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In this paper it is shown that the prism: uve. cyclically 4-connect simple 3-polytopes admit
‘Hamiltonian circuits. It is also shown that if P is a simple 3-polytopc all of whose faces are
polygons with six sides or less than the prism over P admits a Hamiltonian circuit.

1. Eatroduction

It is well-known (see for example [1. 5, 9]) that there are simple 3-polytopes
which do not admit Hamiltonian circuits. But it is suggested in [4] that, for d =4,
every simple d-polytope has a Hamiltonian circuit. This conjecture is still unresol-
ved even in the case of prisms over simple 3-polytopes. It is shown in [7] that, for
any 3-polytope P, the k-fold prism (k =2) over P has a Hamiltonian circuit. The
authors aiso prove that if the faces of the simple 3-polytope F are 4-colourable
then the prism over P has a Hamiltonian circuit.

Since the completion of this work, the four colour theorem has, in fact, been
established and therefore, as mentioned above, all simple 4-dimensional prisms
admit Hamiltonian circuits. This is a stronger result than the ones proved in this
article, though the latter may still retain some significance because of the
-techmquea employed, in fact, we obtain these results using Tutte’s impc:tant
theory of bridges in planar graphs. Though it seems that this theory is very
fundamental in the study of planar graphs, only one application of it can be found
in the literature, Tutte’s proof that 4-connected planar graphs admit Hamiltonian
circuits. We show that if P is a simple cyciically 4-connected 3-polytope then the
prism over P admits a Hamiltonian circuit. For such a polytope P, each face is an
n-gon with n=4. The second result is ccncerned with simpie 3-polytopes all of
whose faces are n-gons with n<6. It seems likely that such polytopes admit
Hamiltonian circuits. Here we show that the prisms over these polytop:s have
Hamiltonian circuits.

2. Deﬁnitlons and notaiion

Thrcughout the work we shall use the notation of [4]. Let G be a graph and H
a subgraph of (5. An H-avoiding path in G is a path P(4,, a,)) in which no edges
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 w(EB ‘ h sp m‘ G by the veruces of a bndga B. that are nct

: attachment vertices ( B in I-I is the nucleu of B.A bndge is wmple if its nucleus
is a smgle vertex, ‘The followmg mportant result due to Tutte [10] (see also Ore
[6, p. 68]) is. one‘ of the mam tools-in our preofa o

Theorem 2, 1 Let G be a planar graph. If E1 ana‘ E, are distinct edges of G lying
in the same face, then there is a c:rcmt Tof G havmg the following properties:

(i) E;, Eze T;
(i) if B is a bridge of T in G then w(B)<3 and
(iii) if B is a brtdge of T in G which meets exther of the two faces containing E,,
then w( B) :

A circuit T in G that has the akove properties will be called a Tutte circuit.
We shall . ‘so use the following result of Steinitz [8].

Theorem 2  The graph G is the graph of a 3-polytope if and only if G is planar
and 3-conn...ed.

In fact we shall not usually distinguish between the polytope and its graph.

The pnsm over a graph G, is a graph P(G), formed by taking two disjoint
cop:es of G and addmg the vertical edges. that is ‘the edges connecting a vertex of
G to the same vertex in the second copy of G.

3. Graphs of tyre §

An S-circuit is a graph consisting of a circuit C={a,, a,,..., a,} together with
a family of disjoint paths {P} such that each P, has exactly one end vertex on C
and no other vertex of P, belongs to C (Fig. 1). An S-circuit is even it C is an
even circuit. A connected graph G is of type § if its vertices are of degree not
greater than 3, it has a family of disjoint even S-circuits and a family of disjoint
paths, such that the two end vertices of each path belo.:g to two distinct circuits of
the S-circuits, and no oiher vertex of the path belongs to ar S-circuit.

Lerama 3.1. If G is of type S then the piiem over G admits a Hamiltonian circuit
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a, a2
P
2n
Fig. 1. An S circuit
Proof. Let C={c,.c,,...,cy} be an cven circuit. Let C'={c{, c5, ..., c5} be
another copy of C. In the prism over C, H={c,,c},¢5 Cs ..., Ch Co} IS @
Hamiltonian circuit that uses all vertical edges. If P,={a,, a>,...,a,} is a path,

and a,=c;, then in the prism over the S-circuit CUP, {H\(c,c)}U
{c;\ @y, ...,aai,. .., a5 ¢/} is a Hamiltonian circuit. Continuing in this fashion
we see that if G is an even S-circuit then P(G) admits « Hamiitonian circuit that
uses all vertical edges at the vertices of degree 2 of C. If G is of type S, we first
remove all pzihs that connect distinct S-circuits of G, obtaining a family of
disjoint even S-circuits. In the prism over each one of them we construct a
Hamiltonian circuit of the type described above. For every path P=
{b,, b,, ..., b} that has been removed, we have b, S, b, € §' for two of the even
S-circuits with SN S'=@, and P has no other vertices in common with any of the
S-circui 5. We remove the vertical edges (b,, b}) and (b, b}) from the Hamilto-
nian circuits in the prisms over S and §’, introduce the paths {b,, b,,.... b,) and
(b, b4, ..., bL) and obtain a Hamiltonian circuit in the prism over SUS'UP.
Obviously, the same process can be 1epeated for all other paths thus obtaining a
Hamiltonian circuit in P(G).

4. Prisms over cyclically 4-connected 3-polytopes

A simple 3-polytope is called cyclically k-connected if its graph cannot be
broken into two separate parts, each containing a circuit, by the removal of fewer
than k edges (Griinbaum (4, p. 365]).

Lemma 4.1. If G is a cyclically 4-connecied polytope and 7 is a Tutie circuit in G
then all bridges of T in G are degenerate or simple.

Proof. Since the removal of the eottachment vertices of a bridge B would
disconnect G unless the nucleus of B is empty, there ire no bridges with
w(B)=1. If w(B)=2, since G is 3-connectcd its nucleus must be empty. If
w(B)=3, let E,, E,, E, be the three edges of B that contain *he three attachment
vertices. The removal of thecse edges from G breaks G nte *wo parts. one
containing the circuit T and he other, the nucleus of B. Snce G is cubic. the



every bndge of T has at most

;'Illeorem 4.2 The pnsm over any cycltcallw 4- connected 3 -polytope G admits a

o Hamzltoman czrcuzt

Proof. Bv Lemma 3 1, it suffices to shovu that G admlts a spanmng subgrraph nf
type S Let T bea Tutte circuit for G. By Lemma 4.1, all bridges of T in G a-e
1"degenem1e or sxmp!e. Assume ﬁrst that s Pven Since every veriex of G\ T s
the nucleus 0 somk: m‘v-:lge of T by removmg two of the edges mcldent with it we
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Cons1der now all no. x«degenerate bndge < f*rT (the must be suc'* bndges since
the number of vertices of G i is even) ‘Each n0n~ﬁe nérate bndge is simple. The
three attachment vertices of such a bndge determine six arcs-on T. Oby iously, at
least one of the arcs is of even length. Assume that Bo, thh nucleus vo and
attachment vertices : rc :
all bndges of T
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two other edges mmdﬂnt Wlth xo I G coes not contam any addxtlonal non-
degenerite bridges, itis easily seen that «7 has a spanmng even S-circuit based on
the circuit A% =(daq, Vo, c5— by— ao) We -enote the even S-circuit based on A}
with the edges (x;;¥), y€ Ay, by S,. Consider now all other non-degenerate
-bridges of T in G. Obviously, each such bridg: must have its three vertices of
attachment on T'\ Ay. Let B;, with nucleus v, and attachment vertices {a;, b,, ¢,}
be a bridge that determines a longest even arc among these bridges. Because of
the maximality of Ay, A; =(a,—b,—c,) must be an even arc (Fig. 2). The circuit
Ai={a,—by—c¢;—v,) 1s even and disjoint from S,. Again, for every vertex x' of
G\(TU5,), that has a vertex y € A4 such that (x, y) is an edge in G, we remove
from G the two other edges incident with x' to form an S-circuit §,. If ther. are
additional vertices in G, each one of them is the nucleus of a simple bridge. The
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thicc vertices )i attachment of such a bridge musi belong to a connected
component of T\{A,U A,), and the arc determined by them on this component
must be even. Thus, the process described above can be continued until ail
vertices of G are accounted for. The even S-circuits {S;} are disjoint. These
S-circuits together with the paths T\|J A; span G. Therefore G has a spannirg

subgraph of wype S, as required.

S. Prisms over smali polytopes

A simple 3-polytope will be called a small polytope if none of its faces have
more than six sides. We shall use the following result of Ewald [2].

Theorem 5.1. If G is the graph of a small polytope and J is a longest circuit in 5
then J contains a vertex of every face of G.

Lemma 5.2. If G is the graph of a small polytope which has a triangular face then
G admits a circuit of even length which contains a vertex of every face of G.

Proof. Assume that v,, v,, v; are the vertices of a triangular face ! of G. For
i=1, 2,3 let w; be the vertex of G adjacent to v; which does not belong to F. Let
J be a longest circuit in G, then by Theorem 5.1, we may assume that P, =
(wy, v, U5, U3, W») is a subpath of J. If J is of even length there is nothiny to
prove. Otherwise it is clear that replacing P, by (w,, vy, v3, w3) will give us the
required circuit.

Lemma 5.3. If G is the graph of a small polytope which has a pentagonal face then
G admits an even circuit which contains a vertex of every face of G.

Proof. Let J be a longest circuit in G, which we may assume to be of odd length.
Let F be a pentagonal face of G with vertices v,, v,, V3, V4, U5 and let w; be the
vertex of G adjacent to v; with w;¢ F for 1=<i<5. Also let F, be the face of G
with F, N F=(v, v,,,) for 1<i<35, where v, =v, (Fig. 3).

If J intersects F in a single component then this component must have length 3
or 4 because of the maximality of J. Assume that the component has length 4 and
that (w,, v,, v, U-, V4, Vs, Ws) is a subpath of J. Note that (v,, v3)#JNF, and
(v, vg) # JN F, since J is maximal. Thus if we replace the path (v, 05, ..., vs) by
the edge (v,, vs) in J we get a circuit of even length which contains a vertex of
every face, since I, F, have vertices other than v,, v;, v, on J. Similarly. we can
deal with th: case there the length of the component is 3.

So we now assume that J intersects F in two components and that one of them
is (v), v2). Let the other component be J,, which is of length either 1 or 2. Now if
J intersects F, in a single component J, then J, is of length at least 3 and by the



also have a Hamﬂtoman
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