Osteoarthritis and Cartilage

Inhibition of cyclooxygenase-2 expression and prostaglandin E\textsubscript{2} production in chondrocytes by avocado soybean unsaponifiables and epigallocatechin gallate

† Nutramax Laboratories, Inc., Edgewood, MD 21040, USA
‡ Johns Hopkins University, Department of Orthopaedic Surgery, Baltimore, MD 21239, USA
§ Syracuse University, Department of Biomedical and Chemical Engineering, Syracuse, NY 13210, USA
¶ Mississippi State University, College of Veterinary Medicine, Mississippi State, MS 39762, USA

Summary

Objective: To evaluate the anti-inflammatory effect of the combination of avocado soybean unsaponifiables (ASU) and epigallocatechin gallate (EGCG) on cyclooxygenase-2 (COX-2) expression and prostaglandin E\textsubscript{2} (PGE\textsubscript{2}) production in cytokine-activated equine chondrocytes.

Methods: Production of type II collagen and aggrecan was verified by immunohistochemistry and Western blot. Chondrocytes were incubated with: (1) control media alone, (2) ASU (4 μg/ml; 8.3 μg/ml), (3) EGCG (4, 40, 400 ng/ml), or (4) the combination of ASU and EGCG for 24 h. Cells were then incubated with control medium alone or with IL-1β (10 ng/ml) and TNF-α (1 ng/ml). COX-2 gene expression by real-time PCR analysis and NF-κB nuclear translocation by immunohistochemistry were performed after 1 h of incubation. PGE\textsubscript{2} production was determined by immunoassay after 24 h of incubation.

Results: Equine chondrocytes responded to cytokine activation by up-regulated gene expression of COX-2 and increased PGE\textsubscript{2} production. Activation was associated with NF-κB translocation. Individually, ASU and EGCG marginally inhibited COX-2 expression and PGE\textsubscript{2} production in activated chondrocytes. In contrast, the combination of ASU and EGCG reduced COX-2 expression close to non-activated control levels and significantly inhibited PGE\textsubscript{2} production. These reductions were statistically greater than those of ASU or EGCG alone. The inhibition of COX-2 expression and PGE\textsubscript{2} production was associated with inhibition of NF-κB translocation.

Conclusion: The present study demonstrates that the anti-inflammatory activity of ASU and EGCG is potentiated when used in combination. This combination may offer an attractive supplement or alternative to non-steroidal anti-inflammatory drugs (NSAIDs) in the management of osteoarthritis.

Key words: Chondrocytes, COX-2, PGE\textsubscript{2}, ASU, EGCG, NF-κB.

Introduction

Osteoarthritis (OA) is the most common cause of morbidity in horses and accounts for an estimated 60% of lameness problems. This degenerative condition is characterized by erosion of articular cartilage, inflammation of the synovial membrane, and resorption of the underlying subchondral bone. The pathological changes in OA are associated with an excess production of pro-inflammatory mediators which shift the balance between the synthesis and degradation of matrix components towards progressive destruction of joint tissue.

A key player in the pathogenesis of OA is prostaglandin E\textsubscript{2} (PGE\textsubscript{2}). This molecule contributes to several distinct pathological features of OA including joint inflammation, tissue destruction, and inflammatory pain. PGE\textsubscript{2} also plays a regulatory role and can induce the production of other pro-inflammatory mediators including cytokines, nitric oxide, and connective tissue degrading enzymes. Due to its ability to upregulate metalloproteinases (MMPs), PGE\textsubscript{2} contributes to the breakdown of cartilage extracellular matrix. In addition, PGE\textsubscript{2} promotes bone resorption and osteophyte formation. PGE\textsubscript{2} also sensitizes nociceptors on peripheral nerve endings thereby contributing to the development of inflammatory pain.

PGE\textsubscript{2} levels are locally regulated by the inducible cyclooxygenase-2 (COX-2) enzyme, a nitric oxide synthase in chondrocytes that inhibit cartilage and proteoglycan degradation possibly through inhibition of degradative MMPs. In pathologic conditions such as OA, COX-2 expression is up-regulated with a concomitant increase in PGE\textsubscript{2} production. The central role of COX-2 and PGE\textsubscript{2} in the pathophysiology of OA is reflected in the widespread use of selective COX-2 inhibitors and a variety of non-selective non-steroidal anti-inflammatory drugs (NSAIDs) for the treatment of the disorder. However, prolonged administration of these drugs has adverse side effects including gastrointestinal
pathologies and disruption of cartilage proteoglycan metabolism9,20. Studies in human and animal models have demonstrated impaired bone healing and repair with the use of COX inhibitors21,22. Therefore, there is a need for alternative treatments for the management of OA that do not center on the use of NSAIDs to inhibit the production of PGE\textsubscript{2} and other pro-inflammatory mediators.

In addition to pro-inflammatory mediators such as cytokines and prostaglandins, reactive oxygen species (ROS) have also been implicated in the pathogenesis of OA23–25. Oxidative stress, induced by ROS including nitric oxide and hydrogen peroxide, have been shown to induce chondrocyte apoptosis and cartilage degeneration. Moreover, ROS have been reported to activate signal transduction pathways that lead to an increased production of pro-inflammatory mediators including cytokines and prostaglandins25,26–29. Studies in vitro have demonstrated a link between the pathways involved in the production of ROS and pro-inflammatory mediators30,31. These studies support the notion that agents capable of inhibiting both oxidative stress and inflammation pathways would be particularly useful in the management of OA.

Many studies have documented the benefits of the nutritional supplement avocado soybean unsaponifiables (ASU) for promoting joint health and the management of OA. ASU is derived from avocados and soybeans and has been used for years to manage joint pain32. ASU is a fraction of avocado and soybean oils which does not produce soap after hydrolysis32. Clinical studies have reported beneficial effects of ASU in human and equine OA patients as well as in experimental animal models of OA1,2,32–34. The mechanisms that could account for the beneficial effects of ASU for OA have been studied in vitro using bovine and human joint tissue cells. These studies showed that ASU inhibits the expression and production of cytokines, chemokines, PGE\textsubscript{2}, nitric oxide, and MMPs36–40. ASU also exerts anabolic effects on cartilage metabolism by enhancing synthesis of cartilage matrix components while suppressing their degradation37.

Evidence indicating that joint diseases are associated with increased production of ROS suggests that agents with anti-oxidant activity may have beneficial effects in the treatment of OA. Epigallocatechin gallate (EGCG), a major anti-oxidant component of green tea, has been reported to inhibit the onset and severity of collagen induced arthritis in mice41,42. In vitro studies have demonstrated both anti-inflammatory and anti-oxidant activities of EGCG, and therefore EGCG suppresses COX-2. Based on these studies, we hypothesize that the combination of ASU with EGCG may have a broader spectrum of anti-inflammatory activities than either preparation alone. In particular, we sought to determine whether EGCG may enhance the anti-inflammatory effects of ASU by virtue of its suppressive action of COX-2 induction. We utilized the equine chondrocyte culture model to determine the inhibition of COX-2 expression and PGE\textsubscript{2} production. The benefit of combining the two agents together may offer an alternative for the management of OA.

Materials and methods

CELL CULTURE

Articular cartilage was harvested and aseptically diced into <5 mm pieces from three adult horses. The cartilage was then digested in type II collagenase (110 U/ml, Gibco Invitrogen, Carlsbad, CA, USA) for 12–18 h at 37°C, 5% CO\textsubscript{2}. Chondrocytes were filtered through a wire mesh screen to remove debris and rinsed four times with Hank’s Balanced Salt Solution (American Type Culture Collection (ATCC) Manassas, VA, USA). Cells were counted and assessed for viability using the Trypan-blue exclusion method. Chondrocytes were propagated in monolayer culture until confluency in media composed of Dulbecco’s Modified Eagle’s basi medium (Sigma, St. Louis, MO, USA) supplemented with 10% v/v fetal bovine serum (Gemini Bio-Products; Woodland, CA, USA), 300 μg/ml L-glutamine (Sigma), 30 μg/ml antibiotic/antimycotic (Sigma), and 3.7 g/l sodium bicarbonate (Sigma). The final pH of the media was adjusted to 7.4.

PHENOTYPE ANALYSIS BY IMMUNOHISTOCHEMISTRY AND WESTERN BLOT ANALYSIS

Chondrocytes were plated on microscope slides and fixed with 10% v/v paraformaldehyde. Slides were then incubated with goat anti-type I collagen, anti-type II collagen, or anti-aggrecan antibodies (Southern Biotechnology Associates; Birmingham, AL USA). The slides were next washed in phosphate buffered saline (PBS, Gibco Invitrogen, Carlsbad, CA, USA) three times and incubated with fluorescein isothiocyanate (FITC) labeled anti-goat antibodies. Immunostaining was visualized using a Nikon Eclipse epifluorescent microscope. Tissue samples were then dehydrated and embedded in paraffin blocks for clinical studies. Sections were stained with hematoxylin and eosin (H&E) for histological analysis. A positive control was included for each antibody and the negative control slides were stained with the appropriate isotype antibody.

EXPERIMENTAL DESIGN

ASU (ASU®-NMX 1000; Nutramax Laboratories, Inc., Edgewood, MD, USA) was dissolved in 100% ethanol (Sigma) and diluted in media to achieve the required final concentration. The control media containing the same ethanol concentration did not cause toxicity or inflammation. The composition of ASU was previously described and concentration of ASU (8.3 μg/ml) used in this study was previously shown to exert significant anti-inflammatory effects37. We also evaluated ASU at a concentration of 4 μg/ml. The concentrations of EGCG used were based on reported detectable levels in the blood following intake of green tea EGCG and on reported in vitro studies38,43,44. EGCG was commercially obtained (Indena). The range of concentrations in the present in vitro study appear to be achievable in vivo based on the published pharmacokinetic studies43,44.

Chondrocytes (5 × 105) were seeded onto 6-well plates for 24 h and were incubated with: (1) control media alone, (2) ASU (4 or 8.3 μg/ml), (3) EGCG (4–400 ng/ml), or (4) the combination of the two agents for another 24 h. Following this treatment, cultures were incubated with control media alone, or activated with cytokines interleukin-1-beta (IL-1\textbeta) (10 ng/ml) and tumor necrosis factor-alpha (TNF-a) (1 ng/ml) for 1 h to measure COX-2 by real-time polymerase chain reaction (RT-PCR), or for 24 h to measure secreted PGE\textsubscript{2} levels by immunoassay.

TOTAL RNA ISOLATION

Total cellular ribonucleic acid (RNA) was isolated by lysing the cells with TRIzol™ reagent (Gibco Invitrogen) and extracted with chloroform (Sigma). Following vigorous agitation and a 3 min incubation at room temperature, samples were centrifuged and the aqueous phase containing RNA was collected. The RNA was precipitated with isopropyl alcohol (Sigma) and resuspended in RNase-free water (Gibco Invitrogen). Total RNA was quantified with UV spectrophotometry (Molecular Devices, Sunnyvale, CA, USA) and evaluated for RNA concentration and integrity.

cDNA SYNTHESIS

For each sample, 1 μg of total RNA was converted to complementary DNA (cDNA) using Moloney-Murine Leukemia Virus reverse transcriptase from the Advantage RT-for-PCR kit (BD Biosciences Clontech, Mountain View, CA, USA). RT was carried out at 42°C for 60 min followed by heating at 94°C for 5 min to stop the cDNA synthesis reaction and to destroy any DNase activity.

QUANTITATIVE REAL TIME POLYMERASE CHAIN REACTION

RT-PCR was carried out by combining 2 μl of cDNA and reagents from the IQ® SYBR Green Supermix Kit (Bio-Rad, Hercules, CA) to give a total volume of 25 μl. The primer sequences used were glyceraldehyde 3-phosphate dehydrogenase (GAPDH), (forward, GTGTGATGGGCGTGAACC;...
PGE₂ HIGH SENSITIVITY IMMUNOASSAY

A commercial PGE₂ immunocassay (R&D System, Minneapolis, MN USA) was used to quantify secreted PGE₂ levels in the cellular supernatant, according to the manufacturer's instructions. A PGE₂ standard was run in parallel to the supernatant samples. Each assay was performed using triplicate samples. Optical density was measured immediately using the Spectra-MAX 340 microplate reader (Molecular Devices; Sunnyvale, CA, USA) at 450 nm with wavelength correction set at 540 nm.

INTRACELLULAR LOCALIZATION OF NF-κB BY IMMUNOFLUORESCENCE

The effect of IL-1β and TNF-α on the nuclear translocation of nuclear factor kappa B (NF-κB) was monitored by immunohistochemistry using an antibody to the p65 subunit of NF-κB (Santa Cruz Biotechnology; Santa Cruz, CA USA). Equine chondrocytes were seeded into 8-chambered cover glass body to the p65 subunit of NF-κB YC2/C14 for 3 min, then 95°C for 10 s, 55°C for 30 s, and 72°C for 30 s repeated for 40 cycles, and then 95°C for 1 min, 55°C for 1 min, and 55°C for 30 s repeated for 81 cycles to obtain a melt curve. Thermal cycling was performed using an iQ5 Multicolor RT-PCR Detection System (Bio-Rad). Results were normalized to the GAPDH house-keeping gene. Four independent cellular experiments were performed and the average of these experiments are shown in the figures. Each assay was done using triplicate samples.

Phenotypic Characterization of Chondrocyte Monolayer Culture

Equine chondrocytes proliferated with ease in monolayer culture with 100% viability. The doubling time for monolayer cultures was 3–5 days. Chondrocytes propagated on monolayer cultures at passage three showed elongated, spindle-shaped morphology (Fig. 1(A)). Immunohistochemical analysis confirmed that chondrocyte cultures continued to produce the ECM components aggrecan and type II collagen (Fig. 1(B) and (C), respectively). Production of type II collagen was further verified by Western blot (Fig. 1(D)). Chondrocyte cultures showed negligible production of type I collagen. The high molecular weight aggrecan protein did not enter the gel and could not be visualized on Western blot.

The Effect of ASU and EGCG on COX-2 Gene Expression in Equine Chondrocytes

Chondrocytes responded to cytokine activation with a greater than two-fold increase in COX-2 expression (Fig. 2). Pre-treatment of chondrocyte cultures with ASU (8.3 μg/ml) or EGCG (40 ng/ml) alone did not reduce COX-2 expression compared to activated control levels (Fig. 2). In contrast, the combination of ASU and EGCG

Fig. 1. (A) Phase-contrast photomicrograph of equine chondrocyte culture, (B) Immunostaining for aggrecan, (C) Immunostaining for type II collagen, (D) Western blot for type II collagen.
Chondrocytes responded to cytokine activation with a significant increase in PGE$_2$ production ($P < 0.001$, Fig. 3). Pre-treatment with ASU (8.3 μg/ml) or EGCG at concentrations ranging from 4 to 400 ng/ml did not decrease PGE$_2$ production ($P > 0.05$, Fig. 3). The combination of ASU at 8.3 μg/ml with EGCG at concentrations 4–400 ng/ml significantly reduced PGE$_2$ production relative to the activated control IL-1β and TNF-α ($P < 0.05$, Fig. 4). Pre-treatment of chondrocytes with 4 μg/ml of ASU did not reduce PGE$_2$ levels, nor did EGCG at 40 ng/ml. The combination of ASU at 4 μg/ml and EGCG at 40 ng/ml significantly decreased PGE$_2$ production ($P < 0.001$, Fig. 4).

THE EFFECT OF ASU AND EGCG ON NF-κB TRANSLOCATION

Non-stimulated chondrocyte controls showed strong NF-κB immunostaining throughout the cytoplasm while the nuclei of chondrocytes were unstained as indicated by arrows (Fig. 5, top panel). Following cytokine stimulation, cytoplasmic immunostaining for NF-κB appeared unchanged while the nuclei were intensely stained as indicated by arrows in Fig. 5 (middle panel). This nuclear translocation of NF-κB was identified by intense immunostaining at 1 h. The translocation of NF-κB from cytoplasm to the nucleus visualized by immunostaining was inhibited by pre-treatment of chondrocytes with the combination of ASU and EGCG (Fig. 5 lower panel). Pre-treatment of chondrocytes with the ASU and EGCG combination significantly reduced NF-κB translocation [Fig. 5(B), $P < 0.001$].

Discussion

The main finding of the present paper is that in cytokine-activated equine chondrocyte cultures, the combination of ASU and EGCG inhibits COX-2 expression and PGE$_2$ production to a greater extent than either compound alone. COX-2 catalyzes the biosynthesis of PGE$_2$ and has been shown to be overexpressed in joints affected by OA. The increased expression of COX-2 and the concomitant increased production of PGE$_2$ are considered a major cause of the pathological changes seen in the disease. Accordingly, COX-2 has become an important target for pharmacological interventions aimed at treating OA. In this study, we used equine chondrocyte cultures to identify the effects of two products on the cytokine-stimulated induction of COX-2 and PGE$_2$ synthesis by these cells. The production of cartilage markers type II and aggrecan was verified in our chondrocyte culture model [Fig. 1(A–D)]. The response of the chondrocyte model to stimulation with IL-1β and TNF-α with significantly increased COX-2 expression and PGE$_2$ production confirms the continued functional and metabolic activity of these cells.

Previous studies have shown that ASU, as well as EGCG, inhibit cytokine induction of COX-2 expression and PGE$_2$ production.18,36,37,43,44 We evaluated several concentrations of ASU and EGCG and found that either preparation alone produced only a marginal inhibitory anti-inflammatory effect in our chondrocyte cultures (Fig. 2–4). The marginal inhibitory effect of ASU or EGCG on COX-2 and PGE$_2$ production could be due to the distinct origin or purity of these preparations. The discrepancy in effects could also be due to the differences in the cell models and culture conditions used.$^{36–40}$ In contrast, the combination of ASU and EGCG at concentrations at which neither one alone inhibits cytokine-stimulated COX-2 and PGE$_2$, resulted in significant inhibition of COX-2 expression at the transcript level and PGE$_2$ synthesis (Figs. 2–4). These results demonstrate the dramatic effects of the ASU and EGCG combination in inhibiting the induction of inflammatory markers. That the combination of ASU and EGCG significantly reduced, but did not completely block, COX-2 gene expression and PGE$_2$ production, further confirms their regulatory role. Their ability to spare some expression of COX-2 and PGE$_2$ production may avoid the adverse effects of selective COX-2 inhibitors.21,22,49

Our unexpected observation that ASU and EGCG potentiate their inhibitory effects on cytokine-induced COX-2 expression and PGE$_2$ synthesis may be the result of overlapping activities of the two preparations in COX-2 gene regulation. The COX-2 gene contains several regulatory elements for control at the transcriptional level and is also regulated at the post-transcriptional level. Binding sites for regulatory transcription factors include NF-κB motifs, AP-1 sites and cyclic adenosine monophosphate (cAMP) response elements.46 Activation of the NF-κB pathway by cytokines has previously been reported for rabbit and human chondrocytes.47,48 There are two NF-κB binding sites
on the 5' flanking region of the COX-2 gene and NF-κB is known to be an essential transcription factor for the induction of COX-2 expression. Inhibition of the NF-κB pathway has previously been shown to attenuate COX-2 expression. Our finding that the cytokine-induced COX-2 expression and PGE2 in equine chondrocytes was paralleled by translocation of NF-κB from the cytoplasm to the nucleus (Fig. 5) is in line with observations in other species. Previous reports have shown that both IL-1β and TNF-α contribute to the nuclear translocation of NF-κB and have also demonstrated that this translocation can be inhibited by ASU and EGCG. NF-κB has been shown to play a role in stimulating COX-2 expression in synovial tissue. Inhibiting the translocation of NF-κB has long been considered an attractive target for pharmacological or nutraceutical agents to treat chronic inflammatory conditions. Our results demonstrate that nearly complete inhibition of NF-κB translocation can be achieved by the combination of ASU and EGCG.

In view of the multiplicity of promoter elements, it is possible that ASU and EGCG may exert their effects at different regulatory sites of the COX-2 gene. In chondrocytes and...
synovial cells, the mitogen-activated protein kinase (MAPK) pathway is particularly well characterized. An alternative explanation for the potentiated effects of the ASU and EGCG combination observed in this study may be due to a differential effect of the two compounds in the post-translational regulation of COX-2 expression. Inhibitors of mitogen-activated protein kinases have been shown to down-regulate COX-2 expression in human chondrocytes through a mechanism that involves interference with messenger RNA (mRNA) stability. MAPKs are a family of kinases that are part of the signal transduction pathways which connect inflammatory signals to intracellular responses such as gene expression. In particular, the p38 MAPKs have received a great deal of attention as therapeutic targets for inflammatory diseases. Inhibitors of MAPKs suppress inflammatory mediator production and have shown efficacy in experimentally induced arthritis and joint pain.

Preventing COX-2 overexpression is a compelling rationale in the treatment of OA. Our finding that the combination of ASU and EGCG provides a high degree of inhibition of cytokine-induced COX-2 expression and PGE2 synthesis in cultures of equine chondrocytes suggests that this combination may be effective in the management of OA in horses as well as in other species. The finding that excessive PGE2 production can be prevented through the action of the combination ASU and EGCG, suggests that the pathophysiological consequences of COX-2 overexpression may be achieved with or without limited use of NSAIDs, in equine OA. The strategy of combining two or more agents may prove to be a promising strategy in cases in which multiple signaling pathways converge onto a single target biological target such as the expression of COX-2.

Other signaling pathways such as those involved in matrix synthesis and breakdown may also be affected by ASU and EGCG. It would be interesting to determine in future studies whether the combination of the two would have a more profound effect in the regulation of matrix synthesis and degradation following induction of inflammation. Our observation that pre-treatment of chondrocytes with the combination of ASU and EGCG prior to cytokine stimulation inhibiting the inflammatory response suggests two potential benefits. The combination of the two compounds may help modulate the pathogenesis of OA. The robust response of cytokine-activated equine chondrocytes to the combination of ASU and EGCG suggests that such combinations may also offer an intriguing alternative-complementary treatment option for the management of OA.

Conflict of interest

The authors listed below are funded by Nutramax Laboratories Inc but do not hold stocks, or royalties. Carmelita G. Frondoza, Lowella F. Heinecke, Mark W. Grzanna, Angela Y. Au, Catherine Mochal. The author below has no conflict of interest. Ann Rashmir-Raven.

Fig. 4. Immunostaining of chondrocyte cultures for NF-κB translocation. Note immunostaining of cytoplasm in control chondrocytes (top panel). In contrast, cytokine activation induced translocation of immunostaining in the nucleus indicated by arrows (middle panel). Pre-treatment with the combination of ASU (8.3 μg/ml) and EGCG (40 ng/ml) inhibited translocation indicated by more predominant cytoplasmic immunostaining for NF-κB (lower panel). Arrows point to nuclei. Bar = 20 μm.

Fig. 5. Percentage of NF-κB nuclear immunostained chondrocytes. pre-treatment with the combination of ASU (8.3 μg/ml) and EGCG (40 ng/ml) inhibited translocation.
References

