Organization and Nucleotide Sequence of the Human Hermansky-Pudlak Syndrome (HPS) Gene

Tu Bailin,*§ Jangsuk Oh,* Guo Hong Feng,* Kazuyoshi Fukai,*‡ and Richard A. Spritz*† Departments of *Medical Genetics and †Pediatrics, Laboratory of Genetics, University of Wisconsin School of Medicine, Madison, Wisconsin, U.S.A.

Hermansky-Pudlak syndrome (HPS) is an autosomal recessive disorder characterized by oculocutaneous albinism, bleeding tendency, and lysosomal ceroid storage disease, associated with defects of multiple cytoplasmic organelles-melanosomes, platelet-dense granules, and lysosomes. HPS is frequently fatal and is the most common single-gene disorder in Puerto Rico. We previously characterized the human HPS cDNA and identified pathologic mutations in the gene in patients with HPS. The HPS protein is a novel apparent transmembrane polypeptide that seems to be crucial for normal organellar development. Here we describe the structural organization, nucleotide

ermansky-Pudlak syndrome (HPS) is an autosomal recessive, multisystem disorder characterized by the triad of tyrosinase-positive oculocutaneous albinism (OCA), a bleeding tendency, and a ceroidlipofuscin lysosomal storage disease (Hermansky and Pudlak, 1959). Severe manifestations are frequent and may include progressive pulmonary fibrosis, granulomatous colitis, renal failure, and cardiomyopathy. As a result, HPS is frequently fatal; death usually occurs at age 30 to 50 or less as a result of restrictive lung disease, hemorrhage, or colitis (Witkop et al, 1990). At the cellular level, HPS is characterized by abnormalities of multiple cytoplasmic organelles-melanosomes, platelet dense granules, and lysosomes (Hermansky and Pudlak, 1959; Witkop et al, 1990) and thus has been thought to result from a defect of a protein required in common for the assembly, maturation, or structure of these different organelles.

Although generally rare, HPS is quite frequent in Puerto Rico, where it occurs with an incidence of 1 per 1800 (Witkop *et al*, 1990) and is the most common single-gene disorder, and in an isolated village in the Swiss Alps (Frenk and Lattion, 1982; Schallreuter *et al*, 1993). We previously localized the *HPS* gene to chromosome segment 10q23.1-q23.3 by linkage disequilibrium mapping in these two groups (Fukai *et al*, 1995), and others mapped the gene to 10q2

Manuscript received December 18, 1996; revised February 18, 1997; accepted for publication February 25, 1997.

Reprint requests to: Dr. Richard A. Spritz, Laboratory of Genetics, University of Wisconsin, 445 Henry Mall, Madison, WI 53706.

Abbreviations: HPS, Hermansky-Pudlak syndrome; IVS, intervening sequence.

§Current address: Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA.

‡Current address: Department of Dermatology, Osaka City University Medical School, Osaka, Japan. sequence, and polymorphisms of the human HPS gene. The gene consists of 20 exons spanning about 30.5 kb in chromosome segment 10q23.1-q23.3. One of the intervening sequences is a member of the novel, very rare class of so-called "AT-AC" introns, defined by highly atypical 5' and 3' splice site and branch site consensus sequences that provide novel targets for possible pathologic gene mutations. This information provides the basis for molecular analyses of patients with HPS and will greatly facilitate diagnosis and carrier detection of this severe disorder. Key words: oculocutaneous albinism/AT-AC introns/RNA splicing. J Invest Dermatol 108:923-927, 1997

(Wildenberg *et al*, 1995). Recently, we identified the *HPS* gene by a positional cloning approach and characterized several different frameshift mutations in patients with HPS (Oh *et al*, 1996). The predicted human HPS protein is a highly conserved, ubiquitously expressed, 700-amino acid polypeptide with predicted molecular mass of 79.3 kDa that contains two potential transmembrane helices and has no sequence similarity to any known proteins. The HPS polypeptide may thus be a transmembrane protein, possibly located in melanosomes, lysosomes, and other organelles that are defective in HPS, although equally possibly located in subcellular structures involved in trafficking of proteins to these various organelles.

Here, we report the exon-intron organization of the human HPS gene and its nucleotide sequence, and we describe a number of polymorphisms of the gene and HPS polypeptide. Of particular interest, HPS is the first disease gene that contains one of the very rare "AT-AC" class of introns (Hall and Padgett, 1994). The results of this study should thus form the basis for DNA-based mutation analyses of patients with HPS, greatly improving ease and accuracy of diagnosis of this unusual disorder.

MATERIALS AND METHODS

Analyses of a Human HPS Genomic Clone We previously described a ~450-kb human Bacterial Artificial Chromosome (BAC)/P1 Artificial Chromosome (PAC)/P1 clone contig that spanned the human HPS gene region (Oh *et al*, 1996). BAC 145M16 spanned the entire HPS gene and was thus used for direct DNA sequence analyses. DNA was prepared from 2-liter cultures of *Escherichia coli* by a modified alkaline lysis method, and 1 μ g was used as template in each sequencing reaction using the SequiTherm cycle sequencing kit (Epicentre Technologies, Madison, WI) and a large series of oligonucleotide primers derived either from the human HPS cDNA sequence (Oh *et al*, 1996) or from apparent intervening sequences (IVSs). Most sequences were determined on both strands and have been confirmed numerous times by analyses of polymerase chain reaction (PCR) products amplified from genomic DNAs of normal individuals and patients with

0022-202X/97/\$10.50 • Copyright © 1997 by The Society for Investigative Dermatology, Inc.

"Make, (I and south Tank Ind I), Makel"

Exon ^b	PCR. Primers	PCR Product Size (bp)	PCR Conditions ⁴
1	5'-GGAAACCTGGGTTCTGAGCCTG	375	1
(promoter and 5'-URT)	5'-ggagtgggtgaggctaggagt-3'		
2	5'-CACGCAGCCCTTCTCCAGCTT-3'	281	4
(5'-UTR)	5'-ATTCCATCTGCCTCCCAAAG-3'		
3	5'-TCAGACTGAGCTCATAGATG-3'	229	1
	5'-TATGGTTCCTTCCTATCCAC-3'		
4	5'-CCCTTGATATCAAGGCCTGATCT-3'	273	2
	5'-TCAAGCTGAGGGAAGAGGAAC-3'		
5	5'-CTGCAGAGACCAGGGCAGGT-3'	279	5
- increases brood	5'-CACACGCTGCCTGGCCCAGC-3'		
6	5'-CTGAGACTGTGGTCCTTTGGT-3'	243	3
former white	5'-CCCTCTGACCTGACAGCTTC-3'		de ment
7	5'-AGGGCTTGGAGTGGGCAAGGTT-3'	280	3
rivers, senses	5'-TAGGGGAGTGAGAAGGCCAG-3'		
8	5'-TTAACCTGCCTGCCCGTCT-3'	228	2
i geritk, a said	5'-AGGCAGGTTTTCTGAACTAC-3'		and true 1 is
9	5'-AGATAGGAGCTAACCAGCCT-3'	205	3
	5'-AAAGGCCTGGTCGCCTGCAGAG-3'	200	8
10	5'-GGGACAGGGTTGAGCCAGCT-3'	172	3
	5' - CGCAGCTAGCTATTGTTTCC - 3'	1/2	ant C. ma
11	5'-GGTACTTACATCGTTATGTT-3'	149	1
11	5' - CCAATACTCACTCCCCCCATCT - 3'		
12	5' - CTTGTGGTTCACAGATAGGGCC - 3'	303	2
12	5'-GGAAGACGTGCCAACCCTAAG-3'	000	-
13	5' - CTTAGGCTTGGCACACTCTTC - 3'	312	2
15	5'-ACCGGATGTACCCTGCTGCTGC-3'	512	-
14	5'-CACTGGAAATATGGTCGGGATG-3'	210	1
14	5'-TGCTGATAAATGAAGGGCAG-3'	210	address and a state
15	5'-GATGGTCCACAAAGGACGAG-3'	268	2
15	5'-GCGTGAAGGAAGTACGGGCC-3'	200	30-5-5-
16	5'-GGGTGGCCAGGGCAGGGTCT-3'	171	3
	5'-AAGAGGCTTGTTGGGCTGGCT-3'	1/1	in a subscription of the s
17	5' - CGTCCCTACCTCCTCCCTCCTCT-5'	249	2
	5'-AAGGGCTACCCAATATTCGCCT-3'	212	the surface set
18	5'-AAGGCCTGCGAGAGTGGTGAT-3'	215	2
	5'-GAGTTACAGAGCGGGAAGTG-3'	215	
10	5'-AGCCCGGTGCGTCTGACTCAG-3'	195	2
15	5'-AATGGGGGCATCTGTCCCCAG-3'	175	Charles and a second second
20-2	5'-GCCACAGCCTCACTCCTGAAT-3'	293	and the second second
20-a	5'-AGACAGGAGGCTCTCGTCAT-3'	275	here a preserve
20_b	5'-CACCCTTGCCTCCCACTCTT-3'	467	2
(3' - UTR)	5'-CCTACCACACTGGGTAATCCT-3'	407	W. alfeman
20-0	5'-TAAAGCGATGGCACCTCCGT-3'	264	3
(3' - UTR)	5'-AAGACATCAAAGCCTGCGCT-3'	204	una pair ba
& poly(A) site			

^a PCR conditions are 94°C for 4 min, followed by 30 cycles of 94°C for 30 sec, T°C for 1 min, and 72°C for 1 min, followed by 72°C for 10 min., where T = 55 (1); 58 (2); 62 (3); 65 (4); or 68 (5).

^b UTR, untranslated region.

HPS, using primer pairs derived from the IVSs flanking each exon (Table I). DNA sequences were compiled and analyzed by computer using the DNASTAR (Madison, WI) software package.

Determination of IVS Positions and Sizes Exon-IVS junctions were identified by comparing the *HPS* genomic sequence with that of *HPS* cDNA (Oh *et al*, 1996). Exon contents of all relevant components of the BAC/PAC/P1 contig were determined by PCR using primer pairs derived from the adjacent IVSs (**Table I**), followed by agarose gel electrophoretic analysis of the PCR products. The sizes of all IVSs were determined by long-range PCR using the Expand High Fidelity PCR system (Boehringer Mannheim, Indianapolis, IN), primer pairs derived from the 5' and 3' flanking exons (**Table I**), and human genomic DNA and *HPS* BAC 145M16 as templates. PCR conditions were 94°C for 4 min, followed by 30 cycles of 94°C for 20 s, either 62°C or 68°C for 1 min, and 68°C for 3 to

Figure 1. Organization of the human HPS gene. *Boxes* denote exons as numbered below. Exons 1 and 2 (
) are entirely noncoding. The sizes of the IVSs (kb) are shown. Indicate alternative RNA splices

5 min, followed by 72°C for 10 min, and PCR products were analyzed by agarose gel electrophoresis.

Primer Extension Analysis of the 5' End of Human HPS mRNA Polyadenylated mRNA was isolated from cultured human FME melanoma cells (Tveit *et al*, 1980) using the FastTrack kit (InVitrogen, San Diego, CA). Primer extension analysis was carried out using a 20-mer primer, 5'-GAGGCCCACGTACCGGATCG-3', derived principally from exon 1. The primer was 5'-end labeled with $[\gamma-^{32}P]$ -ATP and T4 polynucleotide kinase and purified using a Bio-Rad Biospin P6 column (Bio-Rad, Richmond, CA). Radiolabeled primer (5 × 10⁵ cpm) was hybridized to 10 µg poly(A) mRNA for 20 min at 58°C, and primer extension analysis was carried out using the Primer Extension System (Promega, Madison, WI) essentially as described (Kingston *et al*, 1989).

Identification and Analyses of HPS Gene Polymorphisms Nonpathologic polymorphisms of the HPS gene were identified in the course of mutation analyses of patients with HPS by PCR-based single-strand conformation polymorphism/heteroduplex screening and subsequent DNA sequence analysis as described previously (Lee *et al*, 1995). Allele frequencies were determined by PCR amplification of the corresponding HPS exon segment from DNA of unrelated normal individuals and single-strand conformation polymorphism/heteroduplex or restriction enzyme cleavage analysis.

RESULTS AND DISCUSSION

Organization and Nucleotide Sequence of the Human HPS Gene DNA sequence analysis of BAC 145M16 using primers derived from the HPS cDNA sequence (Oh et al, 1996) showed that the HPS gene consists of 20 exons (Fig 1). The positions of the 19 IVSs and the DNA sequence at each IVS-exon boundary are shown in **Table II**. The 20 exons range in size from 50 to 180 nucleotides (nt), except for the 3'-terminal exon 20, which can span from 695 to 1525 nt, depending on which of two principal alternative mRNA polyadenylation sites is utilized (c.f. Oh et al, 1996, Fig. 4). Exons 1 and 2 are noncoding, corresponding to the 5'-untranslated region of HPS mRNA; the translational initiation codon is thus located exactly at the beginning of exon 3. The entire 9730-bp DNA sequence determined has been deposited in the GenBank DNA sequence database (accession numbers U79121-U79136).

To estimate the sizes of the 19 IVSs of the HPS gene, we carried out PCR amplification from human genomic DNA and from BAC 145M16. In every case the sizes of the PCR products amplified from genomic and BAC DNA templates were identical. In some cases we also determined the complete DNA sequence spanning the IVS. As indicated in **Fig 1**, the 19 IVSs ranged in size from 84 bp to about 6.8 kb. The total size of the human HPS gene is thus about 30.5 kb.

Most of the HPS IVSs obey the so-called "GT-AG rule," which describes exon-IVS junctions in protein-encoding genes. HPS IVS16, which is about 1.0 kb in size, is strikingly different, however, with the dinucleotide AT occurring at its 5' end and AC at its 3' end (Fig 2). HPS IVS16 therefore is a rare member of a newly discovered class of so-called "AT-AC introns" (Jackson, 1991; Hall and Padgett, 1994; Wu and Krainer, 1996), defined by the occurrence of these atypical dinucleotides at their 5' and 3' ends, respectively. AT-AC introns are characterized also by somewhat longer, highly conserved, 5' and 3' splice site and branch site consensus sequences; the 5' splice site consensus is /ATATCCT, the 3' splice site consensus is CAC/, and the branch site consensus sequence is TCCTTAAC (Hall and Padgett, 1996; Tarn and Steitz,

$ \begin{array}{cccccc} & 2 \ GCCAAGgtagatgatc IV$2 \ tccctgcagaTATGAAG. \ Exon3 \\ & & & & & & & & & & & & & & & & & &$	and the second s	5'Exon	1AGTGAGgtagggtccc.	.IVS1gcatttgcagGACCAG.	.Exon2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Exon	2GCCAAGgtagatgatc.	.IVS2tccctggcagATGAAG. MetLvs	.Exon3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			39	40	
		Exon	3 GAAGAGatgagtgcag.	.IVS3atttttgcagCTCCCT.	.Exon4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Exon	GluGlu	LeuPro	
$\begin{array}{ccccccc}$			85	86	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Exon	4 CACCTGgtgagtctat.	.TVS4gtgcctgcagTTTGGA.	.Exon5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			HisLen	PheGlv	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			133	133	
		Fyon	5 AAAGGAgtgagtcttc.	.TVS5ctgcccccagGCTGCG.	.Exon6
		Exon	LvsG]	uLeuAr	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			169	170	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Exon	6 GTGGAGgtgactactg.	.IVS6ccctggctagGCCCTG.	.Exon7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		···Enon	ValGlu	AlaLeu	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			223	223	
		Fyon	7 CTCTAGgtgaggtgaa.	.IVS7gtgtctgcagCCACAG.	.Exon8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Exteri	SerSe	rHisSe	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			256	257	
11eGln ProSer 289 290 Exon 9. G&ACGgtgtgtgctgIVS9tccattccagGAGACAExon10 GluThr 313 .13 313 Exon 10GCTCAGgtgaggaccgIVS10tggcctgcagGTACCAExon11 SErG lySer 329 330 Exon 11CTTCAGgtgaggttctIVS11tcctctgtagATAGCAExon12 LeuGln IleAla 385 386 Exon 12ACCAGGgtaggaggc.IVS12ttaccctcagAGCCCCExon13 ThrArg SerPro 445 446 Exon 13ATTCAGgtgagacccaIVS13ttccttccagAGCACCExon14 IleGln SerTor 445 446 Exon 13ATTCAGgtgagaccg.IVS14tcgtgctcagGCTGCTExon15 TrpG1 uLeuLe 511 511 Exon 15CATCCGgtaagtgcg.IVS15ccctcggcagGGAGAAExon16 MetAr gdluLy 533 533 Exon 16GGTGTCatatcctgacIVS16agaccttcacCTACCTExon17 Valse rTyrLe 581 582 Exon 17ACTAAGgtagcactttIVS17ttttc		Exon	8 ATTCAGgtctcagggc.	.IVS8ccctgcacagCCTTCC.	.Exon9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		···	TleGln	ProSer	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			289	290	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Exon	9. GAGACGatatatacta.	.IVS9tccattccagGAGACA.	.Exon10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			GluThr	GluThr	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			313	313	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Exon	10GCTCAGgtgaggaccg.	.IVS10tggcctgcagGTAGCA.	.Exon11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			SErG	lySer	
$\begin{array}{ccccccc}$			329	330	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Exon	11CTTCAGgtgagtttct.	.IVS11tcctctgtagATAGCA.	.Exon12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			LeuGln	IleAla	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			385	386	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Exon	12ACCAGGgtaggagagc.	.IVS12ttaccctcagAGCCCC.	.Exon13
$\begin{array}{cccccccc} 445 & 446 \\Exon & 13ATTCAGgtgagacccaIVS13ttccttccagAGCACCExon14 \\ Ilecln & SerTGhr \\ & 466 & 466 \\Exon & 14CTGGGAgtggtgtg.IVS14tcgtgctcagGCTGCTExon15 \\ & TrpG1 & uLeuLe \\ & 511 & 511 \\Exon & 15CATGCGgtaagtgcagIVS15ccctcggcagGGAGAAExon16 \\ & MetAr & gGluLy \\ & 533 & 533 \\Exon & 16GGTGTCatatcctgacIVS16agaccttcacCTACCTExon17 \\ & ValSe & rTyrLe \\ & 581 & 582 \\Exon & 17ACTAAGgtaaccatttIVS17ttttccccagGTCTGGExon18 \\ & ThrLys & ValTrp \\ & 619 & 620 \\Exon & 18GACATGgtaggtgagg.IVS18ccctcctcagGGTACExon19 \\ & AspMet & GlyTyr \\ & 647 & 647 \\Exon & 19CTACAGgtgaccgctgcIVS19tcctccccagGAAGCTExon203' \\ & TyrAr & gLysLe \\ \end{array}$			ThrArg	SerPro	
<pre>Exon 13ATTCAGgtgagacccaIVS13ttccttccagAGCACCExon14 IleGln SerTGhr 466 466 Exon 14CTGGGAgtgagtggtg.IVS14tcgtgctcagGCTGCTExon15 TrpG1 uLeuLe 511 511 Exon 15CATGCGgtaagtgcag.IVS15ccctcggcagGGAGAAExon16 MetAr gGluLy 533 533 Exon 16GGTGTCatatcctgacIVS16agaccttcacCTACCTExon17 ValSe rTyrLe 581 582 Exon 17ACTAAGgtaaccatttIVS17ttttccccagGTCTGGExon18 ThrLys ValTrp 619 620 Exon 18GACATGgtaggtgagg.IVS18ccctcctcagGGGTACExon19 AspMet GlyTyr 647 647 Exon 19CTACAGgtgacgctgcIVS19tcctccccagGAGCTExon203' TyrAr gLysLe</pre>			445	446	
IleGlnSerTGhr466466Exon14CTGGGAgtgagtggtgIVS14tcgtgctcagGCTGCTExon15TrpGluLeuLe511511Exon15CATGCGgtaagtgcagIVS15ccctcggcagGGAGAAExon16MetArgGluLy533533Exon16GGTGTCatatcctgacIVS16agaccttcacCTACCTExon17ValserTyrLe581582Exon17ACTAAGgtaaccatttIVS17ttttccccagGTCGGExon18ThrLysValTp619620Exon18GACATGgtaggtgaggIVS18ccctctcagGGTACExon19AspMetGlyTyr647647Exon19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203'TyrArgLysLe		Exon	13ATTCAGgtgagaccca.	.IVS13ttccttccagAGCACC.	.Exon14
466 466 Exon 14CTGGGAgtgagtggtg.IVS14tcgtgctcagGCTGCTExon15 TrpGl uLeuLe 511 511 Exon 15CATGCGgtgagtgagt.IVS15ccctcggcagGAGAAExon16 MetAr gGluLy 533 533 Exon 16GGTGTCatatcctgac.IVS16agaccttcacCTACCTExon17 ValSe rTyrLe 581 582 Exon 17ACTAAGgtaaccattt.IVS17ttttccccagGTCTGGExon18 ThrLys ValTrp 619 620 Exon 18GACATGgtaggtgagg.IVS18ccctcctcagGGGTACExon19 AspMet GlyTyr 647 647 Exon 19CTACAGgtgacgctgc.IVS19tcctccccagGAAGCTExon203' TyrAr gLysLe			IleGln	SerTGhi	· · · · · · · · · · · · · · · · · · ·
<pre>Exon 14CTGGGAgtgagtggtgIVS14tcgtgctcagGCTGCTExon15 TrpGl uLeuLe 511 511 Exon 15CATGCGgtaagtgcag.IVS15ccctcggcagGAGAAExon16 MetAr gGluby 533 533 Exon 16GGTGTCatatcctgac.IVS16agaccttcacCTACCTExon17 ValSe rTyrLe 581 582 Exon 17ACTAAGgtaaccatttIVS17ttttccccagGTCTGGExon18 ThrLys ValTrp 619 620 Exon 18GACATGgtaggtgagg.IVS18ccctcctcagGGGTACExon19 AspMet GlyTyr 647 647 Exon 19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203' TyrAr gLysLe</pre>			466	466	
TrpGl uLeuLe 511 511 Exon 15CATGCGgtaagtgcagIVS15ccctcggcagGAGAAExon16 MetAr gGluLy 533 533 Exon 16GGTGTCatatcctgacIVS16agaccttcacCTACCTExon17 ValSe rTyrLe 581 582 Exon 17ACTAAGgtaaccatttIVS17ttttccccagGTCTGGExon18 ThrLys ValTrp 619 620 Exon 18GACATGgtaggtgaggIVS18ccctctcagGGGTACExon19 AspMet GlyTyr 647 647 Exon 19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203' TyrAr gLysLe		Exon	14CTGGGAgtgagtggtg.	.IVS14tcgtgctcagGCTGCT.	Exon15
511 511 Exon 15CATGCGgtaagtgcag.IVS15ccctcggcagGGAGAAExon16 MetAr gGluLy 533 533 Exon 16GGTGTCatatcctgac.IVS16agaccttcaCCTACCTExon17 ValSe rTyrLe 581 582 Exon 17ACTAAGgtaaccattt.IVS17ttttccccagGTCTGGExon18 ThrLys ValTrp 619 620 Exon 18GACATGgtaggtgagg.IVS18ccctctcagGGGTACExon19 AspMet GlyTyr 647 647 Exon 19CTACAGgtgacgctgc.IVS19tcctccccagGAAGCTExon203' TyrAr gLysLe			TrpGl	uLeuLe	
Exon 15CATGCGgtaagtgcagIVS15ccctcggcagGGAGAAExon16 MetAr gGluLy 533 533 Exon 16GGTGTCatatcctgacIVS16agaccttcacCTACCTExon17 ValSe rTyrLe 581 582 Exon 17ACTAAGgtaaccatttIVS17ttttccccagGTCTGGExon18 ThrLys ValTrp 619 620 Exon 18GACATGgtaggtgaggIVS18ccctcctcagGGGTACExon19 AspMet GlyTyr 647 647 Exon 19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203' TyrAr gLysLe			511	511	
MetAr gGluLy 533 533 Exon 16GGTGTCatatcctgacIVS16agaccttcacCTACCTExon17 ValSe rTyrLe 581 582 Exon 17ACTAAGgtaaccatttIVS17ttttccccagGTCTGGExon18 ThrLys ValTrp 619 620 Exon 18GACATGgtaggtgagg.IVS18ccctcctcagGGGTACExon19 AspMet GlyTýr 647 647 Exon 19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203' TyrAr gLysLe		Exon	15CATGCGgtaagtgcag.	.IVS15ccctcggcagGGAGAA.	Exon16
533 533 Exon 16GGTGTCatatcctgacIVS16agaccttcacCTACCTExon17 ValSe rTyrLe 581 582 Exon 17ACTAAGgtaaccatttIVS17ttttccccagGTCTGGExon18 ThrLys ValTrp 619 620 Exon 18GACATGgtaggtgaggIVS18ccctcctcagGGGTACExon19 AspMet GlyTýr 647 647 Exon 19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203' TyrAr gLysLe			MetAr	gGluLy	
Exon 16GGTGTCatatectgacIVS16agacetteacCTACCTExon17 ValSe rTyrLe 581 582 Exon 17ACTAAGgtaaccatttIVS17ttttecccagGTCTGGExon18 ThrLys ValTrp 619 620 Exon 18GACATGgtaggtgaggIVS18ccetectcagGGGTACExon19 AspMet GlyTyr 647 647 647 Exon 19CTACAGgtgacgetgcIVS19teetecccagGAAGCTExon203' TyrAr gLysLe			533	533	
ValserTyrLe581582Exon17ACTAAGgtaaccatttIVS17ttttccccagGTCTGGExon18ThrLysValTrp619620Exon18GACATGgtaggtgaggIVS18ccctcctccagGGGTACExon19AspMetGlyTýr647647Exon19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203'TyrArgLysLe		Exon	16GGTGTCatatcctgac.	.IVS16agaccttcacCTACCT.	Exon17
581 582 Exon 17ACTAAGgtaaccatttIVS17ttttccccagGTCTGGExon18 ThrLys ValTrp 619 620 Exon 18GACATGgtaggtgaggIVS18ccctcctcagGGGTACExon19 AspMet GlyTyr 647 647 Exon 19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203' TyrAr gLysLe			ValSe	rTyrLe	
<pre>Exon 17ACTAAGgtaaccatttIVS17ttttccccagGTCTGGExon18 ThrLys ValTrp 619 620 Exon 18GACATGgtaggtgaggIVS18ccctcctcagGGGTACExon19 AspMet GlyTyr 647 647 Exon 19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203' TyrAr gLysLe</pre>			581	582	
ThrLys ValTrp 619 620 Exon 18GACATGgtaggtgaggIVS18ccctcctcagGGGTACExon19 AspMet GlyTýr 647 647 Exon 19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203' TyrAr gLysLe		Exon	17ACTAAGgtaaccattt.	.IVS17ttttccccagGTCTGG	Exon18
619 620 Exon 18GACATGgtaggtgaggIVS18ccctcctcagGGGTACExon19 AspMet GlyTýr 647 647 Exon 19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203' TyrAr gLysLe			ThrLys	ValTrp	
Exon 18GACATGgtaggtgaggIVS18ccctcctcagGGGTACExon19 AspMet GlyTyr 647 647 Exon 19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203' TyrAr gLysLe			619	620	
AspMet GlyTyr 647 647 Exon 19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203' TyrAr gLysLe		Exon	18GACATGgtaggtgagg.	.IVS18ccctcctcagGGGTAC	Exon19
647 647 Exon 19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203' TyrAr gLysLe			AspMet	GlyTyr	
Exon 19CTACAGgtgacgctgcIVS19tcctccccagGAAGCTExon203' TyrAr gLysLe			647	647	
TyrAr gLysLe		Exon	19CTACAGgtgacgctgc.	IVS19tcctccccagGAAGCT	Exon203'
			TyrAr	gLysLe	

Table II.	Exon-Intron	Boundaries	of the	Human H	IPS Gene
-----------	--------------------	------------	--------	---------	-----------------

^a Note. Codon enumeration is according to Oh et al (1996). Uppercase, exon sequences; lowercase, IVSs. All sequences have been deposited in the GenBank database, accession numbers U79121–U79136.

1996). HPS IVS16 conforms well to these consensuses, /ATATCCT, CAC/, and ACCTT^A/_GAC, respectively, and it is tempting to speculate that these sequences represent unique targets

Exon 16 1.0 kb Exon ATGGTGTC atatectgaegeegg//aageacett*/gaeteagaeetteac CTAC 5' Splice Branch site 3' Splice	
ATGGTGTC atatectgacgccgg//aageacett*/gaetcagacettecae CTAC 5'Splice Branch site 3'Splice	n 17
5'Splice Branch site 3'Splice	CTAG
Consensus Consensus Consensus	

Figure 2. Splice junction sequences of IVS16. Uppercase, exon sequences; lowercase, IVS16 sequences. The AT-AC consensus 5' and 3' splice and branch site sequences (Hall and Padgett, 1996; Tarn and Steitz, 1996) are shown.

for mutations that result in HPS. There is no apparent functional relationship among genes containing AT-AC introns, and in each case the gene contains additional IVSs that conform to the GT-AG rule. This raises a problem for removal of AT-AC introns from such "mongrel" pre-mRNAs, solved by their excision by a novel spliceosome that contains U11, U12, and U5 snRNPs (Hall and Padgett, 1996; Tarn and Steitz, 1996).

We previously found (Oh *et al*, 1996) that almost half of the *HPS* cDNAs studied lacked a 99-base segment, encoding 33 amino acids, which corresponds precisely to exon 9. Exon 9 thus is either included or excluded from *HPS* mRNA by alternative splicing. We identified three additional rare alternative splices by analysis of *HPS* cDNAs and expressed sequence tag database entries. Use of an alternative 3' splice site for IVS1, located 9 nt 5' to the major 3'

Figure 3. Nucleotide sequences of the promoter and exon 1 of the HPS gene. Uppercase, exon sequences; lowercase, 5' flanking sequences. Numbers denote nucleotide positions. \uparrow and \uparrow indicates approximate mRNA 5' starts based on primer extension. Very high probability transcriptional motifs are indicated; many others were identified with less certainty.

splice site, would result in the addition of 9 bases (CATTTGCAG) in the 5' untranslated region. Use of an alternative 5' splice site for IVS6, located 43 nt 3' to the major 5' splice site, would result in a frameshift. And in one expressed sequence tag (N44027) there appears to have been an additional splice of a minor 194-nt intron entirely within the 3' untranslated region, removing nt 175–369 of the 3' untranslated region. We reported previously that the major *HPS* mRNA is ~3.0 kb in size, with minor 3.9 and 4.4-kb mRNAs (Oh *et al*, 1996). We have since identified an additional major 1.5 kb mRNA on northern blots; however, this mRNA species is detected only by a probe derived from the 5' portion of *HPS* cDNA (data not shown), and indirect evidence suggests that this signal may result from cross-hybridization to an unrelated mRNA.

The transcriptional initiation site of human HPS mRNA was characterized by comparison of the HPS genomic DNA sequence with the 5'-end sequences of a number of HPS cDNAs (Oh et al. 1996) and by primer extension analysis of poly(A) mRNA from human melanoma. The farthest upstream HPS cDNA 5' end occurred at nt 458 of the HPS genomic sequence shown in Fig 3. Primer extension analysis, using a 20-mer oligonucleotide primer derived from exon 1, yielded a major extension product of approximately 139 nt (Fig 4), consistent with an mRNA 5' start at about nt 356. Minor primer extension products sized approximately 81 nt and 90 nt would correspond to mRNA 5' termini at about nt positions 414 and 405, respectively. These data are consistent with the approximately 3.0 kb size of HPS mRNA and the position of this primer in the full-length HPS cDNA sequence (Oh et al, 1996). Analysis of the human HPS genomic sequence upstream of the cDNA end at position 458 (Fig 3) revealed no apparent 3' splice sites, and computer-aided (NNPP-Eukaryotic, TSSW, TESS,

Figure 4. HPS primer extension analysis of human melanoma poly(A) mRNA. A 5' end-radiolabeled 20-mer oligonucleotide complementary to the farthest upstream HPS cDNA (see Materials and Methods) was used to prime reverse transcription of the RNA. Lane 1, primer extension products; lane 2, molecular size standard (radiolabeled pBR322 DNA digested with HaeIII plus BstNI). TSSG) promoter analyses of this sequence identified two TATAbox transcriptional motifs, at nt positions 61 and 315, with predicted transcriptional starts at about nt 91 and 342; the latter is in reasonably good agreement with the primer extension result. A large number of additional putative transcriptional motifs were predicted in this region, although none associated with genes specifically expressed in melanocytes. These findings suggest that this region most likely contains the functional *HPS* gene transcriptional promoter.

DNA Sequence Polymorphisms of the Human HPS Gene By comparison of the HPS cDNA and genomic sequences, and in the course of mutation analyses of the HPS gene in patients with HPS (Oh *et al*, 1996; our unpublished data), we identified a total of 15 nonpathologic DNA sequence polymorphisms of the gene. Primers and conditions used for these analyses are shown in **Table** I, providing the basis for DNA-based diagnosis of HPS. As shown in **Table III**, we determined approximate allele frequencies for each polymorphisms are apparently silent and thus are unlikely to affect either function or expression of the HPS gene. Four polymorphisms, however, result in amino acid substitutions: Gly283Trp, Pro491Arg, Arg603Gln, and Val630Ile. The first three of these substitutions are nonconservative; the Val630Ile substitution is

Table III. Nonpathologic Polymorphisms of the Human HPS gene

		Allele Frequency ^b		
Description ^a	Polymorphism	Caucasians $(n = 28)$	Asians $(n = 30)$	
5' UTR, nt 156	C→A	0.32	0.33	
Т99Т	ACC→ACT	0.04	0.23	
G283W	GGG→TGG	0.04	0	
IVS11, +13	T→C	0	0.03	
IVS14, +7, +8	GG→CT	0.25	0.40	
P491R	CCC→CGC	0.11	0.23	
IVS16, -15	A→G	0.25	0.40	
S566S ^e	TCG→TCA	0	0	
R603Q	CGG→CAG	0.89	0.83	
V6301d	GTC→ATC	0	0	
IVS19, +9	A→G	0	0.03	
3' UTR, nt 2581	$C \rightarrow T$	0.64	0.83	
3' UTR, nt 2633	$T \rightarrow C$	0.35	0.60	
3' UTR, nt 2761	G→A	0.39	0.57	
3' UTR, nt 3015°	G→C	ND	ND	

^{*a*} Nucleotide (nt) numbers refer to human *HPS* cDNA sequence (Oh *et al*, 1996). ^{*b*} The indicated number of unrelated chromosomes from each group were studied,

' The S566S polymorphism has only been observed in a Portugese HPS patient.

^d The V6301 polymorphism has only been observed distal to a frameshift in Swiss patients with HPS (Oh *et al*, 1996).

^e ND, not determined. This nt residue is G in the HPS cDNA (Oh et al, 1996) versus C in BAC 145M16.

conservative, but thus far has only been observed distal to a frameshift mutation in a subset of HPS patients and thus may not ever occur in the HPS polypeptide. Comparison of the human HPS cDNA sequence (Oh *et al*, 1996) with expressed sequence tags apparently corresponding to partial rat (GenBank H34001) and mouse (W29855) HPS cDNA sequences, as well as to that of full-length mouse Hps cDNA (our unpublished data), demonstrates that amino acid residues Pro491 and Val630 have been conserved during mammalian evolution; thus, these polymorphic substitutions at these residues may not be entirely without consequences for HPS function. These results will be of considerable assistance to interpretation of data obtained during DNA-based diagnoses of HPS.

NOTE ADDED IN PROOF

We have recently characterized the mouse Hps gene and shown it to consist of 19 exons, with IVSs corresponding to those in the human gene, except in the 5' untranslated region. The mouse Hps gene corresponds to the murine *pale-ear* (*ep*) locus (Feng *et al*, 1997).

This work was supported by Clinical Research Grant 6-0281 from the March of Dimes Birth Defects Foundation and National Institutes of Health Grant AR39892. This is paper 3479 from the Laboratory of Genetics, University of Wisconsin.

REFERENCES

Feng GH, Bailin T, Oh J, Spritz RA: Mouse pale ear (ep) is homologous to human Hermansky-Pudlak syndrome and contains a rare 'AT-AC' intron. Hum Mol Genet 6:793-797, 1997

(a) A set of the se

(a) A set of the se

Constraint phonon by a characteristic strange of the constraint of the constraint

- 19. 1 . . .

- No. 1 Annual Annual

- Frenk E, Lattion F: The melanin pigmentary disorder in a family with Hermansky-Pudlak syndrome. J Invest Dermatol 78:141–143, 1982
- Fukai K, Oh J, Frenk E, Almodovar C, Spritz RA: Linkage disequilibrium mapping of the gene for Hermansky-Pudlak syndrome to chromosome 10q23.1-q23.3. Hum Mol Genet 4:1665–1669, 1995
- Hall SL, Padgett RA: Conserved sequences in a class of rare eukaryotic nuclear introns with non-consensus splice sites. J Mol Biol 239:357-365, 1994
- Hall SL, Padgett RA: Requirement of U12 snRNA for *in vivo* splicing of a minor class of eukaryotic nuclear pre-mRNA introns. *Science* 271:1716–1718, 1996
- Hermansky F, Pudlak P: Albinism associated with hemorrhagic diathesis and unusual pigmented reticular cells in the bone marrow: report of two cases with histochemical studies. *Blood* 14:162–169, 1959
- Jackson IJ: A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res 19:3795–3798, 1991
- Kingston RE: In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman SG, Smith JA, Struhl K (eds.). Short Protocols in Molecular Biology. Wiley, New York, 1989
- Lee S-T, Park S-K, Lee K-H, Holmes SA, Spritz RA: A non-radioactive method for simultaneous detection of single-strand conformation polymorphisms (SSCPs) and heteroduplexes. *Molecule Cell* 5:668–672, 1995
- Oh J, Bailin T, Fukai K, Feng GH, Ho L, Mao J-I, Frenk E, Tamura N, Spritz RA: Positional cloning of a gene for Hermansky-Pudlak syndrome, a disorder of cytoplasmic organelles. Nat Genet 14:300–306, 1996
- Schallreuter KU, Frenk E, Wolfe LS, Witkop CJ, Wood JM: Hermansky-Pudlak syndrome in a Swiss population. Dermatology 187:248–256, 1993
- Tarn W-Y, Steitz JA: A novel spliceosome containing U11, U12, and U5 snRNPs excises a minor class (AT-AC) intron in vitro. Cell 84:801–811, 1996
- Tveit KM, Fostad O, Johannessen JV, Olsnes S: A human melanoma cell line established from xenograft in athymic mice. Br J Cancer 41:724–733, 1980
- Wildenberg SC, Oetting WS, Almodovar C, Krumwiede M, White JG, King RA: A gene causing Hermansky-Pudlak syndrome in a Puerto Rican population maps to chromosome 10q2. Am J Hum Genet 57:755–765, 1995
- Witkop CJ, Babcock MN, Rao GHR, Gaudier F, Sommers CG, Shanahan F, Harmon KR, Townsend D, Sedano HO, King RA, Cal SX, White JG: Albinism and Hermansky-Pudlak syndrome in Puerto Rico. Bol Assoc Med P R 82:333–339, 1990
- Wu Q, Krainer AR: U1-mediated exon definition interactions between AT-AC and GT-AG introns. Science 274:1005–1008, 1996