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1. INTRODUCTION

Let G be a finite group and p a fixed prime. Denote by G the set ofp�

Ž .p-regular elements of G and Con G the set of all conjugacy classes of Gp�
� Ž . � � G � 4in G . Define: � G � q : q prime, q � g , g � G . We obtain thep� p p�
� � Ž . � � Ž .following graph � � � G : the vertices of � are primes in � G , twop p p p

Ž .vertices r, q are connected, if there exists a conjugacy class C � Con Gp�

� � � � � Ž . Ž .such that rq � C . If p � G , then the graph � G is just the graph �� Gp
� �defined in 6 .

Our aim is to investigate the arithmetical properties of p-regular conju-
gacy classes of G and the relationship between irreducible p-modular
characters and p-regular conjugacy classes of G. In the last 20 years, the
analogy between conjugacy classes and irreducible characters has been

� �widely studied. We refer readers to 1�8 .
Ž � . Ž � Ž ..Let n � � n � G denote the number of the connected componentsp p

� Ž . Ž � Ž .. � Ž .of the graph � G and d � G denote the diameter of the graph � G .p p p
Our main results are the following 5 theorems.
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Ž � Ž ..THEOREM 1. If G is a finite p-sol�able group, then n � G � 2.p

One natural question is whether we can decide the diameter of the
� Ž .graph � G . If G is p-solvable, then we can prove the following theorem,p

but our methods cannot apply to general finite groups.

THEOREM 2. Suppose that G is a finite p-sol�able group.

Ž � Ž .. Ž � Ž ..If n � G � 1, then d � G � 6.p p

Ž � Ž ..If n � G � 2, then each connected component has diameter at most 3.p

�The modular character degree graph has similar properties 10, Chap.
�VI, Theorem 20.3, p. 260 . A modular character degree graph � is definedp

Ž . Žas follows. Its vertices are primes in � G the set of all primes whichp
.divide some irreducible modular character of G , and two vertexes r, q are

connected, if rq divides some irreducible modular character degree. One
has the following results:

Ž Ž .. Ž Ž ..If n � G � 2, then d � G � 5.p p

Ž Ž .. Ž Ž ..If n � G � 1, then d � G � 3.p p

Ž � Ž ..Next we discuss the properties of G with n � G � 2.p

Ž � Ž ..THEOREM 3. Suppose that G is a sol�able group with n � G � 2. Letp
�X , X be the connected components and write � � q : q prime, q � X 	1 2 i i

� 44p , i � 1, 2. Then G has a metabelian Hall � - or � -subgroup.1 2

The following theorem shows that the � -length of G can be bounded ini
terms of the p-length of G.

Ž � Ž ..THEOREM 4. Suppose that G is a finite sol�able group with n � G � 2.p
�Let X , X be the connected components and write � � q : q prime, q � X1 2 i i

� 44 Ž . Ž .	 p , i � 1, 2. Then l G � l G 
 1, i � 1, 2.� pi

� Ž .The following result shows that in some sense the graph � G is rich inp
edges.

� Ž . � 4THEOREM 5. Let G be a sol�able group and choose r, s � � G 	 p . Ifp
Ž . � � Ž .there exists no conjugacy class C � Con G such that rs � C , then l G � 1,p� r

Ž .or l G � 1.s

2. PROOFS OF THEOREMS

The following lemma plays an important role in the proof of the
theorems.
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LEMMA 1. Suppose that G is a p-separable group and choose B � bG,
G Ž . Ž � � � �.C � c � Con G . If B , C � 1, then:p�

Ž . Ž . Ž .1 C b C c � G.G G

Ž . Ž .2 BC is a conjugacy class in Con G .p�

Ž . � � � � � �3 BC � B C .

Ž . Ž .4 Suppose that there is no conjugacy class D � Con G such thatp�

Ž � � � �. Ž � � � �. � � � � � � � � �1D , B � 1 and D , C � 1. If B � C , then BC � C and B BC
� C.

Ž . � Ž . Ž . � � Ž . � � Ž . Ž .Proof. 1 Since G : C b  C c � G : C b C b : C b G G G G G
Ž . � � Ž . � � Ž . Ž . Ž . � � Ž . � � Ž . �C c � G : C b C b C c : C c � G : C b G : C c , by as-G G G G G G G

Ž � Ž . � � Ž . �. � Ž . � � Ž . �sumption G : C b , G : C c � 1, then G : C b G : C c �G G G G
� Ž . Ž . � � Ž . � � Ž . � � Ž .G : C b  C c . Consequently G : C b G : C c � G : C b G G G G G

Ž . � � Ž . Ž . Ž . � � Ž . � Ž . Ž .C c , then C b C c : C c � G : C c . Hence C b C c � G.G G G G G G G

Ž .2 We first prove that BC is a G-conjugacy class. It is obvious that
we need only to prove that for any g, h � G, b gch is conjugate to bc. By
Ž . �1 Ž . Ž . Ž . Ž .1 , gh � G � C b C c ; then there exist x � C b , y � C c suchG G G G

�1 �1 g h x g yh Ž . x gthat gh � x y. Then xg � yh, and moreover b c � b c � bc .
In order to prove that BC is a conjugacy class in G , we need only to findp�

a element in BC belonging to G . Let H be a Hall p�-subgroup of G;p�

then there exist elements g, h � G such that b g, ch � H. Then b gch � BC
and b gch is a p�-element.

Ž . Ž . Ž .G Ž . Ž . Ž . � �3 By 2 , BC � bc . Since C b  C c � C bc , then BCG G G
� Ž . � � Ž . Ž . � � Ž . � � Ž . � � � � �� G : C bc � G : C b  C c � G : C b G : C c � B C , asG G G G G

desired.

Ž . Ž . � � � � Ž .4 By 2 , BC is a conjugacy class, if BC � C , then by 3 ,
Ž � � � �. Ž � � � �. � � � �BC , B � 1 and BC , C � 1, a contradiction. Thus BC � C . Again

Ž . �1 �1by 3 , B BC is a conjugacy class containing C; thus B BC � C.

Now we prove Theorem 1.

Ž � Ž ..Proof of Theorem 1. Suppose that n � G � 3. Then there existsp
Ž . � �conjugacy classes A, B, C in Con G such that the prime divisors of A ,p�

� � � �B , and C belong respectively to different connected components of
� Ž . � � � � � �� G . Then A , B , C are coprime to each other and any two satisfy thep

Ž .condition of Lemma 1 4 . Without loss of generality, we can assume that
� � � � � � �1 �1 ² �1:A � B � C . Then ACC � A, BCC � B. Thus A � A CC ,

² �1: Ž .B � B CC . Thus A resp. B is a union of some cosets of normal
² �1: �² �1: � � � �² �1: � � �subgroup CC . Then CC � A and CC � B , a contradiction,

as required.



LU AND ZHANG708

Next we prove our main Theorem 2.

Ž � Ž .. Ž � Ž ..Proof of Theorem 2. Suppose that n � G � 1, but d � G � 7. Letp p
� Ž . Ž .a, b � � G such that d a, b � 7. Thus we can choose the shortest pathp

from a to b as a � r � s � l � m � u � � � b. Thus there exists conju-
� Ž . � � � �gacy classes C , C , C , C , C , C , C � � G such that ar � C , rs � C ,1 2 3 4 5 6 7 p 1 2

� � � � � � � � � � � � � � �sl � C , lm � C , mu � C , u� � C , �b � C . Then C , C , C are co-3 4 5 6 7 1 4 7
Ž .prime to each other and any two satisfy the condition of Lemma 1 4 .

� � � � � �Without loss of generality, we assume that C � C � C . Then1 4 7
�1 �1 �² �1: � � � �² �1: � � �C C C � C , C C C � C . Then C C � C , C C � C , a4 1 1 4 7 1 1 7 1 1 4 1 1 7

contradiction.

Ž � Ž .. Ž � .Suppose that n � G � 2, but d � � 4. Choose a, b to belong to thep p
Ž .same connected components d a, b � 4, let a � r � s � t � b be the

shortest path from a to b, and then choose conjugacy classes C , C , C ,1 2 3
� Ž . � � � � � � � �C � � G such that ar � C , rs � C , st � C , tb � C . But on the other4 p 1 2 3 4

� Ž . � �hand, one can choose C � � G such that the prime divisors of C andp
� � � � � � � �C belong respectively to different components. Then C , C , C are1 1 4

Ž .coprime to each other and any two satisfy the condition of Lemma 1 4 . As
discussed above, we can also get a contradiction. We are done.

LEMMA 2. Suppose that N is a normal subgroup of G.

Ž . � N � � G �1 For any x � N, x � x .
Ž . Ž .G � N ŽŽ . .2 For any xN � Con G�N , there exists a conjugacy classp�

G Ž . �Ž .G � N � � G �y � Con G such that xN � y .p�

Ž .Proof. 1 It is obvious.
Ž .2 Let x � x x , x and x denote respectively the p-part andp� p p p�

p�-part of x. Since the order of xN is not divisible by p, then xN � x Np�

Ž .G � N Ž .G � N �Ž .G � N � �Ž .G �and xN � x N . It is clear that x N � x ; thenp� p� p�

�Ž .G � N � �Ž .G � G Ž .GxN � x . Set y � x . We are done.p� p�

� �LEMMA 3 6, Lemma 2 . Suppose G is a finite sol�able group. If the
length of each conjugacy class is not di�isible by r, then G has a central Sylow
r-subgroup.

� Ž . � � G � 4Recall that � G � q prime: q � g , for some g � G .p p�

PROPOSITION 1. Suppose that G is a finite group. Let � be a set of some
primes.

Ž . � Ž .1 p � � G ; then G � P � K, with P a Sylow p-subgroup of G.p

Ž . Ž � Ž . � 4.2 If G is p-sol�able and �  � G � p � �, then G has anp
abelian Hall �-subgroup.

Ž . Ž .Proof. 1 Let P � Syl G . Then by the assumption we have G �p
Ž Ž .. x Ž . Ž .� PC P . So G � PC P , and thus 1 follows.x � G G G
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Ž . � � Ž .2 By induction on G we may assume that O G � 1. Thusp
Ž .O G � 1, as G is p-solvable. If there exists no prime q � � dividing thep�

Ž .order of O G , then by induction we are done. Thus there exists at leastp�

Ž .a prime q � � such that O G has a nontrivial Sylow q-subgroup Q. Byp�

Ž .Lemma 3, O G � K � H, where 1 � K is an abelian Hall �-subgroup ofp�

Ž . pŽ .O G . By induction we can assume that O G � G and H � 1. Thusp�

Ž .K � Z G , as K centralizes all p�-elements of G. Thus G � K, and we are
done.

� �Proof of Theorem 3. It is obvious that we can assume that � � 1,i
Ž .i � 1, 2. Given a conjugacy class C � Con G , we say C belongs to X ifp� i

� �the prime divisors of C belong to X . Then for any conjugacy classi
Ž .C � Con G , C belongs to either X or X . Let D be a conjugacy classp� 1 2 1

Ž .in Con G with the biggest class length. Without loss of generality, wep�

² : ² �1 :assume that D � X . Set M � B � B � X and N � BB � B � X .1 2 1 1

Step 1. If A and B belong to different connected components, then
� �AB � BA is also a conjugacy class of the p�-element and AB equals the

� � � � � � �1biggest in A and B . If A is the biggest, then ABB � A.

Ž .Proof. It is obvious by Lemma 1 4 .

Step 2. M is a proper subgroup of G.

Ž .Proof. Let D be the set of all conjugacy classes in Con G with thep�

biggest class length. Then D is contained in X . Choose C � D and any2
� � � �B � X . By Step 1, BC is a p�-conjugacy class and BC � C ; then1

� � � �BC � D. Thus BD � D, and moreover MD � D; then M � D . Thus M
is a proper subgroup of G.

� � � �Step 3. There exists a p�-conjugacy class C in G 	 M, and N � C .

Proof. If there is no p�-element in G 	 M, then G�M is a p-group. By
Step 2, Lemma 2, and induction on M the theorem is true. Thus we can
assume that there exists a p�-conjugacy class C in G 	 M. Let B � X . By1
the definition of M, we know that C � X . Then by Step 1, BC is a2

� � � � �1p�-conjugacy class in X and BC � C . Moreover CBB � C; thus2
� � � � � � � �CN � C , whence N � C .

Ž .Step 4. N � Z M .

Ž � � � Ž . �. Ž � � � �.Proof. Let B � X , b � B. By Step 3, N , G : C b � N , B � 1,1 G
� Ž . � �Ž � � � Ž . �. Ž . ²but N : C b � N , G : C b ; thus N � C b . Since M � B � B �N G N

:X , then N is in the center of M.1

Step 5. M � P � M and M is abelian, where P is a Sylow p-sub-1 1
group of M.
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Proof. By the definition of M and N, it is easy to see that M�N is in
the center of G�N, whence, by Step 4, M is nilpotent. Thus M � P � M .1
Write M � R � Z, with Z the largest Hall subgroup of M which is1 1

Ž . � �contained in Z G . Let q be a prime divisor of R and choose Q to be a
� � � � � �Sylow q-subgroup of R. Thus Q�G and N � M, G � R, G � Q, G .�

� � � � � � � �As Q, G � 1, it follows that q � N . Thus if q � R , then q � N . Let
G Ž � � � �. � Ž . � Ž � � � �.B � b � X ; by Step 3 we have Q , B � 1. Since Q : C b � Q , B1 Q

² : Ž . Ž .and noting that M � B � B � X , we get Q � Z M . Thus R � Z M1
and M is abelian.1

� �Step 6. Let r � B , where B is any conjugacy class in X . Then for1
Ž .any p�-element a � G 	 M, C a contains a Sylow r-subgroup of G.G

G � G �Proof. Since a belongs to X , then a and r are coprime; that is,2
Ž .C a contains a Sylow r-subgroup of G.G

Step 7. G has a metabelian Hall � -subgroup.1

Proof. If r � � , then by Step 6, for each p�-element a � G 	 M,1
Ž . � Ž .C a contains a Sylow r-subgroup of G. Thus � r � � , r � � G�M ,G 1 p

and by Proposition 1, G�M has an abelian Hall � -subgroup H�M. Thus1
by Step 5, G has a metabelian Hall � -subgroup, as desired.1

Ž .Proof of Theorem 4. Suppose l G � n and let 1 � N � N � ��� �p 1 2
Ž Ž . Ž .N � G be the p-chain of G with N � O G , N � O G , N �n
1 1 p� 2 p�, p 3

Ž . . � Ž .O G . . . . If N�N is a p�-group, then by Lemma 2, � N�Np�, p, p� i i�1 p i i�1
� Ž .� � G .p

Ž . Ž Ž ..1 If n � N�N � 1, then by Lemma 3, N�Ni � 1 has a cen-i i�1 i
Ž .tral Hall � -subgroup, or a central Hall � -subgroup. Then l N�N �1 2 � i i�1i

1, i � 1, 2.
Ž . Ž Ž ..2 If n � N�N � 2, write � , � , respectively, for the vertexi i�1 1 2

Ž .sets of � N�N in different connected component. We have � � � ,i i�1 i i
� � � �i � 1, 2. Since p † N�N , by 6, Theorem 4 , l � 1. But on the otheri i�1 � i

Ž .hand, by Lemma 3, N�N has a central Hall � 	 � i � 1, 2 -subgroup;i i�1 i i
Ž .then l N�N � 1, j � 1, 2.� i i�1j

Ž . Ž .From 1 and 2 above, if N�N is a p�-group, then l � 1, i � 1, 2.i i�1 � i
Ž . Ž .Thus l G � l G 
 1, i � 1, 2.� pi

� � � 4Proof of Theorem 5. We use induction on G . Let � � r, s .

We will prove the theorem in five steps.

Ž . Ž .Step 1. First we can assume that 	 G � 1, O G � 1, and� �
� �Ž .O G � G.

Ž . � �Ž .Proof. Clearly we can assume that O G � 1, O G � G. Suppose� �

Ž . Ž Ž ..that 	 G � 1. If r or s does not belong to � G�	 G , then byp�
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Ž .Proposition 1, G�	 G has an abelian Sylow r- or abelian Sylow s-sub-
Ž Ž .. Ž Ž .. �group. Then l G�	 G � 1 or l G�	 G � 1, and by 9, Chap. VI,r s

� Ž . Ž .Theorem 6.4 , l G � 1 or l G � 1. The theorem is correct. Thus we canr s
Ž Ž .. Ž Ž ..assume that r, s � � G�	 G , so by induction l G�	 g � 1 orp� r

Ž Ž .. Ž . Ž .l G�	 G � 1. Thus we have l G � 1 or l G � 1, as desired. Hences r s
Ž .we can assume that 	 G � 1.

Ž . Ž . Ž . Ž . Ž .Step 2. F G � O G O G , and moreover O G � 1, O G � 1.r s r s

Ž . Ž . Ž . Ž .Proof. By Step 1, F G � O G O G . Assume that O G � 1. Thusr s r
Ž Ž .. Ž . Ž . � G �C O G � O G , so for any p�-element a � G 	 O G , s � a , andG s s s
� G � � Ž Ž .. Ž .r † a . Thus r � � G�O G , and by Proposition 1, G�O G has anp s s

Ž .abelian Sylow r-subgroup. Thus l G � 1, as desired. So we can assumer
Ž . Ž .that O G � 1, O G � 1.r s

Ž . Ž .Step 3. G has only two minimal normal subgroups O G and O G .r s

Ž . Ž .Proof. First we prove that O G and O G are minimal normalr s
Ž . Ž . Ž .subgroups of G. Since 	 G � 1, O G and O G are direct sums ofr s

Ž .minimal normal subgroups of G. Suppose M, N � O G are two differentr
Ž .minimal normal subgroups of G. If r or s does not belong to � G�M ,p�

then by Proposition 1, G�M has an abelian Sylow r- or abelian Sylow
Ž .s-subgroup. If the Sylow s-subgroup of G�M is abelian, then l G�M � 1s

Ž .and thus l G � 1, and the theorem is correct. So we can assume thats
Ž .G�M has an abelian Sylow r-subgroup. It follows that l G�M � 1. Ifr

Ž . Ž . Ž .r, s � � G�M , then by induction l G�M � 1 or l G�M � 1, and wep� r s
Ž . Ž .can also assume that l G�M � 1. Similarly we can assume that l G�Nr r

� Ž .� Ž .� 1. By 9, Chap. VI, Theorem 6.4 d , l G � 1, and the theorem isr
Ž . Ž .correct. Thus we may assume that O G and O G are minimal normalr s

subgroups of G.

Ž . Ž . Ž . Ž .Step 4. O G � Z G or O G � Z G .r s

Ž Ž .. Ž Ž ..Proof. Suppose C O G � G and C O G � G. Set H �G r G s
Ž Ž .. Ž Ž ..C O G C O G . If H is a proper subgroup of G, then G�H is not aG r G s

� �Ž .p-group, since O G � G. Let x � G 	 H be a p�-element. Then rs �
� G �x , a contradiction. Hence H � G. We may assume that there exists a

Ž Ž .. Ž Ž .. Ž Ž ..p�-element x � C O G with x � C O G . Otherwise C O G orG r G s G r
Ž Ž .. � �Ž .C O G contains a Hall �-subgroup of G, but since O G � G, thenG s
Ž Ž .. Ž Ž ..C O G � G or C O G � G, a contradiction. Similarly we mayG r G s

Ž Ž .. Ž Ž ..assume that there exists a p�-element y � C O G with y � C O G .G s G r
ŽWe may assume that x, y belong to a Hall p�-subgroup of G otherwise

.replace y by a suitable conjugate of y ; thus xy is a p�-element of G, and
Ž Ž Ž .. Ž Ž ... � Ž . �xy � G 	 C O G � C O G . Thus rs � G : C xy , a contradiction.G r G s G

Step 5. Conclusion.
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Ž . Ž .Proof. Without loss of generality, we assume that O G � Z G . Thusr
Ž . � G � Ž .either G � F G or s � b for any p�-element b in G 	 F G . If G �

Ž .F G , the theorem is obviously correct. In the second case, r �
� Ž Ž .. Ž . Ž .� G�F G , so by Proposition 1 2 , G�F G has an abelian Sylow r-sub-p

Ž . Ž . � � Ž . Ž . �group RF G �F G . Thus R� � R, R � O G � Z G , and by 9, Chap.r
� Ž .VI, Theorem 6.10 , l G � 1. This proves the theorem.r
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