offer an alternative for the management of OA.
Materials and methods
CELL CULTURE
Articular cartilage was harvested and aseptically diced into <5 mm pieces
from three adult horses. The cartilage was then digested in type II collagenase
(110 U/ml, Gibco Invitrogen, Carlsbad, CA, USA) for 12e18 h at 37�C, 5%
CO2. Chondrocytes were filtered through a wire mesh screen to remove debris
and rinsed four times with Hank’s Balanced Salt Solution (American Type Culture
Collection (ATCC) Manassas, VA, USA). Cells were counted and assessed for
viability using theTrypan-blue exclusion method. Chondrocyteswere propagated
in monolayer culture until confluency in media composed of Dulbeccos’ Modified
Eagle’s basal medium (Sigma; St. Louis, MO, USA) supplemented with 10% v/v
fetal bovine serum (Gemini Bio-Products; Woodland, CA, USA), 300 mg/ml L-glu-
tamine (Sigma), 30 mg/ml antibiotic/antimycotic (Sigma), and 3.7 g/L sodium bi-
carbonate (Sigma). The final pH of the media was adjusted to 7.4.
PHENOTYPE ANALYSIS BY IMMUNOHISTOCHEMISTRY AND

WESTERN BLOT ANALYSIS
Chondrocytes were plated on microscope slides and fixed with 10% v/v
paraformaldehdye. Slides were then incubated with goat anti-type I collagen,
anti-type II collagen, or anti-aggrecan antibodies (Southern Biotechnology
Associates; Birmingham, AL USA). The slides were next washed in phosphate
buffered saline (PBS, Gibco Invitrogen, Carlsbad, CA, USA) three times and
incubated with fluorescein isothiocyanate (FITC) labeled anti-goat antibodies.
Immunostaining was visualized using a Nikon Eclipse epifluorescent micro-
scope TE200. To identify secreted collagen and aggrecan, spent culture media
were electrophoresed on 4e15% (w/w) sodium dodecyl sulfate-polyacryl-
amide gels. Following electrophoresis, the gels were electrophoretically trans-
ferred to PolyVinylidine DiFluoride (PVDF) membranes (Bio-Rad Laboratories,
Hercules, CA, USA) in Tris-glycine buffer, pH 8.5, containing 20% v/v metha-
nol. Blotted PVDF membranes were washed twice with deionized water and
stained using a chromogenic Western blot immunodetection kit (Gibco Invitro-
gen). To block non-specific staining, membranes were treated with a blocking
solution provided with the immunodetection kit following the instructions of the
manufacturer. PVDF membranes were then processed for immunostaining us-
ing goat anti-collagen type II, type I antibodies, or anti-aggrecan (Southern Bio-
technology Associates) in combination with an alkaline phosphatase labeled
rabbit anti-goat antibody with 5-bromo-4-chloro-3-indolylphosphate-nitroblue
tetrazolium (BCIP/NTB) (Gibco Invitrogen) as the substrate.
EXPERIMENTAL DESIGN
ASU (ASU�-NMX 1000; Nutramax Laboratories, Inc., Edgewood, MD, USA)
was dissolved in 100% ethanol (Sigma) and diluted in media to achieve the re-
quired final concentration. The control media containing the same ethanol con-
centration did not cause toxicity or inflammation. The composition of ASU was
previously described and concentration of ASU (8.3 mg/ml) used in this study
was previously shown to exert significant anti-inflammatory effect36,37. We also
evaluated ASU at a concentration of 4 mg/ml. The concentrations of EGCG
used were based on reported detectable levels in the blood following intake of
green teaEGCG and on reported in vitro studies18,43,44. EGCG was commercially
obtained(Indena). Therangeofconcentrations in thepresent invitro studyappear
to be achievable in vivo based on the published pharmacokinetic studies43,44.

Chondrocytes (5� 105) were seeded onto 6-well plates for 24 h and were
incubated with: (1) control media alone, (2) ASU (4 or 8.3 mg/ml), (3) EGCG
(4e400 ng/ml), or (4) the combination of the two agents for another 24 h. Fol-
lowing this treatment, cultures were incubated with control media alone, or
activated with cytokines interleukin-1-beta (IL-1b) (10 ng/ml) and tumor ne-
crosis factor-alpha (TNF-a) (1 ng/ml) for 1 h to measure COX-2 by real-
time polymerase chain reaction (RT-PCR), or for 24 h to measure secreted
PGE2 levels by immunoassay.
TOTAL RNA ISOLATION
Total cellular ribonucleic acid (RNA) was isolated by lysing the cells with
TRIzol� reagent (Gibco Invitrogen) and extracted with chloroform (Sigma).
Following vigorous agitation and a 3 min incubation at room temperature,
samples were centrifuged and the aqueous phase containing RNA was col-
lected. The RNA was precipitated with isopropyl alcohol (Sigma) and resus-
pended in RNase-free water (Gibco Invitrogen). Total RNA was quantified
with UV spectrophotometry (Molecular Devices, Sunnyvale, CA, USA) and
evaluated for RNA concentration and integrity.
cDNA SYNTHESIS
For each sample, 1 mg of total RNA was converted to complementary DNA
(cDNA) using Moloney-Murine Leukemia Virus reverse transcriptase from the
Advantage RT-for-PCR kit (BD Biosciences Clontech, Mountain View, CA,
USA). RT was carried out at 42�C for 60 min followed by heating at 94�C for
5 min to stop the cDNA synthesis reaction and to destroy any DNase activity.
QUANTITATIVE REAL TIME POLYMERASE CHAIN REACTION
RT-PCR was carried out by combining 2 ml of cDNA and reagents from
the iQ� SYBR Green Supermix Kit (Bio-Rad, Hercules, CA) to give a total
volume of 25 ml. The primer sequences used were glyceraldehyde 3-phos-
phate dehydrogenase (GAPDH), (forward, GTTTGTGATGGGCGTGAACC;
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reverse, TTGGCAGCACCAGTAGAAGC) a house-keeping gene, and COX-
2 (forward, ATACCAAAACCGCATTGCCG; reverse, TCTAACTCCGCAGC-
CATTTC). Reaction conditions used for both primers are as follows: 95�C for
3 min, then 95�C for 10 s, 55�C for 30 s, and 72�C for 30 s repeated for 40
cycles, and then 95�C for 1 min, 55�C for 1 min, and 55�C for 30 s repeated
for 81 cycles to obtain a melt curve. Thermal cycling was performed using an
iQ5 Multicolor RT-PCR Detection System (Bio-Rad). Results were normal-
ized to the GAPDH house-keeping gene. Four independent cellular experi-
ments were performed and the average of these experiments are shown in
the figures. Each assay was done using triplicate samples.
PGE2 HIGH SENSITIVITY IMMUNOASSAY
A commercial PGE2 immunoassay (R&D Systems, Minneapolis, MN
USA) was used to quantify secreted PGE2 levels in the cellular supernatant,
according to the manufacturer’s instructions. A PGE2 standard was run in
parallel to the supernatant samples. Each assay was performed using tripli-
cate samples. Optical density was measured immediately using the Spectra-
MAX 340 microplate reader (Molecular Devices; Sunnyvale, CA, USA) at
450 nm with wavelength correction set at 540 nm.
INTRACELLULAR LOCALIZATION OF NF-kB BY

IMMUNOFLUORESCENCE
The effect of IL-1b and TNF-a on the nuclear translocation of nuclear fac-
tor kappa B (NF-kB) was monitored by immunohistochemistry using an anti-
body to the p65 subunit of NF-kB (Santa Cruz Biotechnology; Santa Cruz,
CA USA). Equine chondrocytes were seeded into 8-chambered cover glass
culture plates (Nalge Nunc International) at a density of 1� 104/well for 24 h.
Chondrocytes in each compartment were subjected to various treatments as
detailed below and then processed for analysis by fluorescence microscopy
in situ. To determine the effect of treatments on the nuclear translocation of
p65 NF-kB in response to IL-1b and TNF-a exposure, cells were pre-treated
with: (1) control media alone or (2) the combination of ASU (8.3 mg/ml) and
EGCG (40 ng/ml). Chambers were incubated for 24 h followed by the addi-
tion of cytokines for 1 h. Cells were then fixed with 10% v/v formalin for
15 min and washed three times with phosphate buffered saline (Gibco Invi-
trogen). For immunohistochemical staining, cells were incubated with
a 1:100 dilution of rabbit anti-NF-kB (Santa Cruz Biotechnology) in PBS con-
taining 0.1% Triton X-100 (Sigma) overnight at 4�C. After four washes with
PBS, cells were incubated with a 1:100 dilution of donkey anti-rabbit IgG la-
beled with Alexa Fluor-488 (Invitrogen) for 2 h at room temperature. After
four washes with PBS, cells in chamber slides were viewed on an inverted
fluorescence microscope (Nikon Eclipse TE200) equipped with a digital cam-
era (Nikon Spot Camera). Digital images of five frames were captured for
each experimental condition and were imported into Adobe Photoshop. To
quantify the number of cells with p65 positive nuclei, digital images were
Fig. 1. (A) Phase-contrast photomicrograph of equine chondrocyte cultur
collagen, (D) Western blot
analyzed using the NIH ImageJ software program. Cells with p65 positive
and negative nuclei were determined using the cell count function of the
program.
STATISTICAL ANALYSIS
Data is presented as the mean� 1 SD. Pair-wise multiple comparisons
was carried out using one-way analysis of variance (ANOVA), Tukey post-
hoc using SigmaStat statistical software (Windows Version 3.11)12 where
P< 0.05 was considered statistically significant. The SigmaStat program
verified that our data is compatible with the assumptions of Normality e
Gaussian distribution and homogenous variance. The Figure legends indi-
cate the number of (3e4) runs performed.
Results
PHENOTYPE CHARACTERIZATION OF CHONDROCYTE

MONOLAYER CULTURE
Equine chondrocytes proliferated with ease in monolayer
culture with 100% viability. The doubling time for monolayer
cultures was 3e5 days. Chondrocytes propagated on mono-
layer cultures at passage three showed elongated, spindle-
shaped morphology [Fig. 1(A)]. Immunohistochemical analy-
sis confirmed that chondrocyte cultures continued to produce
the ECM components aggrecan and type II collagen
[Fig. 1(B) and (C), respectively]. Production of type II colla-
gen was further verified by Western blot [Fig. 1(D)]. Chondro-
cyte cultures showed negligible production of type I collagen.
The high molecular weight aggrecan protein did not enter the
gel and could not be visualized on Western blot.
THE EFFECT OF ASU AND EGCG ON COX-2 GENE

EXPRESSION IN EQUINE CHONDROCYTES
Chondrocytes responded to cytokine activation with
a greater than two-fold increase in COX-2 expression
(Fig. 2). Pre-treatment of chondrocyte cultures with ASU
(8.3 mg/ml) or EGCG (40 ng/ml) alone did not reduce
COX-2 expression compared to activated control levels
(Fig. 2). In contrast, the combination of ASU and EGCG
e, (B) Immunostaining for aggrecan, (C) Immunostaining for type II
for type II collagen.



Fig. 2. Effect of ASU (8.3 mg/ml), and EGCG (40 ng/ml) on COX-2 gene expression in cytokine-activated chondrocyte cultures. Chondrocytes
were pre-treated with ASU (8.3 mg/ml) and EGCG (40 ng/ml) for 24 h and activated with IL-1b and TNF-a for 1 h. COX-2 gene expression
analyzed by RT-PCR according to Methods and was normalized to the activated control. Significance was analyzed using Tukey post-hoc

test (mean� 1 SD, n¼ 4).
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(P¼ 0.006) reduced COX-2 expression to levels similar to
non-activated controls (Fig. 2).
THE EFFECT OF ASU AND EGCG ON PGE2 PRODUCTION BY

EQUINE CHONDROCYTES
Chondrocytes responded to cytokine activation with a sig-
nificant increase in PGE2 production (P< 0.001, Fig. 3).
Pre-treatment with ASU (8.3 mg/ml) or EGCG at concentra-
tions ranging from 4 to 400 ng/ml did not decrease PGE2

production (P> 0.05, Fig. 3). The combination of ASU at
8.3 mg/ml with EGCG at concentrations 4e400 ng/ml signif-
icantly reduced PGE2 production relative to the activated
control IL-1b and TNF-a (P< 0.05, Fig. 4). Pre-treatment
of chondrocytes with 4 mg/ml of ASU did not reduce PGE2

levels, nor did EGCG at 40 ng/ml. The combination of
ASU at 4 mg/ml and EGCG at 40 ng/ml significantly de-
creased PGE2 production (P< 0.001, Fig. 4).
THE EFFECT OF ASU AND EGCG ON NF-kB TRANSLOCATION
Non-stimulated chondrocyte controls showed strong
NF-kB immunostaining throughout the cytoplasm while the
nuclei of chondrocytes were unstained as indicated by
arrows (Fig. 5, top panel). Following cytokine stimulation, cy-
toplasmic immunostaining for NF-kB appeared unchanged
while the nuclei were intensely stained as indicated by arrows
in Fig. 5 (middle panel). This nuclear translocation of NF-kB
was identified by intense immunostaining at 1 h. The translo-
cation of NF-kB from cytoplasm to the nucleus visualized by
immunostaining was inhibited by pre-treatment of chondro-
cytes with the combination of ASU and EGCG (Fig. 5 lower
panel). Pre-treatment of chondrocytes with the ASU and
EGCG combination significantly reduced NF-kB transloca-
tion [Fig. 5(B), P< 0.001].
Discussion

The main finding of the present paper is that in cytokine-
activated equine chondrocyte cultures, the combination of
ASU and EGCG inhibits COX-2 expression and PGE2 pro-
duction to a greater extent than either compound alone.
COX-2 catalyzes the biosynthesis of PGE2 and has been
shown to be overexpressed in joints affected by OA. The
increased expression of COX-2 and the concomitant in-
creased production of PGE2 are considered a major cause
of the pathological changes seen in the disease. Accord-
ingly, COX-2 has become an important target for pharmaco-
logical interventions aimed at treating OA. In this study, we
used equine chondrocyte cultures to identify the effects of
two products on the cytokine-stimulated induction of COX-
2 and PGE2 synthesis by these cells. The production of car-
tilage markers type II and aggrecan was verified in our
chondrocyte culture model [Fig. 1(AeD)]. The response of
the chondrocyte model to stimulation with IL-1b and TNF-
a with significantly increased COX-2 expression and
PGE2 production confirms the continued functional and
metabolic activity of these cells.

Previous studies have shown that ASU, as well as
EGCG, inhibit cytokine induction of COX-2 expression
and PGE2 production18,36,37,43,44. We evaluated several
concentrations of ASU and EGCG and found that either
preparation alone produced only a marginal inhibitory anti-
inflammatory effect in our chondrocyte cultures (Fig. 2e4).
The marginal inhibitory effect of ASU or EGCG on COX-2
and PGE2 production could be due to the distinct origin or
purity of these preparations. The discrepancy in effects
could also be due to the differences in the cell models
and culture conditions used36e40. In contrast, the combina-
tion of ASU and EGCG at concentrations at which neither
one alone inhibits cytokine-stimulated COX-2 and PGE2, re-
sulted in significant inhibition of COX-2 expression at the
transcript level and PGE2 synthesis (Figs. 2e4). These re-
sults demonstrate the dramatic effects of the ASU and
EGCG combination in inhibiting the induction of inflamma-
tory markers. That the combination of ASU and EGCG sig-
nificantly reduced, but did not completely block, COX-2
gene expression and PGE2 production, further confirms
their regulatory role. Their ability to spare some expression
of COX-2 and PGE2 production may avoid the adverse ef-
fects of selective COX-2 inhibitors21,22,45.

Our unexpected observation that ASU and EGCG poten-
tiate their inhibitory effects on cytokine-inducted COX-2 ex-
pression and PGE2 synthesis may be the result of
overlapping activities of the two preparations in COX-2
gene regulation. The COX-2 gene contains several regula-
tory elements for control at the transcriptional level is also
regulated at the post-transcriptional level. Binding sites
for regulatory transcription factors include NF-kB motifs,
AP-1 sites and cyclic adenosine monophosphate (cAMP)
response elements46. Activation of the NF-kB pathway by
cytokines has previously been reported for rabbit and hu-
man chondrocytes47,48. There are two NF-kB binding sites



Fig. 3. (A). Effect of ASU (8.3 mg/ml) and EGCG (4, 40, 400 ng/ml) on PGE2 production in cytokine-activated chondrocyte cultures. Chondro-
cytes were pre-treated with ASU (8.3 mg/ml) and EGCG (4e400 ng/ml) for 24 h and activated with IL-1b and TNF-a. After an additional 24 h
supernatant was collected and assayed for PGE2 levels. Statistical significance between the activated control and the pre-treated group were
analyzed using Tukey post-hoc analysis (mean � 1 SD, n¼ 3). After an additional 24 h supernatant was collected and assayed for PGE2

levels. Statistical significance between the activated control and the pre-treated group were analyzed using Tukey post-hoc analysis
(mean � 1 SD, n¼ 3). (B). Effect of ASU (4 mg/ml) and EGCG (40 ng/ml) on PGE2 production in cytokine-activated chondrocyte cultures.
Chondrocytes were pre-treated with ASU and EGCG for 24 h. PGE2 production was measured from cellular supernatant by chondrocytes

activated with IL-1b and TNF-a for 24 h.
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on the 50 flanking region of the COX-2 gene and NF-kB is
known to be an essential transcription factor for the induc-
tion of COX-2 induction46. Inhibition of the NF-kB pathway
has previously been shown to attenuate COX-2 expres-
sion49. Our finding that the cytokine-induced COX-2 ex-
pression and PGE2 in equine chondrocytes was
paralleled by translocation of NF-kB from the cytoplasm
to the nucleus (Fig. 5) is in line with observations in other
species. Previous reports have shown that both IL-1b and
TNF-a contribute to the nuclear translocation of NF-kB
and have also demonstrated that this translocation can
be inhibited by ASU and EGCG. NF-kB has been shown
to play a role in stimulating COX-2 expression in synovial
tissue50. Inhibiting the translocation of NF-kB has long
been considered an attractive target for pharmacological
or nutraceutical agents to treat chronic inflammatory condi-
tions. Our results demonstrate that nearly complete inhibi-
tion of NF-kB translocation can be achieved by the
combination of ASU and EGCG.

In view of the multiplicity of promoter elements, it is possi-
ble that ASU and EGCG may exert their effects at different
regulatory sites of the COX-2 gene51. In chondrocytes and



Fig. 4. Immunostaining of chondrocyte cultures for NF-kB translo-
cation. Note immunostaining of cytoplasm in control chondrocytes
(top panel). In contrast, cytokine activation induced translocation
of immunostaining in the nucleus indicated by arrows (middle
panel). Pre-treatment with the combination of ASU (8.3 mg/ml)
and EGCG (40 ng/ml) inhibited translocation indicated by more
predominant cytoplasmic immunostaining for NF-kB (lower panel).

Arrows point to nuclei. Bar¼ 20 mm.

Fig. 5. Percentage of NF-kB nuclear immunostained chondrocytes.
pre-treatment with the combination of ASU (8.3 mg/ml) and EGCG

(40 ng/ml) inhibited translocation.
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synovial cells, the mitogen-activated protein kinase (MAPK)
pathway is particularly well characterized. An alternative ex-
planation for the potentiated effects of the ASU and EGCG
combination observed in this study may be due to
a differential effect of the two compounds in the post-transla-
tional regulation of COX-2 expression. Inhibitors of mitogen-
activated protein kinases have been shown to down-regulate
COX-2 expression in human chondrocytes through a mecha-
nism that involves interference with messenger RNA
(mRNA) stability46,52,53. MAPKs are a family of kinases that
are part of the signal transduction pathways which connect
inflammatory signals to intracellular responses such as
gene expression. In particular, the p38 MAPKs have re-
ceived a great deal of attention as therapeutic targets for in-
flammatory diseases54e56. Inhibitors of MAPKs suppress
inflammatory mediator production and have shown efficacy
in experimentally induced arthritis and joint pain.

Preventing COX-2 overexpression is a compelling ratio-
nale in the treatment of OA. Our finding that the combination
of ASU and EGCG provides a high degree of inhibition of
cytokine-induced COX-2 expression and PGE2 synthesis
in cultures of equine chondrocytes suggests that this com-
bination may be effective in the management of OA in
horses as well as in other species. The finding that exces-
sive PGE2 production can be prevented through the action
of the combination ASU and EGCG, suggests that the path-
ophysiological consequences of COX-2 overexpression
may be achieved with or without limited use of NSAIDs, in
equine OA. The strategy of combining two or more agents
may prove to be a promising strategy in cases in which mul-
tiple signaling pathways converge onto a single target bio-
logical target such as the expression of COX-257e60.
Other signaling pathways such as those involved in matrix
synthesis and breakdown may also be affected by ASU
and EGCG1,5,9,10. It would be interesting to determine in fu-
ture studies whether the combination of the two would have
a more profound effect in the regulation of matrix synthesis
and degradation following induction of inflammation. Our
observation that pre-treatment of chondrocytes with the
combination of ASU and EGCG prior to cytokine stimulation
inhibiting the inflammatory response suggests two potential
benefits. The combination of the two compounds may help
modulate the pathogenesis of OA. The robust response of
cytokine-activated equine chondrocytes to the combination
of ASU and EGCG suggests that such combinations may
also offer an intriguing alternative-complementary treatment
option for the management of OA.
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