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Telomere Maintenance in Fission Yeast
Requires an Est1 Ortholog
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mulates in discrete foci, which are primarily associated
with the nuclear periphery at the nucleolar boundary
(not shown). This pattern of localization resembles thatSummary
of the S. pombe telomere binding protein Taz1p, and
this similarity suggests that expressed SpEst1 may colo-Telomerase regulation is critical to genome mainte-

nance yet remains poorly understood. Without telo- calize with telomeres.
Deletion of est1� results in phenotypes expected formerase’s ability to synthesize telomere repeats, chro-

mosome ends shorten progressively, as conventional cells with telomere maintenance deficiencies. Tetrad
dissection of a heterozygous diploid est1�/est1� strainDNA polymerases cannot fully replicate the ends of

linear molecules [1]. In Saccharomyces cerevisiae, resulted in four evenly sized colonies, indicating that
est1� is not essential for viability and confers no appar-telomerase activity in vivo absolutely depends on a set

of telomerase accessory proteins [2–4] that includes ent initial growth defect. However, null mutants of est1�

display a senescence phenotype virtually identical toEst1p [5], which appears to recruit or activate telo-
merase at the site of polymerization [6, 7]. Thus, est1� that observed in telomerase null (trt1�) strains [13]. At

approximately 60–70 generations of growth, est1�cells have the same cellular senescence phenotype
as cells lacking either the catalytic protein subunit strains begin to exhibit a pronounced loss of viability

(Figure 2A). Telomere length also decreases during suc-of telomerase or its template-containing RNA subunit
[8, 9]. While the telomerase protein is highly conserved cessive passage, and this decrease correlates tightly

with the loss of cell viability (Figure 2B). At the point ofamong eukaryotes, the apparent lack of Est1p homo-
logs has frustrated efforts to describe a common “crisis,” when population viability is lowest and telomere

length has diminished to the limits of detection, est1�mechanism of telomerase recruitment and activation.
Here, we describe SpEst1p, a homolog of Est1p from cultures accumulate elongated cells and display a high

degree of chromosome instability and missegregationthe evolutionarily distant Schizosaccharomyces pombe.
Like ScEst1p, SpEst1p is required for telomerase ac- (Figure 2C). The kinetics of the onset of senescence and

subsequent crisis in trt1� and est1� strains are nearlytivity in vivo. Coupled with the identification of an or-
thologous Est1 protein in humans [10], this suggests indistinguishable. No additional phenotypes were evi-

dent in trt1�est1� double mutant strains, and both sin-a much wider conservation of telomerase regulation
than was previously known. Strikingly, in cells with gle and double mutant strains enter senescence with

identical kinetics (not shown).compromised telomere function (taz1�), SpEst1p loss
confers a lethal germination phenotype, while telo- In addition to SpEst1p, a second S. pombe gene was

identified that displayed similar levels of profile homol-merase loss does not, indicating that SpEst1p plays
ogy to ScEst1p (ORF SPBC2F12.03c; Figures 1A andan unexpected additional role in chromosome end pro-
1B). While this gene product is primarily associated withtection.
the nucleus [14], telomere lengths in cells lacking this
gene were normal. Likewise, these cells displayed noResults and Discussion
obvious growth defects or other distinguishing pheno-
types. Therefore, we concluded that this protein doesWe have identified the Schizosaccharomyces pombe
not act in any nonredundant capacity to maintain telo-Est1 protein (SpEst1p, ORF SPBC2D10.13) by profile
meres under standard culture conditions.comparison to the Est1 protein of S. cerevisiae (see

A hallmark of telomerase accessory proteins is theirthe Experimental Procedures in the Supplemental Data
requirement for in vivo, but not in vitro, telomerase activ-
ity. As previously shown, immunoprecipitates of Trt1p
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nia 94545. manner (Figure 3A, lanes 1 and 2, [15]). Interestingly,
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Figure 1. Sequence Comparison and Localization of SpEst1p

(A) Sequence comparison of Est1 from Saccharomyces cerevisiae (ScEst1p), Schizosaccharomyces pombe (SPBC2D10; hereafter referred to
as SpEst1p), and an Est1-like S. pombe ORF whose deletion led to no obvious telomere defect (SPBC2F12).
(B) Domain similarities between the sequences described in (A). The numbers between sequences indicate %similarity/%identity to ScEst1p.
Shaded regions include the EST1 domain (yellow), tetratricopeptide repeats (green), and the budding yeast DNA/RNA binding domain (red),
and the corresponding amino acid numbering is specified. No DNA or RNA binding domain is apparent in either S. pombe sequence.

immunoprecipitates of SpEst1p also yield telomerase and in vitro-translated SpEst1p, we were unable to de-
tect either single- or double-stranded DNA binding ac-activity, and SpEst1p precipitates show a similar pattern

of telomere synthesis to SpTrt1p precipitates (Figure tivity under a wide range of conditions. This might reflect
a very low binding affinity or unsuitable binding condi-3A, lanes 4–7). These results suggest that SpEst1p is

indeed part of the telomerase complex. As was shown tions in our assays. Alternatively, DNA binding by Est1p
may not be a conserved feature of telomerase regula-for ScEst1p, in vitro telomerase activity derived from

immunoprecipitation of Trt1p was not impaired in strains tion. Instead, SpEst1p may be recruited to telomeres by
interactions with other proteins, a prominent candidatethat lacked SpEst1p (Figure 3A, lanes 8 and 9). However,

direct interactions between SpEst1p and Trt1p in vivo being SpPot1p, a conserved protein that does appear
to bind single-stranded telomeric DNA and is necessaryare observed by coimmunoprecipitation of expressed

SpEst1p and Trt1p from S. pombe cellular extracts (Fig- for protecting telomeres from degradation in vivo [16].
Human cells lacking telomerase activity can maintainure 3B). Taken together, our observations that SpEst1p

associates with and is required for telomerase activity telomeres through an alternative, homologous recombi-
nation-based process [17]. Fission yeast strains lackingin vivo, but not in vitro, suggest that SpEst1p functions

to activate or recruit telomerase. Therefore, SpEst1p is telomerase can also escape from senescence to gener-
ate “survivor” strains [18]. Like trt1� populations, est1�a bona fide accessory component of the telomerase

complex. This finding reveals a function that is evolution- strains generate survivors with similar rates of recovery
and growth. Most fission yeast survivors have lost allarily conserved between S. cerevisiae, S. pombe, and,

most likely, H. sapiens [10]. telomeric DNA and have undergone intramolecular end
joining of each of the three fission yeast chromosomesScEst1p has been shown to bind single-stranded telo-

meric oligonucleotides in vitro [11], and it has been sug- to yield circular chromosomes that are stably main-
tained [18]. Thus, survivors arise when chromosomegested that this binding activity is an important feature of

ScEst1p function. However, using both E. coli-produced ends are sufficiently “uncapped” to act as substrates
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Figure 2. Growth and Senescence of est1� Strains

(A) est1� (closed circle) and est1� (open circle) offspring of a heterozygous est1�/� diploid were cultured immediately following tetrad dissection.
The error bars represent the standard deviation of three replicate measurements. Crisis occurred only in the est1� strains on day 7 of
continuous culture.
(B) Telomere length progressively shortens in est1� strains. Cultures from (A) were harvested, and genomic DNA was digested with EcoRI
for Southern blotting with a telomeric oligonucleotide probe. Wild-type telomere signals are indicated (arrows), and they decrease in both
length and intensity with successive passage in senescing strains.
(C) est1� strains display chromosome segregation defects during crisis. est1� and est1� strains were grown in liquid culture until they reached
crisis (approximately 7 days). Cells were then harvested, fixed in methanol, and visualized by staining with 4�,6�-diamidino-2-phenylindole
(DAPI). While missegregation phenotypes were not apparent in wild-type populations, approximately 20% of est1� cells examined after 60–70
generations of growth displayed such defects.

for end-joining reactions that are normally prohibited by address the prediction that elongated telomeres would
suppress senescence, we deleted either est1 or trt1 attelomeres. This uncapping presumably occurs through

the progressive removal of telomere capping proteins, a single allele in a homozygous taz1�/� diploid strain. The
resulting diploids maintain extremely long telomeres, asas their binding sites are lost from the eroding telomeres.

A key telomere capping protein in fission yeast is Taz1p, expected for taz1� cells (data not shown). Sporulation
of these diploids should yield double mutant haploidswhich binds the double-stranded telomeric repeats and

regulates the extent of telomerase activity such that loss that, while isogenic to est1�taz1� and trt1�taz1�
daughters of heterozygous taz1�/� diploids, inherit longof Taz1p leads to a 10-fold increase in telomere length

[19]. In addition, taz1� telomeres are susceptible to DNA and aberrantly structured telomeres from the parental
strain.double strand break repair reactions that are prohibited

at wild-type telomeres; thus, telomere fusions appear Sporulation of “long telomere” trt1�/� taz1�/� diploids
results in few viable trt1�taz1� spores, again indicatingin taz1� cells grown under conditions that favor high

levels of nonhomologous end joining [20]. that these genes have synergistic effects on viability
(Figure 4B), although the few viable trt1�taz1� daugh-As taz1� telomeres are highly elongated, taz1� strains

might be expected to exhibit postponed telomere loss ters appear visually normal when grown in liquid culture.
Southern blotting reveals that these strains have longand senescence upon telomerase inactivation. Intrigu-

ingly, dissection of heterozygous diploid trt1�/� taz1�/� telomeres that do not shorten with successive passage,
as shown previously for trt1�taz1� daughters of hetero-cells (whose telomere lengths are normal due to the

presence of one taz1� allele in each diploid) results in zygous trt1�/� taz1�/� diploids [18]. This finding reflects
the fact that Taz1p loss allows telomeres to be main-trt1�taz1� daughters that show an initial synthetic

growth defect [18] (Figure 4A). We observe a similar tained by recombination-based mechanisms, thus
averting the complete telomere attrition and chromo-growth defect in est1�taz1� spores obtained from

est1�/� taz1�/� diploids (Figure 4A). This similarity sug- some circularization seen in taz1�trt1� survivors [18]. In
marked contrast, not a single est1�taz1� daughtergests either that functional telomerase and Taz1p serve

some redundant, essential function, or that the absence could be isolated by sporulating est1�/� diploids homo-
zygous for taz1� (i.e., carrying long, aberrantly struc-of telomerase-mediated synthesis subjects taz1� telo-

meres to rampant degradation. In an attempt to explicitly tured telomeres), despite screening over 50,000 spores.
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Figure 3. SpEst1p and Trt1p Physically Interact, but SpEst1p Is Not Required for Telomerase Catalytic Activity

(A) In vitro telomerase assay. Extension of the telomere sequence primer is only observed when Trt1p is present (lanes 1, 4, and 8) and is
abolished in the presence of RNase (lanes 2, 5, and 9). Telomerase activity partitions with SpEst1p (lane 4), although SpEst1p is not required
for in vitro telomerase-dependent primer extension (lane 8). The GFP antibodies used for immunoprecipitation show no cross-reactivity to
Trt1-myc (lane 3).
(B) S. pombe cell lysates from strains expressing SpEst1-GFP (lane 4, right panel, “GFP-IP control”), myc-tagged Trt1p (lane 4, left panel,
“Myc IP control”), or both (lanes 1–3, both panels) were prepared for immunoprecipitation. GFP immunoblotting (left panel) shows that anti-
GFP antibodies (lane 2, both panels) precipitate SpEst1-GFP. Myc immunoblots (right panel) show that anti-GFP coprecipitates Trt1-myc in
the presence (lane 2, right panel), but not in the absence (lane 4, right panel), of SpEst1-GFP (lane 4, right panel). Similarly, anti-myc precipitated
SpEst1-GFP in the presence (lane 3, left panel), but not in the absence (lane 4, left panel), of Trt1-myc.

Thus, SpEst1 has a critical telomere function that is indicating that est1� is not essential in cells containing
taz1� telomeres.distinct from that of telomerase itself. In principle, this

result could indicate that growth is impossible in the The complete inviability of taz1�est1� spores there-
fore indicates that germination of such spores is impos-absence of both taz1� and est1�. However, the observa-

tion that viable taz1�est1� colonies arise, although in- sible if they have inherited aberrant (taz1�) telomeres
from their parent. While meiosis in the long telomerefrequently, from spores of diploids that are heterozy-

gous for taz1 and thus contain normal telomeres (Figure est1�/� taz1�/� diploids did yield daughters and was
therefore successful, all of the viable progeny were4A) rules out the possibility that taz1� and est1� are

synthetic lethal per se. In addition, plasmid loss experi- est1�, demonstrating that est1� becomes critical specif-
ically during the germination period in strains harboringments show that an extrachromosomal copy of est1�

can be lost from a haploid est1�taz1� cell (not shown), taz1� telomeres. Germination entails a particularly ex-



Brief Communication
579

Figure 4. taz1� Is Crucial for Viability in est1� Spores

(A) est1�taz1� (open triangle) and trt1�taz1� (open square) strains show accelerated senescence relative to est1� or trt1� alone (Figure 2A;
est1� taz1� [closed circle]). Cell growth was measured as in Figure 2A.
(B) Distribution of genotypes among viable daughters arising from taz1�, est1�, and trt1� parental diploids. Diploids of the indicated genotype
were sporulated, and allelic segregation and percent viability were assessed. All taz1�/� diploids yield low total spore viability due to the
requirement of Taz1p for successful meiosis. The values in parenthesis indicate the standard deviation of three independent experiments,
while the numbers in bold indicate the expected frequency of randomly segregating alleles. Diploids heterozygous for est1 but homozygous
for taz1� carry long, aberrantly structured telomeres and are referred to as “long,” while diploids heterozygous for both est1� and taz1� carry
normal telomeres that may be transiently inherited by est1�taz1� daughters. “Long” telomere diploids were unable to produce est1�taz1�

daughters. In contrast, trt1�taz1� daughters were obtained from trt1�/� taz1�/� diploids, albeit with a lower frequency than expected.

tended G1 period as well as a “resetting” of the cell elongation. Dismantling of the T loop might follow chro-
mosomal replication, exposing a free telomeric end tocycle, both of which distinguish it from other cellular

processes. Cellular survival under these circumstances telomerase. While T loops have yet to be detected in
yeasts, the conservation of Est1 in both mammals andclearly requires est1�, but does not require trt1�, indicat-

ing that SpEst1p plays a role that is independent of yeasts suggests that telomerase accessory proteins are
required even in the context of T loops and promptstelomerase. Perhaps SpEst1p, like its human counter-

part [10], is required for regulating some critical aspect further interest in the precise structural features that are
conserved between yeast and mammalian telomeres.of telomeric chromatin accessibility.

The identification of Est1p in organisms other than Like its counterpart in budding yeast, SpEst1p ap-
pears to recruit or activate telomerase, serving as abudding yeast reveals a common requirement for telo-

merase regulation among eukaryotes. Electron micros- molecular bridge between telomerase and other telo-
mere-associated factors and/or regulating telomericcopy has revealed that telomeres in mammals and pro-

tozoa can form a looped structure, termed a T loop chromatin structure. In S. cerevisiae, telomerase ap-
pears to be recruited via bridged protein contacts with[21–23], that could provide a means for telomerase regu-

lation, as the chromosome terminus tucked into the T Cdc13p [24, 25]. Although no Cdc13p homolog has been
identified outside of budding yeast, the recently de-loop might be inaccessible to telomerase-dependent



Current Biology
580

14. Ding, D.Q., Tomita, Y., Yamamoto, A., Chikashige, Y., Haraguchi,scribed Pot1 protein of S. pombe and human appears
T., and Hiraoka, Y. (2000). Large-scale screening of intracellularto fulfill similar requirements for end protection [16],
protein localization in living fission yeast cells by the use of aand shared structural features suggest that Pot1p is the
GFP-fusion genomic DNA library. Genes Cells 5, 169–190.

ortholog of Cdc13p [26]. The conservation of regulatory 15. Haering, C.H., Nakamura, T.M., Baumann, P., and Cech, T.R.
strategies between highly diverse eukaryotes augments (2000). Analysis of telomerase catalytic subunit mutants in vivo

and in vitro in Schizosaccharomyces pombe. Proc. Natl. Acad.our tools for understanding the mechanisms that control
Sci. USA 97, 6367–6372.telomerase activation, a key step in tumorigenesis.

16. Baumann, P., and Cech, T.R. (2001). Pot1, the putative telomere
end-binding protein in fission yeast and humans. Science 292,Supplemental Data
1171–1175.Supplemental Data including the Experimental Procedures are avail-

17. Bryan, T.M., Englezou, A., Gupta, J., Bacchetti, S., and Reddel,able at http://images.cellpress.com/supmat/supmatin.htm.
R.R. (1995). Telomere elongation in immortal human cells with-
out detectable telomerase activity. EMBO J. 14, 4240–4248.Acknowledgments

18. Nakamura, T.M., Cooper, J.P., and Cech, T.R. (1998). Two
modes of survival of fission yeast without telomerase. ScienceWe thank J. Lingner for prompting the initiation of this project; D.
282, 493–496.Kellogg for crucial advice on making cell extracts; our laboratory

19. Cooper, J.P., Nimmo, E.R., Allshire, R.C., and Cech, T.R. (1997).members and J. Hayles for discussion and critical reading of the
Regulation of telomere length and function by a Myb-domainmanuscript; and C. Haering, T. Nakamura, and P. Baumann for
protein in fission yeast. Nature 385, 744–747.strains and advice on telomerase assays. This work was supported

20. Ferreira, M.G., and Cooper, J.P. (2001). The fission yeast Taz1by the National Institutes of Health, the Human Frontiers Science
protein protects chromosomes from Ku-dependent end-to-endProgram, the Pew Scholars Program in the Biomedical Sciences,
fusions. Mol. Cell 7, 55–63.and Cancer Research UK.

21. Munoz-Jordan, J.L., Cross, G.A., de Lange, T., and Griffith, J.D.
(2001). t-loops at trypanosome telomeres. EMBO J. 20, 579–588.Received: September 2, 2002

22. Griffith, J.D., Comeau, L., Rosenfield, S., Stansel, R.M., Bianchi,Revised: January 29, 2003
A., Moss, H., and de Lange, T. (1999). Mammalian telomeresAccepted: January 31, 2003
end in a large duplex loop. Cell 97, 503–514.Published: April 1, 2003

23. Murti, K.G., and Prescott, D.M. (1999). Telomeres of polytene
chromosomes in a ciliated protozoan terminate in duplex DNAReferences
loops. Proc. Natl. Acad. Sci. USA 96, 14436–14439.

24. Qi, H., and Zakian, V.A. (2000). The Saccharomyces telomere-1. Lingner, J., Cooper, J.P., and Cech, T.R. (1995). Telomerase
binding protein Cdc13p interacts with both the catalytic subunitand DNA end replication: no longer a lagging strand problem?
of DNA polymerase alpha and the telomerase-associated est1Science 269, 1533–1534.
protein. Genes Dev. 14, 1777–1788.2. Lendvay, T.S., Morris, D.K., Sah, J., Balasubramanian, B., and

25. Evans, S.K., and Lundblad, V. (1999). Est1 and Cdc13 as come-Lundblad, V. (1996). Senescence mutants of Saccharomyces
diators of telomerase access. Science 286, 117–120.cerevisiae with a defect in telomere replication identify three

26. Mitton-Fry, R.M., Anderson, E.M., Hughes, T.R., Lundblad, V.,additional EST genes. Genetics 144, 1399–1412.
and Wuttke, D.S. (2002). Conserved structure for single-3. Cohn, M., and Blackburn, E.H. (1995). Telomerase in yeast. Sci-
stranded telomeric DNA recognition. Science 296, 145–147.ence 269, 396–400.

4. Lingner, J., Cech, T.R., Hughes, T.R., and Lundblad, V. (1997).
Three Ever Shorter Telomere (EST) genes are dispensable for
in vitro yeast telomerase activity. Proc. Natl. Acad. Sci. USA 94,
11190–11195.

5. Lundblad, V., and Szostak, J.W. (1989). A mutant with a defect
in telomere elongation leads to senescence in yeast. Cell 57,
633–643.

6. Taggart, A.K.P., Teng, S.-C., and Zakian, V.A. (2002). Est1p is
a cell cycle regulated activator of telomere-bound telomerase.
Science 297, 1023–1026.

7. Evans, S.K., and Lundblad, V. (2002). The Est1 subunit of Sac-
charomyces cerevisiae telomerase makes multiple contribu-
tions to telomere length maintenance. Genetics 162, 1101–1115.

8. Lingner, J., Hughes, T.R., Shevchenko, A., Mann, M., Lundblad,
V., and Cech, T.R. (1997). Reverse transcriptase motifs in the
catalytic subunit of telomerase. Science 276, 561–567.

9. Singer, M.S., and Gottschling, D.E. (1994). TLC1: template RNA
component of Saccharomyces cerevisiae telomerase. Science
266, 404–409.

10. Reichenbach, P., Hoss, M., Azzalin, C.M., Nabholz, M., Bucher,
P., and Lingner, J. (2003). A human homolog of yeast Est1 is a
telomerase subunit that uncaps chromosome ends upon over-
expression. Curr. Biol. 13, 568–574.

11. Virta-Pearlman, V., Morris, D.K., and Lundblad, V. (1996). Est1
has the properties of a single-stranded telomere end-binding
protein. Genes Dev. 10, 3094–3104.

12. Zhou, J., Hidaka, K., and Futcher, B. (2000). The Est1 subunit
of yeast telomerase binds the Tlc1 telomerase RNA. Mol. Cell.
Biol. 20, 1947–1955.

13. Nakamura, T.M., Morin, G.B., Chapman, K.B., Weinrich, S.L.,
Andrews, W.H., Lingner, J., Harley, C.B., and Cech, T.R. (1997).
Telomerase catalytic subunit homologs from fission yeast and
human. Science 277, 955–959.


