On the Diameter of a Graph Related to *p*-Regular Conjugacy Classes of Finite Groups

Ziqun Lu

metadata, citation and similar papers at core.ac.uk

and

Jiping Zhang

Department of Mathematics, Peking University, Beijing 100871, People's Republic of China

Communicated by Gernot Stroth

Received September 13, 1999

1. INTRODUCTION

Let G be a finite group and p a fixed prime. Denote by $G_{p'}$ the set of p-regular elements of G and $\operatorname{Con}(G_{p'})$ the set of all conjugacy classes of G in $G_{p'}$. Define: $\rho'_p(G) = \{q : q \text{ prime}, q \mid |g^G|, g \in G_{p'}\}$. We obtain the following graph $\Gamma'_p = \Gamma'_p(G)$: the vertices of Γ'_p are primes in $\rho'_p(G)$, two vertices r, q are connected, if there exists a conjugacy class $C \in \operatorname{Con}(G_{p'})$ such that $rq \mid |C|$. If $p \times |G|$, then the graph $\Gamma'_p(G)$ is just the graph $\Gamma'(G)$ defined in [6].

Our aim is to investigate the arithmetical properties of p-regular conjugacy classes of G and the relationship between irreducible p-modular characters and p-regular conjugacy classes of G. In the last 20 years, the analogy between conjugacy classes and irreducible characters has been widely studied. We refer readers to [1–8].

Let $n(\Gamma'_p) = n(\Gamma'_p(G))$ denote the number of the connected components of the graph $\Gamma'_p(G)$ and $d(\Gamma'_p(G))$ denote the diameter of the graph $\Gamma'_p(G)$. Our main results are the following 5 theorems

Our main results are the following 5 theorems.

THEOREM 1. If G is a finite p-solvable group, then $n(\Gamma'_p(G)) \leq 2$.

One natural question is whether we can decide the diameter of the graph $\Gamma'_p(G)$. If G is p-solvable, then we can prove the following theorem, but our methods cannot apply to general finite groups.

THEOREM 2. Suppose that G is a finite p-solvable group.

If
$$n(\Gamma'_p(G)) = 1$$
, then $d(\Gamma'_p(G)) \le 6$.
If $n(\Gamma'_p(G)) = 2$, then each connected component has diameter at most 3.

The modular character degree graph has similar properties [10, Chap. VI, Theorem 20.3, p. 260]. A modular character degree graph Γ_p is defined as follows. Its vertices are primes in $\rho_p(G)$ (the set of all primes which divide some irreducible modular character of G), and two vertexes r, q are connected, if rq divides some irreducible modular character degree. One has the following results:

If
$$n(\Gamma_p(G)) = 2$$
, then $d(\Gamma_p(G)) \le 5$.
If $n(\Gamma_n(G)) = 1$, then $d(\Gamma_n(G)) \le 3$.

Next we discuss the properties of G with $n(\Gamma'_p(G)) = 2$.

THEOREM 3. Suppose that G is a solvable group with $n(\Gamma'_p(G)) = 2$. Let X_1, X_2 be the connected components and write $\pi_i = \{q : q \text{ prime}, q \in X_i \setminus \{p\}\}, i = 1, 2$. Then G has a metabelian Hall π_1 - or π_2 -subgroup.

The following theorem shows that the π_i -length of G can be bounded in terms of the *p*-length of G.

THEOREM 4. Suppose that G is a finite solvable group with $n(\Gamma'_p(G)) = 2$. Let X_1, X_2 be the connected components and write $\pi_i = \{q : q \text{ prime}, q \in X_i \setminus \{p\}\}, i = 1, 2$. Then $l_{\pi_i}(G) \le l_p(G) + 1, i = 1, 2$.

The following result shows that in some sense the graph $\Gamma'_p(G)$ is rich in edges.

THEOREM 5. Let G be a solvable group and choose $r, s \in \rho'_p(G) \setminus \{p\}$. If there exists no conjugacy class $C \in \text{Con}(G_{p'})$ such that $rs \mid |C|$, then $l_r(G) \leq 1$, or $l_s(G) \leq 1$.

2. PROOFS OF THEOREMS

The following lemma plays an important role in the proof of the theorems.

LEMMA 1. Suppose that G is a p-separable group and choose $B = b^G$, $C = c^G \in \text{Con}(G_{p'})$. If (|B|, |C|) = 1, then:

(1) $C_G(b)C_G(c) = G.$

(2) BC is a conjugacy class in $Con(G_{p'})$.

(3) |BC| | |B| |C|.

(4) Suppose that there is no conjugacy class $D \in \text{Con}(G_{p'})$ such that $(|D|, |B|) \ge 1$ and $(|D|, |C|) \ge 1$. If |B| < |C|, then |BC| = |C| and $B^{-1}BC = C$.

Proof. (1) Since $|G: C_G(b) \cap C_G(c)| = |G: C_G(b)| |C_G(b): C_G(b) \cap C_G(c)| = |G: C_G(b)| |C_G(b)C_G(c): C_G(c)| \le |G: C_G(b)| |G: C_G(c)|, by assumption (|G: C_G(b)|, |G: C_G(c)|) = 1, then |G: C_G(b)| |G: C_G(c)| |G: C_G(c)| = |G: C_G(b) \cap C_G(c)|. Consequently |G: C_G(b)| |G: C_G(c)| = |G: C_G(b) \cap C_G(c)|, then |C_G(b)C_G(c): C_G(c)| = |G: C_G(c)|. Hence C_G(b)C_G(c) = G.$

(2) We first prove that *BC* is a *G*-conjugacy class. It is obvious that we need only to prove that for any $g, h \in G, b^g c^h$ is conjugate to *bc*. By (1), $gh^{-1} \in G = C_G(b)C_G(c)$; then there exist $x \in C_G(b), y \in C_G(c)$ such that $gh^{-1} = x^{-1}y$. Then xg = yh, and moreover $b^g c^h = b^{xg} c^{yh} = (bc)^{xg}$. In order to prove that *BC* is a conjugacy class in $G_{p'}$, we need only to find a element in *BC* belonging to $G_{p'}$. Let *H* be a Hall *p'*-subgroup of *G*; then there exist elements $g, h \in G$ such that $b^g, c^h \in H$. Then $b^g c^h \in BC$ and $b^g c^h$ is a *p'*-element.

(3) By (2), $BC = (bc)^G$. Since $C_G(b) \cap C_G(c) \subseteq C_G(bc)$, then $|BC| = |G: C_G(bc)| ||G: C_G(b) \cap C_G(c)| = |G: C_G(b)| |G: C_G(c)| = |B| |C|$, as desired.

(4) By (2), BC is a conjugacy class, if |BC| > |C|, then by (3), (|BC|, |B|) > 1 and (|BC|, |C|) > 1, a contradiction. Thus |BC| = |C|. Again by (3), $B^{-1}BC$ is a conjugacy class containing C; thus $B^{-1}BC = C$.

Now we prove Theorem 1.

Proof of Theorem 1. Suppose that $n(\Gamma'_p(G)) \ge 3$. Then there exists conjugacy classes A, B, C in $Con(G_{p'})$ such that the prime divisors of |A|, |B|, and |C| belong respectively to different connected components of $\Gamma'_p(G)$. Then |A|, |B|, |C| are coprime to each other and any two satisfy the condition of Lemma 1(4). Without loss of generality, we can assume that |A| > |B| > |C|. Then $ACC^{-1} = A$, $BCC^{-1} = B$. Thus $A = A\langle CC^{-1} \rangle$, $B = B\langle CC^{-1} \rangle$. Thus A (resp. B) is a union of some cosets of normal subgroup $\langle CC^{-1} \rangle$. Then $|\langle CC^{-1} \rangle| |A|$ and $|\langle CC^{-1} \rangle| |B|$, a contradiction, as required.

Next we prove our main Theorem 2.

Proof of Theorem 2. Suppose that $n(\Gamma'_p(G)) = 1$, but $d(\Gamma'_p(G)) \ge 7$. Let $a, b \in \Gamma'_p(G)$ such that d(a, b) = 7. Thus we can choose the shortest path from a to b as a - r - s - l - m - u - v - b. Thus there exists conjugacy classes $C_1, C_2, C_3, C_4, C_5, C_6, C_7 \in \Gamma'_p(G)$ such that $ar \mid |C_1|, rs \mid |C_2|, sl \mid |C_3|, lm \mid |C_4|, mu \mid |C_5|, uv \mid |C_6, vb \mid |C_7|$. Then $|C_1|, |C_4|, |C_7|$ are coprime to each other and any two satisfy the condition of Lemma 1(4). Without loss of generality, we assume that $|C_1| < |C_4| < |C_7|$. Then $C_4C_1C_1^{-1} = C_4, C_7C_1C_1^{-1} = C_7$. Then $|\langle C_1C_1^{-1} \rangle| \mid |C_4|, |\langle C_1C_1^{-1} \rangle| \mid |C_7|, a contradiction.$

Suppose that $n(\Gamma'_p(G)) = 2$, but $d(\Gamma'_p) \ge 4$. Choose *a*, *b* to belong to the same connected components d(a, b) = 4, let a - r - s - t - b be the shortest path from *a* to *b*, and then choose conjugacy classes C_1, C_2, C_3 , $C_4 \in \Gamma'_p(G)$ such that $ar \mid |C_1|, rs \mid |C_2|, st \mid |C_3|, tb \mid |C_4|$. But on the other hand, one can choose $C \in \Gamma'_p(G)$ such that the prime divisors of |C| and $|C_1|$ belong respectively to different components. Then $|C|, |C_1|, |C_4|$ are coprime to each other and any two satisfy the condition of Lemma 1(4). As discussed above, we can also get a contradiction. We are done.

LEMMA 2. Suppose that N is a normal subgroup of G.

(1) For any $x \in N$, $|x^N| | |x^G|$.

(2) For any $(xN)^{G/N} \in \text{Con}((G/N)_{p'})$, there exists a conjugacy class $y^G \in \text{Con}(G_{p'})$ such that $|(xN)^{G/N}| ||y^G|$.

Proof. (1) It is obvious.

(2) Let $x = x_{p'}x_p$, x_p and $x_{p'}$ denote respectively the *p*-part and *p'*-part of *x*. Since the order of *xN* is not divisible by *p*, then $xN = x_{p'}N$ and $(xN)^{G/N} = (x_{p'}N)^{G/N}$. It is clear that $|(x_{p'}N)^{G/N}| | |(x_{p'})^G|$; then $|(xN)^{G/N}| | |(x_{p'})^G|$. Set $y^G = (x_{p'})^G$. We are done.

LEMMA 3 [6, Lemma 2]. Suppose G is a finite solvable group. If the length of each conjugacy class is not divisible by r, then G has a central Sylow r-subgroup.

Recall that $\rho'_p(G) = \{q \text{ prime: } q \mid |g^G|, \text{ for some } g \in G_{p'}\}.$

PROPOSITION 1. Suppose that G is a finite group. Let π be a set of some primes.

(1) $p \notin \rho'_p(G)$; then $G = P \times K$, with P a Sylow p-subgroup of G.

(2) If G is p-solvable and $\pi \cap (\rho'_p(G) \cup \{p\}) = \emptyset$, then G has an abelian Hall π -subgroup.

Proof. (1) Let $P \in \text{Syl}_p(G)$. Then by the assumption we have $G = \bigcup_{x \in G} (PC_G(P))^x$. So $G = PC_G(P)$, and thus (1) follows.

(2) By induction on |G| we may assume that $O_p(G) = 1$. Thus $O_{p'}(G) \neq 1$, as G is p-solvable. If there exists no prime $q \in \pi$ dividing the order of $O_{p'}(G)$, then by induction we are done. Thus there exists at least a prime $q \in \pi$ such that $O_{p'}(G)$ has a nontrivial Sylow q-subgroup Q. By Lemma 3, $O_{p'}(G) = K \times H$, where $1 \neq K$ is an abelian Hall π -subgroup of $O_{p'}(G)$. By induction we can assume that $O^p(G) = G$ and H = 1. Thus $K \leq Z(G)$, as K centralizes all p'-elements of G. Thus G = K, and we are done.

Proof of Theorem 3. It is obvious that we can assume that $|\pi_i| \ge 1$, i = 1, 2. Given a conjugacy class $C \in \text{Con}(G_{p'})$, we say C belongs to X_i if the prime divisors of |C| belong to X_i . Then for any conjugacy class $C \in \text{Con}(G_{p'})$, C belongs to either X_1 or X_2 . Let D_1 be a conjugacy class in $\text{Con}(G_{p'})$ with the biggest class length. Without loss of generality, we assume that $D_1 \in X_2$. Set $M = \langle B | B \in X_1 \rangle$ and $N = \langle BB^{-1} | B \in X_1 \rangle$.

Step 1. If A and B belong to different connected components, then AB = BA is also a conjugacy class of the p'-element and |AB| equals the biggest in |A| and |B|. If |A| is the biggest, then $ABB^{-1} = A$.

Proof. It is obvious by Lemma 1(4).

Step 2. M is a proper subgroup of G.

Proof. Let D be the set of all conjugacy classes in $Con(G_p)$ with the biggest class length. Then D is contained in X_2 . Choose $C \in D$ and any $B \in X_1$. By Step 1, BC is a p'-conjugacy class and |BC| = |C|; then $BC \in D$. Thus BD = D, and moreover MD = D; then |M| ||D|. Thus M is a proper subgroup of G.

Step 3. There exists a p'-conjugacy class C in $G \setminus M$, and |N| | |C|.

Proof. If there is no p'-element in $G \setminus M$, then G/M is a p-group. By Step 2, Lemma 2, and induction on M the theorem is true. Thus we can assume that there exists a p'-conjugacy class C in $G \setminus M$. Let $B \in X_1$. By the definition of M, we know that $C \in X_2$. Then by Step 1, BC is a p'-conjugacy class in X_2 and |BC| = |C|. Moreover $CBB^{-1} = C$; thus |CN| = |C|, whence |N| ||C|.

Step 4. $N \leq Z(M)$.

Proof. Let $B \in X_1$, $b \in B$. By Step 3, $(|N|, |G : C_G(b)|) = (|N|, |B|) = 1$, but $|N : C_N(b)| | |(|N|, |G : C_G(b)|)$; thus $N = C_N(b)$. Since $M = \langle B | B \in X_1 \rangle$, then N is in the center of M.

Step 5. $M = P \times M_1$ and M_1 is abelian, where P is a Sylow p-subgroup of M. *Proof.* By the definition of M and N, it is easy to see that M/N is in the center of G/N, whence, by Step 4, M is nilpotent. Thus $M = P \times M_1$. Write $M_1 = R \times Z$, with Z the largest Hall subgroup of M_1 which is contained in Z(G). Let q be a prime divisor of |R| and choose Q to be a Sylow q-subgroup of R. Thus $Q \leq G$ and $N = [M, G] \geq [R, G] \geq [Q, G]$. As $[Q, G] \neq 1$, it follows that $q \mid |N|$. Thus if $q \mid |R|$, then $q \mid |N|$. Let $B = b^G \in X_1$; by Step 3 we have (|Q|, |B|) = 1. Since $|Q : C_Q(b)| \mid (|Q|, |B|)$ and noting that $M = \langle B \mid B \in X_1 \rangle$, we get $Q \leq Z(M)$. Thus $R \leq Z(M)$ and M_1 is abelian.

Step 6. Let r ||B|, where B is any conjugacy class in X_1 . Then for any p'-element $a \in G \setminus M$, $C_G(a)$ contains a Sylow r-subgroup of G.

Proof. Since a^G belongs to X_2 , then $|a^G|$ and r are coprime; that is, $C_G(a)$ contains a Sylow *r*-subgroup of G.

Step 7. G has a metabelian Hall π_1 -subgroup.

Proof. If $r \in \pi_1$, then by Step 6, for each p'-element $a \in G \setminus M$, $C_G(a)$ contains a Sylow r-subgroup of G. Thus $\forall r \in \pi_1, r \notin \rho'_p(G/M)$, and by Proposition 1, G/M has an abelian Hall π_1 -subgroup H/M. Thus by Step 5, G has a metabelian Hall π_1 -subgroup, as desired.

Proof of Theorem 4. Suppose $l_p(G) = n$ and let $1 \le N_1 \le N_2 \le \cdots \le N_{n+1} = G$ be the *p*-chain of *G* (with $N_1 = O_{p'}(G)$, $N_2 = O_{p', p}(G)$, $N_3 = O_{p', p, p'}(G) \ldots$). If N_i/N_{i-1} is a *p'*-group, then by Lemma 2, $\rho'_p(N_i/N_{i-1}) \subseteq \rho'_p(G)$.

(1) If $n(\Gamma(N_i/N_{i-1})) = 1$, then by Lemma 3, $N_i/N_i - 1$ has a central Hall π_1 -subgroup, or a central Hall π_2 -subgroup. Then $l_{\pi_i}(N_i/N_{i-1}) \le 1$, i = 1, 2.

(2) If $n(\Gamma(N_i/N_{i-1})) = 2$, write Δ_1, Δ_2 , respectively, for the vertex sets of $\Gamma(N_i/N_{i-1})$ in different connected component. We have $\Delta_i \subseteq \pi_i$, i = 1, 2. Since $p \dagger |N_i/N_{i-1}|$, by [6, Theorem 4], $l_{\Delta_i} \leq 1$. But on the other hand, by Lemma 3, N_i/N_{i-1} has a central Hall $\pi_i \setminus \Delta_i (i = 1, 2)$ -subgroup; then $l_{\pi_i}(N_i/N_{i-1}) \leq 1$, j = 1, 2.

From (1) and (2) above, if N_i/N_{i-1} is a *p*'-group, then $l_{\pi_i} \le 1$, i = 1, 2. Thus $l_{\pi_i}(G) \le l_p(G) + 1$, i = 1, 2.

Proof of Theorem 5. We use induction on |G|. Let $\pi = \{r, s\}$.

We will prove the theorem in five steps.

Step 1. First we can assume that $\Phi(G) = 1$, $O_{\pi'}(G) = 1$, and $O^{\pi'}(G) = G$.

Proof. Clearly we can assume that $O_{\pi'}(G) = 1$, $O^{\pi'}(G) = G$. Suppose that $\Phi(G) > 1$. If r or s does not belong to $\rho_{p'}(G/\Phi(G))$, then by

Proposition 1, $G/\Phi(G)$ has an abelian Sylow *r*- or abelian Sylow *s*-subgroup. Then $l_r(G/\Phi(G)) \leq 1$ or $l_s(G/\Phi(G)) \leq 1$, and by [9, Chap. VI, Theorem 6.4], $l_r(G) \leq 1$ or $l_s(G) \leq 1$. The theorem is correct. Thus we can assume that $r, s \in \rho_{p'}(G/\Phi(G))$, so by induction $l_r(G/\Phi(g)) \leq 1$ or $l_s(G/\Phi(G)) \leq 1$. Thus we have $l_r(G) \leq 1$ or $l_s(G) \leq 1$, as desired. Hence we can assume that $\Phi(G) = 1$.

Step 2.
$$F(G) = O_r(G)O_s(G)$$
, and moreover $O_r(G) > 1$, $O_s(G) > 1$.

Proof. By Step 1, $F(G) = O_r(G)O_s(G)$. Assume that $O_r(G) = 1$. Thus $C_G(O_s(G)) \le O_s(G)$, so for any p'-element $a \in G \setminus O_s(G)$, $s \mid |a^G|$, and $r \not \mid |a^G|$. Thus $r \notin \rho'_p(G/O_s(G))$, and by Proposition 1, $G/O_s(G)$ has an abelian Sylow r-subgroup. Thus $l_r(G) \le 1$, as desired. So we can assume that $O_r(G) > 1$, $O_s(G) > 1$.

Step 3. G has only two minimal normal subgroups $O_r(G)$ and $O_s(G)$.

Proof. First we prove that $O_r(G)$ and $O_s(G)$ are minimal normal subgroups of G. Since $\Phi(G) = 1$, $O_r(G)$ and $O_s(G)$ are direct sums of minimal normal subgroups of G. Suppose $M, N \leq O_r(G)$ are two different minimal normal subgroups of G. If r or s does not belong to $\rho_{p'}(G/M)$, then by Proposition 1, G/M has an abelian Sylow r- or abelian Sylow s-subgroup. If the Sylow s-subgroup of G/M is abelian, then $l_s(G/M) \leq 1$ and thus $l_s(G) \leq 1$, and the theorem is correct. So we can assume that G/M has an abelian Sylow r-subgroup. It follows that $l_r(G/M) \leq 1$. If $r, s \in \rho_{p'}(G/M)$, then by induction $l_r(G/M) \leq 1$ or $l_s(G/M) \leq 1$, and we can also assume that $l_r(G/M) \leq 1$. Similarly we can assume that $l_r(G/N) \leq 1$. By [9, Chap. VI, Theorem 6.4 (d)], $l_r(G) \leq 1$, and the theorem is correct. Thus we may assume that $O_r(G)$ and $O_s(G)$ are minimal normal subgroups of G.

Step 4. $O_r(G) \leq Z(G)$ or $O_s(G) \leq Z(G)$.

Proof. Suppose $C_G(O_r(G)) < G$ and $C_G(O_s(G)) < G$. Set $H = C_G(O_r(G))C_G(O_s(G))$. If H is a proper subgroup of G, then G/H is not a p-group, since $O^{\pi'}(G) = G$. Let $x \in G \setminus H$ be a p'-element. Then $rs \mid |x^G|$, a contradiction. Hence H = G. We may assume that there exists a p'-element $x \in C_G(O_r(G))$ with $x \notin C_G(O_s(G))$. Otherwise $C_G(O_r(G))$ or $C_G(O_s(G))$ contains a Hall π -subgroup of G, but since $O^{\pi'}(G) = G$, then $C_G(O_r(G)) = G$ or $C_G(O_s(G)) = G$, a contradiction. Similarly we may assume that there exists a p'-element $y \notin C_G(O_s(G))$ with $y \notin C_G(O_r(G))$. We may assume that x, y belong to a Hall p'-subgroup of G (otherwise replace y by a suitable conjugate of y); thus xy is a p'-element of G, and $xy \notin G \setminus (C_G(O_r(G)) \cup C_G(O_s(G)))$. Thus $rs \mid |G : C_G(xy)|$, a contradiction.

Step 5. Conclusion.

Proof. Without loss of generality, we assume that $O_r(G) \leq Z(G)$. Thus either G = F(G) or $s \mid \mid b^G \mid$ for any p'-element b in $G \setminus F(G)$. If G = F(G), the theorem is obviously correct. In the second case, $r \notin \rho'_p(G/F(G))$, so by Proposition 1(2), G/F(G) has an abelian Sylow r-subgroup RF(G)/F(G). Thus $R' = [R, R] \leq O_r(G) \leq Z(G)$, and by [9, Chap. VI, Theorem 6.10], $l_r(G) \leq 1$. This proves the theorem.

ACKNOWLEDGMENT

The authors express their hearty thanks to the referee for his(her) valuable advice which corrected errors in the original manuscript.

REFERENCES

- E. A. Bertram, M. Herzog, and A. Mann, On a graph related to conjugacy classes of groups, *Bull. London Math. Soc.* 22 (1990), 569–575.
- A. Bianchi, D. Chillag, A. Mann, M. Herzog, and C. S. M. Scoppola, Applications of a graph related to conjugacy classes in finite groups, *Arch. Math.* 58 (1992), 126–132.
- D. Chillag and M. Herzog, On the length of the conjugacy classes of finite group, J. Algebra 131 (1990), 110–125.
- 4. D. Chillag, M. Herzog, and A. Mann, On the diameter of a graph related to conjugacy classes of groups, *Bull. London Math. Soc.* **113**, No. 2 (1993), 255–262.
- 5. S. Dolfi, Prime factors of conjugacy-classes lengths and irreducible character-degrees in finite soluble groups, *J. Algebra* **174** (1990), 753–771.
- S. Dolfi, Arithmetical conditions on the length of the conjugacy classes of a finite group, J. Algebra 174 (1990), 753–771.
- P. Ferguson, Prime factors of conjugacy classes of finite solvable groups, Proc. Amer. Math. Soc. 113, No. 3 (1991), 319–323.
- P. X. Gallagher, The conjugacy classes in a finite simple group, J. Reine Angew. Math. 239 / 240 (1970), 363–365.
- 9. B. Huppert, "Endliche Gruppen, I," Springer-Verlag, Berlin/New York, 1967.
- O. Manz and T. R. Wolf, "Representations of Solvable Groups," Cambridge Univ. Press, Cambridge, UK, 1993.