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Abstract—The authors consider the difference equations

A(a,.A:L‘,.) = nTn+1 (*)

and
A(anAzn) = qnf(zn+1), (%)

where a;, > 0, gn > 0, and f : R — R is continuous with uf(u) > 0 for u # 0. They obtain necessary
and sufficient conditions for the asymptotic behavior of certain types of nonoscillatory solutions of ()
and sufficient conditions for the asymptotic behavior of certain types of nonoscillatory solutions
of (»+). Sufficient conditions for the existence of these types of nonoscillatory solutions are also
presented. Some examples illustrating the results and suggestions for further research are included.
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1. INTRODUCTION

In this paper, we study the asymptotic behavior of certain solutions of the second-order difference
equations

A(anAzy) = gnTni1 (Ey)

and
A(anAzZn) = gnf(Tn+1), (Ez)

where {a,} and {g,} are real sequences, a, > 0 and g, > 0, foralln >0,and f : R - R is
continuous with uf(u) > 0 for u # 0. By a solution of (E;) or (E2), we mean a real sequence {z,}
that satisfies the equation and is not eventually identically zero. Such a solution is said to be
nonoscillatory if it is eventually positive or eventually negative, and it is said to be oscillatory
otherwise.

From results of Cheng, Li and Patula {1] and Thandapani, Graef and Spikes [2], it is known
that any nontrivial solution {z,} of (E;) or (E;) is nonoscillatory and belongs to one of the two
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classes

A = {{z.} : there exists an integer N > 0 such that z,Az, > 0 for n > N},
B = {{z,}: there exists an integer N > 0 such that z,Az, <0 for n > N}.

The purpose of this paper is to study the asymptotic behavior of the solutions that belong to
class B. In Section 2, we consider the linear equation (E;) and obtain necessary and sufficient
conditions which ensure that lim,_.co Zn = 0 or limyp—oo @nAZ, = 0. These results extend
previously known ones such as those found in [1]. In addition, we obtain some asymptotic
estimates for the solutions in B. Using fixed-point techniques, in Section 3 we obtain conditions
that guarantee the existence of solutions of the nonlinear equation (E2) belonging to class B.
Section 4 contains some results giving sufficient conditions, similar to those in Section 2, for the
asymptotic behavior of the class B solutions of (E;). The paper also includes some examples and
some suggestions for future research. Results on the asymptotic behavior of solutions of (E;)
and (E;) that belong to class A can be found in [1] and [2], respectively. Related results and
additional references can be found in [3-6].

2. BEHAVIOR OF CLASS B SOLUTIONS OF (E,)
Let

31=Z;—Z;Qa and 52=zol1n2(:)a—’-
8= n= 8=

It is known that equation (E;) always has solutions in both class A and class B [1]. Clearly, every
solution in class B is bounded. We recall the following result, which will be applied in the sequel.

THEOREM 1. [1, Theorem 4]. Every solution of (E,) is bounded if and only if S; < oo.

We now investigate the convergence of those solutions of (E;) that belong to the class B.

THEOREM 2.

(a) Every solution of (E,) in class B tends to zero if and only if S = cc.
(b) Every solution of (E;) in class B tends to a nonzero limit if and only if S; = oo and
Sz < 0.

PROOF. Part (a) was proved in [1, Theorem 6]. To prove (b), assume S; = 00, Sz < oo, and
suppose that (E;) has a class B solution {z,} such that lim,_,., z, = 0. By Part (a), there exists
at least one solution {y,} in B such that lim,_,. y, # 0. Since {z,} and {y,} are two linearly
independent solutions of (E;) and are bounded for n > 0, all solutions of (E;) are bounded
for n > 0. This contradicts Theorem 1.

Now, assume that for every solution {z,} of (E;) in B, we have lim,_,oc Zr, # 0. The assertion
follows from the fact that if S; < oo, then there always exists a solution {z,} of (E;) in B such
that lim, o 2n = 0. This completes the proof of the theorem. ]

EXAMPLE 1. The equation
3 1
A (2—nA$n) = '2';$n+1
satisfies the hypotheses of Theorem 2(a) and has the class B solution {z,} = {(2/3)"*!} — 0 as

n— 0.

EXAMPLE 2. The equation

1

A((n +2)Az,) = FFDmE
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satisfies the hypotheses of Theorem 2(b) and has the solution {zn} = {(n+2)/n+1} — 1
belonging to the class B. Define

By = {z,,eB:nli_.n;o:z:,.=0},

By = {z,.eB:nli_.n;o:v,.7£0}.

As an immediate consequence of Theorem 2, we have the following corollary.

COROLLARY 3. For equation (E, ), the sets By and By, are both nonempty if and only if S} < oo
and S < 0.

REMARK. To summarize Theorem 2 and Corollary 3, we have

S2 = oo if and only if B = By, Br =0,
S1 =00 and S2 < oo if and only if B = B, By = @,
81 < oo and S2 < oo if and only if By # 0, Br # 0.

A similar result concerning the asymptotic behavior of {a,Az,} can be obtained by noticing
that {z,,} = {@n,Az,} is a solution of the equation

1 1
A (—Azn) . (E))

an Gn41

Applying Theorem 2 to equation (E}), we obtain the following theorem.

THEOREM 4. Let {z,,} be a class B solution of (E;). Then,

(a) lim,_ anAz, =0 if and only if S; = o0,
(b) limp oo anAzy, # 0 if and only if S; < oo and S; = 0.

ExAMPLE 3. Consider the equation

2'n+1
A(2"Az,) = 3 Zn+l:

This equation has the solution {z,} = {37"} which satisfies the conditions of Theorem 4(a).
EXAMPLE 4. The equation

A((n +1)(n + 3)Azy) =

1
nt 3zn+1
satisfies the hypotheses of Theorem 4(b) and has the solution {z,} = {1/(n + 1)} belonging to
the class B and satisfying {a,Az,} = {-(n +3)/n+2} - -1 #0.

From Theorems 2 and 4, we can relate the asymptotic behavior of a class B solution {z,}
of (E1) with the behavior of {a,Az,}.

COROLLARY 5. Let {x,,} be a class B solution of (E;). Then,
(a) limy o0 Tn = limy o0 @Az, = 0 if and only if S; = Sz = 0,
(b) 0 = lim,,_,oo Tp # lim, .o anAx, if and only if S; < 0o and S; = oo,
() limp o0 Tn # limp_voo Az, = 0 if and only if §1 = 0o and Sz < co.

If we apply Theorem 1 to equation (E}), we obtain that for every solution {x,} of (Ei), the
sequence {a,Az,} is bounded if and only if S; < co. This is exactly the content of Lemma 6
in [1].

Next, we give asymptotic estimates for the solutions of (E,) in B.
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COROLLARY 6. Let {z,} be a class B solution of (E,).
(a) If Sy < oo and S3 = oo, then {z,} is asymptotically equivalent to .2 (1/a,), i.e.,

T
lim —=p—m———r
n—oo Z::n(l/aﬂ)
exists, is finite, and is different from zero.
(b) If S; = o0 and S; < oo, then {z,, — £} is asymptotically equivalent to

8 —
s=n r=n Gr

where £ = limy, o0 Zp, # 0.
(c) If §1 < 00, S2 < ¢ and lim,_,oo Zp, = 0, then {z,} is asymptotically equivalent to
00
1

a=n a,,

PROOF. Part (a) follows from Theorem 5 and L’Hdpital’s rule. A similar proof holds for Parts (b)
and (c). ]

3. EXISTENCE OF CLASS B SOLUTIONS OF (Ej)

In this section, we use a fixed-point theorem to prove the existence of solutions of the nonlinear
equation (E;) belonging to the classes By and By, under the assumption that both the sums

oo 1 o0
Se = z% = and S, = Zoqn
n= n=l

are finite. Of special interest here is the fact that no growth conditions are needed on the nonlinear
function f.

THEOREM 7. Let S, < oo and S; < oo. Then, equation (Ez) has at least one solution in the
class By and at least one solution in the class By,

PROOF. First, we prove the existence of a positive decreasing solution of (E2) that approaches a
nonzero limit as n — 0o0. Let M = max{|f(u)| : 1 < u < 2} and choose ng large enough so that

u[Sad e (£2)(Ew)|<3

and

. @)

N =

=1
> P
n=nop

Let B,,, denote the Banach space of all real sequences X = {z,}, n > ng, with the supremum
norm
| X1 = sup |zn},
n2no
and let
S={X€Bp,:1<z, <2yn2>np}.

Clearly, S is a bounded, convex, and closed subset of B,,. We define an operator T': S — B,
by

3 00 1 n-1
Tzn=§+za:-2q.(

s=n s=ng

'] n-1 -]
> ;1;) F(@sr1) - (Z ai) (Z q.f(z.+1)) , > (3)

t=ng s=ng a=n
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Next, we show that T satisfies the hypotheses of Schauder’s fixed-point theorem.
(a) T maps S into itself. In fact, if X € S, then from (1) and (3), we have

Tx,.z——M[Eqn}:—+(z;m1ﬂ>(iqn)}zg—%=l, )

n=ngo t=no n= n=ng

and from (2), we have

wlw

NIH
Il
N

=1
T””"— +2 o<
s=ng

Therefore, T'(S) C S.
(b) T is continuous. Let X = {z,} € S, let € > 0 be given, and choose n, large enough so

- ma.x{M Y gn, 2M 2 Gn (Z )} <e, (5)

n=n, n=n; t=no

for n > n;. For each 4, let Y* = {y} be a sequence in S such that lim;_, |Y* ~ X|| =
Then, for n > n,, we have

LRLENED D (z %) £ (hsn) - Floas)]

n-1
+ (Z ) (Zq,lf(y.+1 f(z.+1)|)
ni1—1
Z qs (E ) |f (ya+1) f(za+1)| +2M Z qs Z —+M Z qs.
s=ng t=no s=n) t-no s=n,

From (5) and the continuity of £, it follows that lim;_,oo |Ty% — Tzn| =0, so T is contin-
uous.

(¢) T(S) is relatively compact. As proved by Cheng and Patula {4, Theorem 3.3], it suffices
to show that 7°(S) is uniformly Cauchy, so let X € S and m > n > ny. Then,

T, — sz|<2—+MZq,(Z )+MZ (iq,).

s=m a=m t=no s=ng s=m

From the hypotheses, it is clear that for a given € > 0, there exists an integer n; > ng such that
for all m > n > ny, |Txy — Txm| < €. Thus, T(S) is uniformly Cauchy and, hence, T'(S) is
relatively compact.

Applying Schauder’s fixed-point theorem [7], there exists X € S such that TX = X. That is,

Ta= 3+ gai Zq.(z )(1'.+1)-(n2 )(Zq. ($s+1))

s=ng t=np a=ng s=n

It is easy to see that {z,} is a solution of (Ez). Since

Azy = —— (1 + Zq,f(z.+1)) <0,

a=n

and 1 < r, < 2, we see that {z,} is an eventually positive decreasing solution of (E2) with

lim,, o0 Zn, = £ # 0. Hence, B # 0.
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Next, we prove the existence of an eventually positive decreasing solution of (Ez) that tends
to zero as n — 0o0. Let M = max{|f(u)}: 0 < u < 1} and choose ny such that

3 L(Sa)sr

n=ng $=n

Let By, be the Banach space defined above, let S = {X € By, : 0 <z, <1,n > ng}, and define
the operator T by

oo 1 o0
Tzn = Z a. ZQtf(th), n > ng.
s=n ° t=s

Using an argument similar to the one above, we can show that the operator T satisfies the
assumptions of Schauder’s fixed-point theorem. Therefore, there exists an X € S such that

TX =X, ie,
oo 1 o0
Tp = Z . Z%f(xt+1)~

s=n ° t=s

Since

Az, = "al: (Z Qaf($a+l)) <0,

a=n
and z, — 0 as n — oo, we see that {z,} € By # 0. This completes the proof of the theorem. §

In conclusion, we note that our results in this section can be extended to nonlinear difference
equations of the form

A(an'w(xn)A-’zn) = h(n, xn+1),

where 1 : R — R is a positive continuous function, h : NxR — R is continuous with uh(n,u) >0
for u # 0. By requiring |h(n, u)| < gn|u|, the results in Section 2 can be extended to this equation
as well. :

4. FURTHER RESULTS ON THE CLASS B SOLUTIONS OF (Ey)

It is reasonable to ask whether it is possible to give conditions under which solutions of (E;)
satisfy limy, 00 Tn = 0 or lim,,_,oc a, Az, = 0 as we were able to do for equation (E; ) in Section 2.
In this section, we present a couple of results in this direction.

THEOREM 8. If S, = oo, then any class B solution {z,} of (E;) satisfies limy,_,oc anAzy, = 0.

PROOF. Suppose that {z,} is a class B solution of (Ez), say z, > 0 for n > n; > 0. Then,
anAz, < 0 and increasing. If a,Az, / 0, there exists K > 0 such that a,Az, < —K < 0 for
n > n;. Summing, we have
n
1
Tntl < Tny —~ K - = =00,

8=ny a’

as n — 0o, which is a contradiction. (]

REMARK. Under the assumption S, = o0, it is not difficult to see that S; < oo is a necessary
condition for a class B solution of (E;) to converge to a nonzero limit as n — oo.

Clearly, S; = oo implies §; = oo. It would be interesting to know if the conclusion of
Theorem 8 holds under this weaker hypothesis (see, Theorem 4(a)). Also, the question of whether
the conditions S; < oo and S = co are enough to ensure that class B solutions of (E;) satisfy
limy, o0 anAZy # 0 remains open.

THEOREM 9. If S; = 0o, then any class B solution {z,,} of (E;) satisfies lim,,_, z, = 0.
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PROOF. Suppose that {z,} is a class B solution of (E2), say z, > 0 for n > N > 0, and
limp_oo Zp = L > 0. Let M = min{f(u) : L < u < z,}. Summing equation (E;), we have

n-1 n—1
anAz, —anAzy = Z s f(Ts41) 2 M Z gs-
s=N s=N
It follows that -
MZq, < —anAzy,
a&=n
80
n 1 o0 n
MZ;"ZQtS_ZAxa=$N“zn+I- (6)
s=N t=s s=N

Since S; = 00, a summation by parts shows that the left-hand side of (6) tends to 0o as n — oo,
and this contradicts z, > 0forn> N > 0. |

It would be interesting to know if S; = oo is a necessary condition for class B solutions of (E3)
to converge to zero so that we would have the complete counterpart of Theorem 2(a).

We conclude this paper with one more suggestion for further research. Are the conditions
S2 < oo and Sz = oo together enough to ensure that class B solutions of (E;) converge to a
nonzero limit? '
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