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A b s t r a c t - - T h e  authors consider the difference equations 

h(a,,Ax,,) = q,,x.+1 

and 

a(a.a=.) = q.l(x.+1), 

where an > 0, qn > 0, and I : It --* It is continuous with u.f(u) > 0 for u ~ 0. They obtain necessary 
and sufficient conditions for the asymptotic behavior of certain types of nonoscilhtory solutions of (*) 
and sufficient conditions for the asymptotic behavior of certain types of nonceciUatory solutions 
of (**). Sufficient conditions for the existence of these types of nonoscillatory solutions are also 
presented. Some examples illustrating the results and suggestions for further research are included. 
(~) 1998 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

In this paper, we study the asymptotic behavior of certain solutions of the second-order difference 
equations 

A ( a n A z n )  ---- q ,  xn+ l  (E l )  

and 

ACGnAxn)  ~- qnf(zn.t .1) , (E2) 

where {an} and {q,)  are real sequences, an > 0 and qn > 0, for all n _> 0, and f : R --* R is 
continuous with u f ( u )  > 0 for u ~ 0. By a solution of (El) or (E2), we mean a real sequence {zn} 
that  satisfies the equation and is not eventually identically zero. Such a solution is said to be 
nonoscillatory if it is eventually positive or eventually negative, and it is said to be oscillatory 
otherwise. 

From results of Cheng, Li and Patula [1] and Thandapani, Graef and Spikes [2], it is known 
that  any nontrivial solution {zn) of (El) or (F_~) is nonosciUatory and belongs to one of the two 
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c l a s s e s  

~4 = {{xn} : there exists an integer N > 0 such that xnAxn > 0 for n >_ N}, 

B = {{xn} : there exists an integer N >_ 0 such that xnAxn < 0 for n >_ N}. 

The purpose of this paper is to study the asymptotic behavior of the solutions that belong to 
class B. In Section 2, we consider the linear equation (El) and obtain necessary and sufficient 
conditions which ensure that limn-,~ x~ = 0 or lin~-.oo anAxn = 0. These results extend 
previously known ones such as those found in [1]. In addition, we obtain some asymptotic 
estimates for the solutions in B. Using fixed-point techniques, in Section 3 we obtain conditions 
that guarantee the existence of solutions of the nonlinear equation (E2) belonging to class B. 
Section 4 contains some results giving sufficient conditions, similar to those in Section 2, for the 
asymptotic behavior of the class B solutions of (E2). The paper also includes some examples and 
some suggestions for future research. Results on the asymptotic behavior of solutions of (El) 
and (E2) that belong to class .4 can be found in [1] and [2], respectively. Related results and 
additional references can be found in [3--6]. 

2. BEHAVIOR OF CLASS B SOLUTIONS OF (El) 

Let 

$1 ~-~ 1 ~-~ ~ ~ - ~ 1  = - -  q, and $2 = q, . 
n=0  an s=O n =0  a=O 

It is known that equation (EI) always has solutions in both class ~4 and class B [1]. Clearly, every 
solution in class B is bounded. We recall the following result, which will be applied in the sequel. 

THEOREM 1. [1, Theorem 4]. Every solution of (EI) is bounded ff and only f f  Sl  <~ 00. 

We now investigate the convergence of those solutions of (El) that belong to the class B. 

THEOREM 2. 

(a) Every solution of (El) in class B tends to zero if  and only if 82 = CO. 
(b) Every solution o? (Ea) in class B tends to a nonzero limit if and only i f  $1 = co and 

S2 < eo. 

PROOF. Part (a) was proved in [1, Theorem 6]. To prove (b), assume 81 = eo, $2 < eo, and 
suppose that (El) has a class B solution {xn} such that limn-.oo xn = 0. By Part (a), there exists 
at least one solution {Yn} in B such that limn-.oo yn ~ 0. Since {xn} and {Yn} are two linearly 
independent solutions of (El) and are bounded for n ~ 0, all solutions of (El) are bounded 

for n > 0. This contradicts Theorem 1. 

Now, assume that for every solution {xn} of (El) in B, we have limn-.c~ xn ~ 0. The assertion 
follows from the fact that if $1 < oo, then there always exists a solution {zn} of (Ex) in Y such 
that limn-~oo zn = 0. This completes the proof of the theorem. | 

EXAMPLE 1. The equation 

A Az. = ~Z.+l 

satisfies the hypotheses of Theorem 2(a) and has the class B solution {zn} = {(2/3) n+l } --* 0 as 
~ ---~ co. 

EXAMPLE 2. The equation 

1 
A((n 2 )hx , )  + 

(n + 1)(n + 3) xn+l 
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satisfies the hypotheses of Theorem 2(b) and has the solution {z.} = {(n + 2)In + 1} ~ 1 
belonging to the class B. Define 

B 0 = { z .  EB:n_.oolimzn=O), 

BL = {Zn E B : Flm xn # 

As an immediate consequence of Theorem 2, we have the following corollary. 

COROLLARY 3. For equation (El) ,  the sets Bo and BL are both nonempty if and only if $1 < co 
and S2 < co. 

REMARK. To surnmarize Theorem 2 and Corollary 3, we have 

$2 = co if and only if B = B0, BL = O, 

$1 ---~ co and $2 < co if and only if B = BL, ]3o = ¢, 

$1 < co and $2 < co if and only if 13o ~ 0, BL # 0. 

A similar result concerning the asymptotic behavior of {a .Az .}  can be obtained by noticing 
that {zn} = {anAz~} is a solution of the equation 

= z.+1. (El) 
an+ 1 

Applying Theorem 2 to equation (E~), we obtain the following theorem. 

THEOREM 4. Let {xn} be a class B solution of (El). Then, 

(a) limn-.oo anAxn = 0 if and only if S1 = co, 
(b) limn-.oo anAz .  # 0 ff and only if Sx < co and S2 = co. 

EXAMPLE 3. Consider the equation 

2n+1 
A(2"Az.)  = - - - ~ z . + 1 .  

This equation has the solution (x~} = {3 -~} which satisfies the conditions of Theorem 4(a). 

EXAMPLE 4. The equation 

1 
A((n + 1)(n + 3)Axn) = ~"~Znq-1 

satisfies the hypotheses of Theorem 4(b) and has the solution {zn} = {1/(n + 1)} belonging to 
the class B and satisfying {anAz , }  = { - ( n  + 3)In + 2} ~ - 1  # 0. 

From Theorems 2 and 4, we can relate the asymptotic behavior of a class B solution {xn} 
of (El) with the behavior of {anAzn}. 

COROLLARY 5. Let {zn} be a c~ss B solution of (El). Then, 

(a) limn-..~ Zn = limn--.¢o omAzn = 0 ff  and only ff  $1 = $2 = co, 
(b) 0 = limn-.oo z .  # limn-.oo anAzn if and only if S1 < co and $2 = co, 
(c) limn-~oo zn # limn-.oo anAz .  = 0 / l a n d  only ff S1 = oo and '32 < co. 

If we apply Theorem 1 to equation (E~), we obtain that for every solution {zn} of (El), the 
sequence {anAzn} is bounded if and only if $2 < co. This is exactly the content of Lemma 6 

in [1]. 
Next, we give asymptotic estimates for the solutions of (El) in B. 
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COROLLARY 6. Let  {Z.} be a class 13 solution of (El).  

(a) I f  $1 < eo and $2 = w ,  then {Zn} is asymptotically equivalent to Y],°°ffin(1/a,), i.e., 

~ n  
rim oo 

, - .oo  E . = , ( I I ~ , )  

exists, is 6hire, and is different from zero. 

(b) //SI -- oo and 82 < co, then {z. - l} is asymptotically equivalent to 

oo s 1 

8 a r  
8 11 r~t~ 

where ~ = lim.-.oo xn # 0. 
(e) I[ Sz < oo, $2 < oo and lirn.-.oo xn = O, then {z.} is asymptotically equivalent to 

oo 1 

a s  8 n 

PROOF. Part (a) follows from Theorem 5 and L'H6pital's rule. A similar proof holds for Parts (b) 
and (c). ! 

3. E X I S T E N C E  O F  C L A S S  B S O L U T I O N S  O F  (E2) 

In this section, we use a fixed-point theorem to prove the existence of solutions of the nonlinear 
equation (E2) belonging to the classes B0 and BL under the assumption that both the sums 

oo 1 vo 
and 

n=O ~%----0 

are finite. Of special interest here is the fact that no growth conditions are needed on the nonlinear 
function f .  

THEOREM 7. Let  Sa < eo and Sq < cx). Then, equation (E2) has at least one solution in the 

class Bo and at least one solution in the class BL. 

PROOF. First, we prove the existence of a positive decreasing solution of (E2) that approaches a 
nonzero limit as n --* eo. Let M = m a x { l / ( u ) l  : 1 < u < 2} and choose no large enough so that 

M Z q" Z aS ~ q" <2 (I) 
Lnffino 8=m) n = . o  n = m )  

and 
1 < I  

~ ,  - 7" (21 
l l = n O  

Let B.o denote the Banach space of all real sequences X = {z.}. n > no. with the supremum 
norm 

IlXtt = sup I x . h  
n ~ O  

and let 
S = {X e B.o : 1 < z. < 2, n > no}. 

Clearly, S is a bounded, convex, and closed subset of B. o. We define an operator T : S -. B. o 

by 

3 ~ 1 1 1 
r2n = 7 q" Z -- - E q" f(2,+1)- qsfCXs+l , • ~ no. C 3) 

$ffi.~t dr& #,-t~o |:.=-o \sffi, no 
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Next, we show that  T satisfies the hypotheses of Schauder's fixed-point theorem. 

(a) T maps S into itself. In fact, if X E S, then from (1) and (3), we have 

Tx .  > ~ - M q" at qn >- -~ - ~ 
n = n o  t = . o  - - : " o  \ n = n o  / J 

(4) 

and from (2), we have 

3 ~ 1 3 1 
T x . < ~ +  - - <  + =2. 

o='n4) 

Therefore, T(S) C S. 
(b) T is continuous. Let X = { : . }  E S, let e > 0 be given, and choose •1 large enough so 

that  

max M Z q"' 2M Z qn < ~, (5) 
k " = n l  . = n l  t = " O  

for n _> nl.  For each i, let Y~ = {y~} be a sequence in S such that  lim~--.oo HY ~ - XH = 0. 
Then, for n > nl,  we have 

ITY~ - Tx.I < ~ q° ~ i f  ' 
S : " O  ~ = " 0  

÷ ..=.o ~- " °=. q° 1/(yi+l) - $(x,+1)I 

(~°+1) - / ( x ° + ~ ) [  + - <- Z q °  -~t I f  ' 2 M Z q °  I + M Z q ° "  
O=Y~ 0 = " 1  t--Irk) a t  0 = " 1  

(c) 

From (5) and the continuity of/, it follows that lim~-,oo ]Ty~ - Tzn[ = 0, so T is contin- 

uous. 
T(S) is relatively compact. As proved by Cheng and Patula [4, Theorem 3.3], it suffices 
to show that  T(S) is uniformly Cauchy, so let X E S and m > n >_ no. Then, 

ITx, - Tzm[ <_ Z - -  + M ~ q° + M q° . 
a s  8=rrl, °=Yrt t=Yto = \°=W~, / 

From the hypotheses, it is clear that for a given • > 0, there exists an integer nl _> no such that 
for all m > n >_ nl, ITx, - Tzm] < ~. Thus, T(S) is uniformly Cauchy and, hence, T(S) is 

relatively compact. 
Applying Schauder's fixed-point theorem [7], there exists X E S such that TX = X. That is, 

x .  = ~ +  
= ° n 

n--l~ It=~nol) /(X'+I)- (~ --~ I ~q''f(x''i'l)l 1 1 
_ _ ) qo 
a° \°ffi~ a° } \ o= .  / °=r#,O 

It is easy to see that {xn} is a solution of (E2). Since 

( Az, = ___1 1 ÷ qsf(Zs+l < 0, an $=. 
and 1 _< xn _< 2, we see that {xn} m an eventually positive decreasing solution of (E2) with 

lin~_~oo zn = £ ~ 0. Hence, BL ~ ~. 
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Next, we prove the existence of an eventually positive decreasing solution of (F~) tha t  tends 
to zero as n --~ co. Let M -- max{If(u)l  : 0 < u _< 1} and choose no such tha t  

) 
n f n o  an qs < 1. 

\ 8 : ~ I  I 

Let Bno be the Banach space defined above, let S = {X E Bno : 0 < zn < 1, n _> no}, and define 
the operator T by 

Tx.n = ~-.~ I__ ~'~qtf(x.t+l),  n > no. 
a s  8.,~-,¢1 t,-~-~l 

Using an argument similar to the one above, we can show that  the operator T satisfies the 
assumptions of Schander's fixed-point theorem. Therefore, there exists an X E S such that  
T X  = X ,  i.e., 

x .  = - -  qt/(zt+x). 
a = t l  a8  t : 8  

Since 

- - -  qsf(Zs+l < O, 
a~l. \ $ - - - ~  / 

and xn -~ 0 as n --* co, we see that  {xn} E B0 # 0. This completes the proof of the theorem. | 

In conclusion, we note tha t  our results in this section can be extended to nonlinear difference 

equations of the form 

A ( a . ¢ ( z . ) A z . )  = h(n, z.+l), 

where ¢ : R ~ R is a positive continuous function, h : N x R ~ R is continuous with uh(n,  u) > 0 
for u # 0. By requiring Ih(n, u)l < q,  lul, the results in Section 2 can be extended to this equation 
as well. 

4. F U R T H E R  RESULTS ON THE CLASS B SOLUTIONS OF (E2) 

It is reasonable to ask whether it is possible to give conditions under which solutions of (E2) 

satisfy lin~-,oo Xn ---- 0 or lin~-,oo anAx, n = 0 as we were able to do for equation (El) in Section 2. 
In this section, we present a couple of results in this direction. 

THEOREM 8. f f  Sa = oo, then any class B solution {Xn} of (E2) satisfies lin~-.oo a~Axn = O. 

PROOF. Suppose tha t  {xn} is a class B solution of (E2), say Xn > 0 for n _> nl  _> 0. Then, 
anAxn  < 0 and increasing. If anAxn  74 0, there exists K > 0 such tha t  anAXn _~ - K  < 0 for 
n > nl .  Summing, we have 

n 1 

X n + l  __~ Xn I --  K Z m ~ - o o ,  
a s  8 ~ n l  

as n --* co, which is a contradiction. | 

REMARK. Under the assumption ,.,ca = co, it is not dii~cult to see that Sq < co is a necessary 

condition for a class B solution of (E2) to converge to a nonzero limit as n -* co. 

Clearly, Sa = co implies $1 = co. It would be interesting to know if the conclusion of 

Theorem 8 holds under this weaker hypothesis (see, Theorem 4(a)). Also, the question of whether 

the conditions $I < co and $2 = co are enough to ensure that class B solutions of (E2) satisfy 
limn-.oo a n A z n  # 0 remains open. 

THEOREM 9. I f  $2 = co, then any class 13 solution {zn}  of  (E2) satisfies lim~-.oo zn = 0. 
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PROOF. Suppose that  {x.} is a class B solution of (E2), say x .  > 0 for n > N >_ 0, and 
lim.-.oo x .  = L > 0. Let M = min{f(u) : L < u < x . ,} .  Summing equation (E2), we have 

, - 1  n -1  

a,A:r,,- aNA:r,N = ~ q,.f(X,+l) _> M ~ q,. 
8=N 8=N 

It follows that 

so 

oo 

M ~_~ q. <_ - a . A x . ,  

M <_ - " = ,  = - = n ÷ , .  (6 )  
s=N as t---a s=N 

Since $2 = oo, a summation by parts shows that the left-haad side of (6) tends to oo as n --* oo, 

and this contradicts xn > 0 for n > N > 0. | 

It would be interesting to know if $2 = c~ is a necessary condition for class B solutions of (E2) 

to converge to zero so that we would have the complete counterpart of Theorem 2(a). 

We conclude this paper with one more suggestion for further research. Are the conditions 

$2 < cc and Sa = oo together enough to ensure that class B solutions of (E2) converge to a 

nonzero limit? 
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