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Abstract

We characterize β-strongly normalizing λ-terms by means of a non-idempotent intersection type system.
More precisely, we first define a memory calculus K together with a non-idempotent intersection type system
K, and we show that a K-term t is typable in K if and only if t is K-strongly normalizing. We then show
that β-strong normalization is equivalent to K-strong normalization. We conclude since λ-terms are strictly
included in K-terms.

Keywords: Lambda-calculus, memory calculus, strong normalization, intersection types.

1 Introduction

It is well known that the β-strongly normalizing λ-terms can be characterized as

those being typable in suitable intersection type (IT) systems. This result dates

back to the late 1970s and early 1980s, when intersection types were invented to

endow the pure lambda calculus with powerful type-assignment systems [2,12,28,26].

A survey of these results, out of the scope of this paper, can be found for instance

in [35,3].

In more recent years, a revisitation of those early results has been driven by

the introduction of resource aware semantics of λ-calculi [21,6,15,7] and the corre-

sponding non-idempotent intersection types assignment systems. The inhabitation

problem for instance, known to be undecidable in an idempotent setting [32], was

proved to be decidable for non-idempotent types [8].

Just like their idempotent precursors, these type systems allow for a charac-

terization of strong normalization [5,14] (as well as weak normalization and head

normalization [15,9]), but they also grant a substantial improvement: proving that
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typable terms are strongly normalizing becomes much simpler. Let us provide a brief

account of this improvement, by highlighting in the way the quantitative character

of non-idempotent intersection types versus the qualitative flavor of the idempotent

ones. The proof of the highlighted statement above, in the non-idempotent case,

goes roughly as follows: given a typing derivation for a term t, and willing to prove

that t is strongly normalizing, take whatever β-reduct t′ of t. The subject reduction
lemma, in this case, ensures not only that t′ is typable but also that there exists a

typing derivation for t′ whose size is smaller than the one of the typing derivation

for t we started from. Hence any β-reduction sequence starting from t is finite.

This shrinking of the size of typing derivations along reduction sequences, in

sharp contrast to what happens in the idempotent setting, is essentially due to the

fact that a type derivation for a term of the shape (λx.u)v may require as many

sub-derivations for v as the number of occurrences of x in u 1 . Let us provide a

simple example involving the Church numeral n := λy.λx.y(y(...yx)...).

Why is the term u = λx.t(t(...tx)...), t being an arbitrarily complex term, “sim-

pler to type” than its β-expanded form nt? The point is that the typical non-

idempotent intersection type 2 that can be assigned to the Church numeral n is,

in our notation, [[σ] → σ, ..., [σ] → σ] → [σ] → σ, the leftmost multiset containing

n copies of [σ] → σ. Thus, in order to assign a type to nt, n typing derivations

assigning [σ] → σ to t must be provided, exactly like in a type derivation for u. At

the same time, the outermost application nt vanishes with the reduction nt →β u,

so the typing derivation for u is smaller than that for nt.

In the idempotent case, on the other hand, a type 3 for n is an instance of

{{σ} → σ} → {σ} → σ, and the typing derivations for u may be hugely bigger than

those for nt, the former requiring n sub-derivations for t, the latter just one. That’s

why, for idempotent intersection type systems, the proof of the result above cannot

be combinatorial, and is typically based on the reducibility argument [31,17,25].

This shift of perspective goes beyond lowering the logical complexity of the proof:

the quantitative information provided by typing derivations in the non-idempotent

setting unveils interesting relations between typings (static) and reductions (dy-

namic) of λ-terms. For instance, in [15], a correspondence between the size of a

typing derivation for t and the number of steps taken by the Krivine machine to

reduce t is presented, and in [5] it is shown how to compute the length of the longest

β-reduction sequence starting from any typable strongly normalizing λ-term.

In this paper, we provide a characterization of strongly normalizing λ-terms via

a typing system based on non-idempotent intersection types. The structure of the

proof is the following:

• We define the K-calculus, reminiscent of Klop’s I-calculus [24], where terms are

defined by enriching λ-terms with amemory operator, β-reduction is split into two

different non-erasing reductions, and terms are considered modulo an equivalence

1 More precisely, it requires exactly as many sub-derivations for v as the number of typed occurrences of x
in u.
2 Non-idempotent intersections are denoted by multisets, e.g. [τ, τ, σ] stands for τ ∧ τ ∧ σ.
3 Idempotent intersections are denoted by sets, e.g. {τ, σ} stands for τ ∧ σ.
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relation, reminiscent of Regnier’s σ-reduction [29]. In contrast to [24], λ-terms

are strictly included in K-terms, which makes our development much easier.

• We introduce the typing system K for K-terms, based on system Q for focused

intuitionistic logic [18], and we show that a K-term is K-typable if and only if it is

K-strongly normalizable. This proof is only based on typing properties of Subject

Reduction and Subject Expansion, and does not use any reducibility argument.

• We prove that λ-terms are K-strongly normalizable if and only if they are β-

strongly normalizable in the λ-calculus.

Related works: It is only discussed here different approaches to prove strong nor-

malization of λ-calculus by means of intersection types. Several characterizations of

strong normalization via idempotent intersection types have been presented for the

λ-calculus; a survey can be found for example in [3]. To the best of our knowledge,

two characterizations of strong normalization via non-idempotent intersection types

have been presented so far for the λ-calculus, by A. Bernadet and S. Lengrand [5] and

by E. De Benedetti and S. Ronchi Della Rocca [14,13], respectively. Non-idempotent

intersection is also used in the systems of [22,16], both for the λ-calculus, but char-

acterization of strong normalization is achieved through a relation to an idempotent

intersection type system.

In [5], a subtyping relation is introduced to get the subject reduction property,

but the system types unnecessary instances of arguments, and turns out to be

non relevant, i.e. some sort of weakening is allowed. Notions of optimality and

principality 4 of typing derivations are used to derive an exact upper bound for

reduction steps. Besides, the “strong normalizing implies typability” property is

obtained in [5] through a subject expansion property on a restricted version of the

β-reduction, where a memory set is used to trace the free variables of erased terms.

In our memory calculus, which is non erasing, both the subject reduction and the

subject expansion properties hold unconditionally.

In [14] the typing rule for term variables is weakened, thus the system is non

relevant. The characterization of strong normalization, more precisely the “strong

normalization implies typability” property, follows from an adaptation of the per-

petuality proof in [27]. In [13] another proof of the same property is obtained

through an inductive definition of the set of strongly normalizing terms, as done

in [19] and in the present work.

In the extended framework of the λ-calculus with explicit substitution, non-

idempotent types were also used to characterize strong normalization [5,19]. In [5]

the typing system deals with two explicit substitution calculi based on the struc-

tural propagation paradigm, while in [19] the substitution at a distance paradigm is

investigated. In all the cases, the normalization property is proved by relying on

the postponement of erasing steps, where the explicit substitution operator plays

the role of a memory device.

Regarding the intuitionistic sequent calculus, Kikuchi [23] refines Valentini’s sys-

tem [33] to yield an idempotent IT system which characterizes strong normalization.

4 The notion of principal typing in [5] is different from the usual definition in the literature, e.g. [30,37,22].
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These ideas give rise to a non-idempotent intersection system for a computational

interpretation of the focused intuitionistic calculus [20].

Structure of the paper: Section 2 presents the syntax and semantics of the K-calculus,

while Section 3 introduces the non-idempotent typing system K for K-terms together

with its properties. The characterization of β and K-strongly normalizing terms is

developed in Section 4. We conclude in Section 5.

2 The memory calculus

We are going to characterize the set of strongly normalizing λ-terms by using a

memory calculus called K-calculus – reminiscent of Klop’s I-calculus [24] – as main

technical tool. The point of the memory device in [24] is to obtain a calculus in which

strong and weak normalization coincide, which is possible when no information can

be lost along reduction sequences 5 . This section introduces the syntax and the

operational semantics of the K-calculus, which also uses a memory device to avoid

loss of information.

Given a countable infinite set of symbols x, y, z, . . . we define the set of K-terms

by means of the following grammar.

t, u, v ::= x | λx.t | tu | t[[u]]

The syntactic item [[u]] is called a memory operator. Notice that the set of

λ-terms is strictly included in the set of K-terms.

The size of a term t, written |t|, is defined by |x| := 1, |λx.u| := |u| + 1,

|uv| := |u| + |v| + 1 and |t[[u]]| := |t| + |u| + 1. The notions of free and bound

variables are defined as usual, in particular, fv(t[[u]]) := fv(t) ∪ fv(u), bv(t[[u]]) :=

bv(t)∪ bv(u). We work with the standard notion of α-conversion i.e. renaming of

bound variables. Substitutions are (finite) functions from variables to terms. We

use the notation {x1/u1, . . . , xn/un} (n ≥ 0) for a finite substitution φ such that

φ(xi) = ui for 1 ≤ i ≤ n. Application of the substitution φ to the term t, written

tφ, may require α-conversions in order to avoid the capture of free variables. Hence

we follow the common practice of considering terms up to α-equivalence. However,

we feel free to represent α-equivalence classes by any of their members, provided

they respect the usual Barendregt’s convention [1] stipulating that the sets of free

and bound variables of any term are disjoint.

The standard notion of β-reduction on λ-terms, written →β , is generated by

the closure by contexts of the rewriting rule (λx.t)u �→β t{x/u}. In other words,

the rule β is compatible with the structure of λ-terms. Here is an example of

β-reduction:

(λx.λy.y)x′y′ →β (λy.y)y′ →β y′

5 For instance, there is no loss of information in the λ-I-calculus as opposed to the full λ-calculus.
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We now consider the following equation and rewriting rules on K-terms.

Equation: Rules:

t[[u]]v =σ (tv)[[u]] (λx.t)u �→neb t{x/u} if x ∈ fv(t)

(λx.t)u �→m t[[u]] if x /∈ fv(t)

The names neb and m mean, respectively, non-erasing beta and memory. The reduc-

tion relation →neb,m is generated by the closure by contexts of the rewriting rules

�→neb and �→m. The relation ∼σ, inspired by the σ-equivalence [29] used to identify

some permutation of redexes, is the equivalence relation on K-terms generated by

the equation =σ above. Two σ-equivalent terms are undistinguishable in many re-

spects, as for instance the length of reduction sequences starting at them, and the

size of their typing derivations.

The K-calculus is given by the set of K-terms and the reduction relation →K

on K-terms, generated by the reduction →neb,m modulo the equivalence ∼σ. Thus

for example

(λx.λy.y)x′y′ →K (λy.y)[[x
′]]y′ →K y

′[[x′]]
More precisely,

(λx.λy.y)x′y′ →m (λy.y)[[x
′]]y′ ∼σ (λy.y)y′[[x′]] →neb y

′[[x′]]

Remark that the term y′[[x′]] is not K-reducible anymore, i.e. it is a K-normal form.

Another example is given by the following K-reduction sequence which occurs inside

a memory operator

y[[(λw.(λx.x)z)[[z′]]x′]] →K y[[(λw.z)[[z
′]]x′]] →K y[[z[[x

′]][[z′]]]]

Given any reduction relationR, a term t is said to beR-strongly normalizing,

written t ∈ SN (R), iff there is no infinite R-reduction sequence starting at t.

3 The Typing System

In this section we introduce a type system for K-terms, called K, whose intersection

types, IT for short, are similar to those in [10,11].

Let A be a countable infinite set of type variables α, β, γ, . . .. The sets T of

strict types, ranged over by σ, τ, . . ., and U of multiset types, ranged over by

M,M′, . . ., are defined by the following grammars:

σ, τ, ρ, γ ::= α | M→σ M ::= [σi]i∈I , I finite set

Types are strict 6 , i.e. multiset types do not occur on the right-hand sides of

arrows. The empty multiset is written [ ]. A multiset type should be read as the

intersection of the strict types it contains. For instance, the multiset [τ, τ, σ] stands

6 The terminology is due to S. van Bakel [34].
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for τ ∧ τ ∧ σ, where the symbol ∧ is associative, commutative and non-idempotent.

Observe however that the commutativity, associativity and non-idempotency of the

intersection symbol is granted by the multiset notation: no further equivalence

relation on types is needed.

Type assignments, written Γ,Δ, are functions from variables to multiset types,

assigning the empty multiset to all but a finite set of variables. The domain of Γ

is given by dom(Γ) := {x | Γ(x) 
= [ ]}. The intersection of type assignments,

written Γ +Δ, is defined by (Γ +Δ)(x) := Γ(x) + Δ(x), where + denotes multiset

union. Hence, dom(Γ + Δ) = dom(Γ) ∪ dom(Δ). An example is {x:[σ], y:[τ ]} +

{x:[σ′], z:[τ ′]} = {x:[σ, σ′], y:[τ ], z:[τ ′]}.
When dom(Γ) and dom(Δ) are disjoint we write Γ;Δ instead of Γ+Δ. We write

x:[σi]i∈I ; Γ, even when I = ∅, for the assignment (x:[σi]i∈I ; Γ)(x) = [σi]i∈I and

(x:[σi]i∈I ; Γ)(y) = Γ(y) if y 
= x. We write Γ \\x for the assignment (Γ \\x)(x) = [ ]

and (Γ \\x)(y) = Γ(y) if y 
= x.

The type assignment system K for K-terms is defined in Figure 1. Notice that,

in contrast to [4,14] the system is syntax directed.

x : [τ ] � x:τ
(ax)

Γ � t:τ

Γ \\x � λx.t:Γ(x)→τ
(→i)

Γ � t:τ Δ � s:σ

Γ +Δ � t[[s]]:τ
(m)

Γ � t:[σi]i∈I→τ (Δj � u:σj)j∈J
Γ +j∈J Δj � tu:τ

(→e)

where (I = ∅ ⇒ |J | = 1) and (I 
= ∅ ⇒ J = I)

Fig. 1. The intersection type system for the K-calculus

The typing rule (→e) could be specified by means of two different typing rules

separating the cases I = ∅ and I 
= ∅:
Γ � t:[ ]→τ Δ � u:σ

Γ +Δ � tu:τ

Γ � t:[σi]i∈I→τ I 
= ∅ (Δi � u:σi)i∈I
Γ +i∈I Δi � tu:τ

Indeed, if I = ∅ in rule (→e), then the argument u is erasable, so that we require

exactly one typing derivation for u (the typing witness), by setting |J | = 1 (notice

that the type σ is ignored in the final conclusion of the rule); otherwise the argument

u is not erasable and several typing derivations for u are required, one for each type

of the multiset [σi]i∈I , thus J = I. We prefer however to capture both cases in the

single rule (→e) in order to save some space in our proofs.

A (typing) derivation in system K is a tree Φ obtained by applying the (in-

ductive) rules of the typing system. We write Φ 
 Γ � t:τ if there is a derivation Φ

in system K ending in the type judgment Γ � t:τ . A term t is typable in system K
iff there exist a derivation Φ, an assignments Γ and a type τ such that Φ 
 Γ � t:τ .

For any typing derivation tree Φ, we define sz(Φ) to be the number of nodes of Φ.
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It is worth noticing that the rule (→e) makes the difference between an intersec-

tion type system characterizing head/weak normalization [18,19] and one character-

izing strong normalization. Indeed, in the former, the case I = ∅ would not impose

to type the argument u, and one would obtain typing derivations of the form:

Γ � t:[ ]→τ

Γ � tu:τ

where tu is typed but u is untyped. Conversely, in our system, all the subterms of

a typable term have to be typable, thus guaranteeing termination for any reduction

strategy.

As an example of typing derivation in K, for δ = λx.xx one has

Φδ :=
x : [[α] → β] � x:[α] → β x : [α] � x:α

x : [[α], [α] → β] � xx:β

� λx.xx:[[α], [α] → β] → β

hence

z : [γ] � z:γ

z : [γ] � λy.z:[ ] → γ Φδ 
 � δ:[[α], [α] → β] → β

z : [γ] � (λy.z)δ:γ

and also

z : [γ] � z:γ Φδ 
 � δ:[[α], [α] → β] → β

z : [γ] � z[[δ]]:γ

On the other hand, neither (λy.z)Ω nor z[[Ω]] are typable in K for Ω = δδ.

The K-system enjoys relevance (absence of weakening).

Lemma 3.1 (Relevance) If Φ 
 Γ � t:τ then dom(Γ) = fv(t).

Proof. By induction on the derivation of Φ. �

Moreover, the equivalence relation ∼σ does not alter at all the typing relation.

Lemma 3.2 (Typing Invariance for ∼σ) Let t0 ∼σ t′0. Then Φ 
 Γ � t0:τ iff

Φ′ 
 Γ � t′0:τ . Moreover, sz(Φ) = sz(Φ′).

Proof. By induction on the proof of t0 ∼σ t′0. We only show the base case, the

others being straightforward.

If t0 = t[[u]]v =σ (tv)[[u]] = t′0, then by construction Γ = Δ+Π+j∈J Γj and Φ is

of the following form:

Φt 
Δ � t:[σi]i∈I→τ Φu 
Π � u:ρ

Δ+Π � t[[u]]:[σi]i∈I→τ
(
Φj
v 
 Γj � v:σj

)
j∈J

Δ+Π+j∈J Γj � t[[u]]v:τ
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where |J | = 1 if I = ∅ and I = J otherwise. Moreover, sz(Φ) = sz(Φt) +

sz(Φu) +j∈J sz(Φj
v) + 2. Then,

Φ′ :=

Φt 
Δ � t:[σi]i∈I→τ (Φj
v 
 Γj � v:σj)j∈J

Δ+j∈J Γj � tv:τ Φu 
Π � u:ρ

Δ+j∈J Γj +Π � (tv)[[u]]:τ

where sz(Φ′) = sz(Φt) +j∈J sz(Φj
v) + sz(Φu) + 2 = sz(Φ). �

We are now going to show the essential properties of the typing system K:

Subject Reduction (Theorem 3.4) and Subject Expansion (Theorem 3.6), which

follow, respectively, from Lemma 3.3 and Lemma 3.5.

Lemma 3.3 (Substitution) If Φt 
 x:[ρi]i∈I ; Γ � t:τ and (Φi
u 
Δi � u:ρi)i∈I then

Φt{x/u} 
 Γ +i∈I Δi � t{x/u}:τ where sz(Φt{x/u}) = sz(Φt) +i∈I sz(Φi
u)− |I|.

Proof. By induction on the structure of t.

• If t = y 
= x then t{x/u} = y. By relevance one has x : [ ]; Γ = {y : [τ ]} so that

I = ∅ and Γ = {y : [τ ]} and sz(Φ) = 1. Therefore, sz(Φy{x/u}) = sz(Φy)+0−0 =

sz(Φy) +i∈I sz(Φi
u)− |I|.

• If t = x then t{x/u} = u. By construction and relevance one has x : [ρi]i∈I ; Γ =

{x : [τ ]} so that I = {m} and Γ = ∅ and ρm = τ and sz(Φ) = 1. Therefore, for

any context Δm such that Φm
u 
Δm � u:ρm the result holds, where sz(Φx{x/u}) =

sz(Φx) + sz(Φm
u )− 1 = sz(Φm

u ).

• If t = λy.v then by α-conversion one can suppose w.l.o.g. that y 
= x, y /∈
fv(u), y /∈ dom(γ) and (y /∈ dom(Δi))i∈I . By construction, τ = M → σ and

Φv 
y : M;x : [ρi]i∈I ; Γ � v:σ where sz(Φv)+1 = sz(Φλy.v). By the i.h., Φv{x/u}

(y : M; Γ) +i∈I Δi � v{x/u}:σ where sz(Φv{x/u}) = sz(Φv)+i∈Isz(Φi

u)−|I|. One

has y /∈ dom(Δi) for any i ∈ I thus (y : M; Γ) +i∈I Δi = y : M; (Γ +i∈I Δi). The

derivation Φλy.v{x/u} is hence

Φv{x/u} 
 y : M; Γ +i∈I Δi � v{x/u}:σ
Γ +i∈I Δi � λy.v{x/u}:M→σ

(→i)

and sz(Φλy.v{x/u}) = sz(Φv{x/u}) + 1 = sz(Φλy.v) +i∈I sz(Φi
u)− |I|.

• If t = pv then by construction one has x : [ρi]i∈I ; Γ = Δ +j∈J Γj , where Φp 


Δ � p:[σk]k∈K→τ and (Φj
v 
Γj � v:σj)j∈J and sz(Φpv) = sz(Φp)+j∈J sz(Φ

j
v)+1,

where either K = ∅ and |J | = 1, or K = J . One has Δ = x : [ρi]i∈Ip ; Δ′ and (Γj =
x : [ρi]i∈Ij ; Γ′

j)j∈J where I = Ip∪j∈J Ij , and Ip, (Ij)j∈J can be assumed to be pair-

wise disjoint sets w.l.o.g. By the i.h., Φp{x/u} 
Δ′ +i∈Ip Δi � p{x/u}:[σk]k∈K→τ

and (Φj
v{x/u} 
 Γ′

j +i∈Ij Δi � v{x/u}:σj)j∈J where sz(Φp{x/u}) = sz(Φp) +i∈Ip
sz(Φi

u)− |Ip| and sz(Φj
v{x/u}) = sz(Φj

v) +i∈Ij sz(Φi
u)− |Ij |, for each j ∈ J . Note

that Δ′ +j∈J Γ′
j = (x : [ρi]i∈I ; Γ) \\x = Γ and that +i∈IpΔi +j∈J (+k∈IjΔk) =
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+i∈IΔi. Therefore, Φ(pv){x/u} is of the form

Φp{x/u} �Δ′ +i∈Ip Δi � p{x/u}:[σk]k∈K →τ
(
Φj

v{x/u} � Γ′
j +i∈Ij Δi � v{x/u}:σj

)
j∈J

Γ +i∈I Δi � (pv){x/u}:τ

where sz(Φ(pv){x/u}) = sz(Φp{x/u})+j∈J sz(Φ
j
v{x/u})+1 = sz(Φp)+i∈Ip sz(Φi

u)−
|Ip|+j∈J sz(Φj

v) +j∈J (+k∈Ijsz(Φ
k
u))−j∈J |Ij |+ 1 = sz(Φpv) +i∈I sz(Φi

u)− |I|.
• If t = p[[v]] then by construction x : [ρi]i∈I ; Γ = Δ+Π such that Φp 
Δ � p:τ and
Φv 
 Π � v:σ, where sz(Φt) = sz(Φp) + sz(Φv) + 1. One has Δ = x : [ρi]i∈Ip ; Δ′
and Π = x : [ρi]i∈Iv ; Π′ where Ip ∪ Iv = I and Δ′ +Π′ = Γ. Suppose w.l.o.g. that
Ip and Iv are disjoint. By the i.h., Φp{x/u} 
Δ′ +i∈Ip Δi � p{x/u}:τ and Φv{x/u} 

Π′ +i∈Iv Δi � v{x/u}:σ such that sz(Φp{x/u}) = sz(Φp) +i∈Ip sz(Φi

u) − |Ip| and
sz(Φv{x/u}) = sz(Φv) +i∈Iv sz(Φi

u)− |Iv|. Then,

Φp[[v]]{x/u} :=
Φp{x/u} �Δ′ +i∈Ip Δi � p{x/u}:τ Φv{x/u} �Π′ +i∈Iv Δi � v{x/u}:σ

Γ +i∈I Δi � p{x/u}[[v{x/u}]]:τ

where sz(Φp[[v]]{x/u}) = sz(Φp{x/u})+sz(Φv{x/u})+1 = sz(Φt)+i∈I sz(Φi
u)−|I|.

�

Theorem 3.4 (Weighted Subject Reduction) Let Φ 
 Γ � t:τ . If t →K t′ then
there exists Φ′ 
 Γ � t′:τ such that sz(Φ) > sz(Φ′).

Proof. By induction on the reduction relation →K using Lemma 3.2 to justify the

statement for the equivalence relation ∼σ.

• If t = (λx.v)u then by construction Γ = Δ+j∈J Γj and Φ has the form:

Φ :=

Φv 
 x : [σi]i∈I ; Δ � v:τ

Δ � λx.v:[σi]i∈I→τ (Φj
u 
 Γj � u:σj)j∈J

Δ+j∈J Γj � (λx.v)s:τ

Moreover, sz(Φ) = sz(Φv) +j∈J sz(Φj
u) + 2. There are two cases for t′.

· If x ∈ fv(v) then t′ = v{x/u}.
Suppose I = ∅ so that Γ = Δ + Γu and Φv 
 Δ � v:τ where x /∈ dom(Δ).

However, x ∈ fv(v) then, by Lemma 3.1, this case is not possible.

Suppose I 
= ∅ (i.e. I = J) so that Γ = Δ+i∈IΓi where Φv
x : [σi]i∈I ; Δ � v:τ

and (Φi
u 
 Γi � u:σi)i∈I and sz(Φ) = sz(Φv) +i∈I sz(Φi

u) + 2. By Lemma 3.3,

Φv{x/u} 
 Γ � v{x/u}:τ where sz(Φv{x/u}) = sz(Φv) +i∈I sz(Φi
u)− |I| < sz(Φ).

We are done with this case taking Φ′ := Φv{x/u}.
· If x /∈ fv(v) then t′ = v[[u]]. Moreover, Lemma 3.1 gives I = ∅ so that J = {j}
where Γ = Δ+ Γj . Then,

Φ′ :=
Φv 
Δ � v:τ Φj

u 
 Γj � u:σj

Γ � v[[u]]:τ

where sz(Φ′) = sz(Φv) + sz(Φj
u) + 1 < sz(Φ).
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• All the inductive cases are straightforward.

�

We illustrate the Weighted Subject Reduction property by the following exam-

ple. Let 2 be the Church numeral λy.λx.y(y(x)) and let t be an arbitrary closed

term. Then u0 = 2t →β λx.t(t(x)) = u1. Suppose Φt 
 � t:[σ]→σ. Then, given the

following typing derivation Φ0 for u0

Φ0 :=
Φ2 
 � 2:[[σ]→σ, [σ]→σ]→ [σ]→σ Φt 
 � t:[σ]→σ Φt 
 � t:[σ]→σ

� 2t:[σ]→σ

where Φ2 is the following typing derivation:

Φ2 :=

y : [[σ]→σ] � y:[σ]→σ

y : [[σ]→σ] � y:[σ]→σ x : [σ] � x:σ

y : [[σ]→σ], x : [σ] � yx:σ

y : [[σ]→σ, [σ]→σ], x : [σ] � y(yx):σ

y : [[σ]→σ, [σ]→σ] � λx.y(yx):[σ]→σ

� λy.λx.y(yx):[[σ]→σ, [σ]→σ]→ [σ]→σ

we can construct the following typing derivation Φ1 for u1

Φ1 :=

Φt 
 � t:[σ]→σ

Φt 
 � t:[σ]→σ x : [σ] � x:σ

x : [σ] � tx:σ

x : [σ] � t(tx):σ

� λx.t(tx):[σ]→σ

such that sz(Φ0) > sz(Φ1). Indeed,

sz(Φ0) = sz(Φt) · 2 + 8 > sz(Φt) · 2 + 4 = sz(Φ1)

To obtain Subject Expansion we first need the following property.

Lemma 3.5 (Reverse Substitution) Let x, t, u be K-terms. If x ∈ fv(t) and

Φ 
 Γ � t{x/u}:τ then Γ = Δ +i∈I Γi where I 
= ∅ and Φt 
 x : [σi]i∈I ; Δ � t:τ and

(Φi
u 
 Γi � u:σi)i∈I .

Proof. By induction on the structure of t.

• If t = x then t{x/u} = u and the result holds, for Δ = ∅ and I = {m} where

σm = τ . The derivation Φt is obtained by an application of rule (ax). Observe

that t = y would imply x /∈ fv(t).

• If t = λy.v then t{x/u} = λy.v{x/u} thus, by construction, τ = M → σ

where Φ 
 y : M; Γ � v{x/u}:σ. By the i.h., y : M; Γ = Δ′ +i∈I Γi where

Φv 
x : [σi]i∈I ; Δ′ � v:σ and (Φi
u 
Γi � u:σi)i∈I . By α-conversion one can suppose
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w.l.o.g. that y /∈ fv(u), then by Lemma 3.1 one has Δ′ = y : M;x : [σi]i∈I ; Δ
and (x : [σi]i∈I ; Δ) +i∈I Γi = Γ. Then Φt 
 x : [σi]i∈I ; Δ � λy.v:τ by rule (→i).

• If t = pv then t{x/u} = p{x/u}v{x/u} and by construction Γ = Π +j∈J Πj and

Φp{x/u} 
Π � p{x/u}:[ρk]k∈K→τ and (Φj
v{x/u} 
Πj � v{x/u}:ρj)j∈J where either

K = ∅ and |J | = 1 or K = J .

If x ∈ fv(p) and x ∈ fv(v) then, by the i.h. Π = Δp +i∈Ip Γi where Φp 


x : [σi]i∈Ip ; Δp � p:[ρk]k∈K→τ and (Φi
u
Γi � u:σi)i∈Ip , and Πj = Δj+i∈IjΓi where

Φv 
x : [σi]i∈Ij ; Δj � v:ρj and (Φi
u
Γi � u:σi)i∈Ij , for each j ∈ J . Suppose w.l.o.g.

that Ip, (Ij)j∈J are pairwise disjoint and let I = Ip ∪j∈J Ij . Then, by rule (→e),

Φt
x : [σi]i∈I ; Δp +j∈J Δj � pv:τ . We are done with this case for Δ := Δp+j∈JΔj

since (x : [σi]i∈Ip ; Δp) +j∈J (x : [σi]i∈Ij ; Δj) = x : [σi]i∈I ; (Δp +j∈J Δj) and that

Δp +j∈J Δj +i∈I Γi = Γ.

If either x /∈ fv(v) or x /∈ fv(p) then it is analogous to the case above.

• If t = p[[v]] then t{x/u} = p{x/u}[[v{x/u}]] and by construction Γ = Π0+Π1 such

that Φp{x/u} 
Π0 � p{x/u}:τ and Φv{x/u} 
Π1 � v{x/u}:σ.

If x ∈ fv(p) and x ∈ fv(v) then by i.h. Π0 = Δp +i∈Ip Γi where Φp 


x : [σi]i∈Ip ; Δp � p:τ and (Φi
u 
 Γi � u:σi)i∈Ip and Π1 = Δv +i∈Iv Γi where Φv 


x : [σi]i∈Iv ; Δv � v:σ and (Φi
u 
Γi � u:σi)i∈Iv . Suppose w.l.o.g. that Ip and Iv are

disjoint and let I = Ip∪ Iv. Then Φt 
x : [σi]i∈I ; Δp +Δv � p[[v]]:τ by the rule (m)

and we are done with Δ := Δp +Δv.

If x /∈ fv(v) then v{x/u} = v and by the i.h. one has Π0 = Δp +i∈I Γi

such that Φp 
 x : [σi]i∈I ; Δp � p:τ and (Φi
u 
 Γi � u:σi)i∈I . Then, by rule (m),

Φt 
 x : [σi]i∈I ; Δp +Π1 � p[[v]]:τ and we are done with Δ := Δp +Π1.

If x /∈ fv(p) then it is analogous to the one above.

�

Theorem 3.6 (Subject Expansion) Let Φ′ 
Γ � t′:τ . If t →K t
′ then Φ
Γ � t:τ .

Proof. The proof is by induction on the reduction relation →K.

• If t = (λx.v)u �→neb v{x/u} = t′, where x ∈ fv(v), then by Lemma 3.5 Γ =

Δ+i∈I Γi where I 
= ∅, Φv 
 x : [σi]i∈I ; Δ � v:τ and (Φi
u 
 Γi � u:σi)i∈I . Then

Φv 
 x : [σi]i∈I ; Δ � v:τ

Δ � λx.v:[σi]i∈I→τ (Φi
u 
 Γi � u:σi)i∈I

Γ � (λx.v)u:τ
→e

• If t = (λx.v)u �→m v[[u]] = t′, where x /∈ fv(v) then, by construction, Γ = Δ + Γ1

such that Φv 
Δ � v:τ and Φu 
Γ1 � u:σ. Note that, by Lemma 3.1, x /∈ dom(Δ).
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Then,

Φv 
Δ � v:τ

Δ � λx.v:[ ]→τ Φu 
 Γ1 � u:σ

Γ � (λx.v)u:τ
→e

• All the inductive cases are straightforward.

�

4 The Strong Normalization Characterization

In this section we use K-typability to characterize β-strongly normalizing terms,

i.e. we show that a term is K-typable if and only if it is β-strongly normalizing.

The proof does not use any reducibility/computability argument [31,17,25], but goes

through the memory operator calculus K that we have introduced in Section 2. More

precisely, we first show that K-terms are K-typable if and only if they are K-strongly

normalizing. This proof is based on the properties presented in Section 3, namely,

Weighted Subject Reduction and Subject Expansion. We then show that the sets

of β and K strongly normalizing λ-terms are equivalent, a result which is obtained

by means of appropriate inductive definitions for both sets.

It is well-known [36] that the set of β-strongly normalizing λ-terms, written

SN (β), can be characterized by the following alternative inductive definition:

• If t1, . . . , tn (n ≥ 0) ∈ ISN (β), then xt1 . . . tn ∈ ISN (β).

• If t ∈ ISN (β), then λx.t ∈ ISN (β).

• If t{x/u}t1 . . . tn, u ∈ ISN (β), then (λx.t)ut1 . . . tn ∈ ISN (β).

Remark that the base case of this inductive definition is given by the first item

when n = 0. This is indeed a characterization, as expressed by the following Lemma:

Lemma 4.1 ([36]) SN (β) = ISN (β).

In the same spirit, the set of K-strongly normalizing K-terms, written SN (K),

can be characterized by the following alternative definition:

(H) If t1, . . . , tn (n ≥ 0) ∈ ISN (K), then xt1 . . . tn ∈ ISN (K).

(A) If t ∈ ISN (K), then λx.t ∈ ISN (K).

(I) If t{x/u}t1 . . . tn ∈ ISN (K) and x ∈ fv(t), then (λx.t)ut1 . . . tn ∈ ISN (K).

(G) If t[[u]]t1 . . . tn ∈ ISN (K) and x /∈ fv(t), then (λx.t)ut1 . . . tn ∈ ISN (K).

(S) If (tt1 . . . tn)[[u]] ∈ ISN (K) and n ≥ 1, then t[[u]]t1 . . . tn ∈ ISN (K).

(V) If t, u ∈ ISN (K), then t[[u]] ∈ ISN (K).

As before, the base case of this inductive definition is given by the first item

when n = 0.

The set ISN (K) turns out to be equivalent to the set of K-strongly normalizing

terms. In order to show that, we write ηK(t) to denote the maximal length of a
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K-reduction sequence starting at t, when t is K-strongly normalizing.

Lemma 4.2 SN (K) = ISN (K).

Proof. If t ∈ SN (K), then we easily show that t ∈ ISN (K) by induction on the

pair 〈ηK(t), |t|〉 using the corresponding lexicographic order.

• The base case of the induction is when t = x (for which 〈ηK(t), |t|〉 = 〈0, 1〉). Then
the rule (H) for n = 0 gives x ∈ ISN (K).

• We reason by cases on the form of t for the inductive steps.

· t = λx.u ∈ SN (K) implies u ∈ SN (K). Moreover, 〈ηK(u), |u|〉 <lex 〈ηK(t), |t|〉 so
that the i.h. gives u ∈ ISN (K) and the rule (A) gives t ∈ ISN (K).

· t = xu1 . . . un ∈ SN (K) implies u1, . . . , un ∈ SN (K). Moreover, 〈ηK(ui), |ui|〉 <lex

〈ηK(t), |t|〉 so that the i.h. gives ui ∈ ISN (K) and the rule (H) gives t ∈ ISN (K).

· t = (λx.u)vt1 . . . tn ∈ SN (K) and x ∈ fv(u) implies t′ = u{x/v}t1 . . . tn ∈
SN (K). Moreover, 〈ηK(t′), |t′|〉 <lex 〈ηK(t), |t|〉 so that the i.h. gives t′ ∈ ISN (K)

and the rule (I) gives t ∈ ISN (K).

· t = (λx.u)vt1 . . . tn ∈ SN (K) and x /∈ fv(u) implies t′ = u[[v]]t1 . . . tn ∈ SN (K).

Moreover, 〈ηK(t′), |t′|〉 <lex 〈ηK(t), |t|〉 so that the i.h. gives t′ ∈ ISN (K) and the

rule (G) gives t ∈ ISN (K).

· t = u[[v]] ∈ SN (K) implies u, v ∈ SN (K). Moreover, 〈ηK(u), |u|〉 <lex 〈ηK(t), |t|〉
and 〈ηK(v), |v|〉 <lex 〈ηK(t), |t|〉 so that the i.h. gives u, v ∈ ISN (K) and the rule

(V ) gives t ∈ ISN (K).

· t = u[[v]]t1 . . . tn ∈ SN (K), where n ≥ 1. By definition we have ηK(u[[v]]t1 . . . tn) =

ηK((ut1 . . . tn)[[v]]), so that ut1 . . . tn, v ∈ SN (K). Moreover 〈ηK(v), |v|〉 <lex

〈ηK(t), |t|〉 and 〈ηK(ut1 . . . tn), |ut1 . . . tn|〉 <lex 〈ηK(t), |t|〉 . By the i.h. we get

ut1 . . . tn, v ∈ ISN (K), and thus by rule (V) we get (ut1 . . . tn)[[v]] ∈ ISN (K),

and by rule (S) we obtain u[[v]]t1 . . . tn ∈ ISN (K).

To show ISN (K) ⊆ SN (K) we reason by induction on the definition of ISN (K).

(H) If t = xt1 . . . tn ∈ ISN (K), where t1, . . . , tn ∈ ISN (K), then the i.h. gives

t1, . . . , tn ∈ SN (K) so that the term xt1 . . . tn is trivially in SN (K).

(A) If t = λx.v ∈ ISN (K), where v ∈ ISN (K), then the i.h. gives v ∈ SN (K) so that

the term λx.v is trivially in SN (K).

(I) If t = (λx.v)ut1 . . . tn ∈ ISN (K), where v{x/u}t1 . . . tn ∈ ISN (K) and x ∈ fv(v),

then the i.h. gives v{x/u}t1 . . . tn ∈ SN (K) so that in particular v, u, ti ∈ SN (K).

We show that t ∈ SN (K) by a second induction on ηK(v) + ηK(u) + Σi=1...nηK(ti).

Let us see how are all the reducts of t.

If t → (λx.v′)ut1 . . . tn = t′, where v → v′ or t → (λx.v)u′t1 . . . tn = t′, where
u → u′, or t → (λx.v)ut1 . . . t

′
i . . . tn = t′, where ti → t′i, then t′ ∈ SN (K) by the

second i.h..

If t → v{x/u}t1 . . . tn = t′, then t′ ∈ SN (K) as already remarked by the first

i.h.

Since all reducts of t are in SN (K), then t ∈ SN (K).

(G) If t = (λx.v)ut1 . . . tn ∈ ISN (K), where v[[u]]t1 . . . tn ∈ ISN (K) and x /∈ fv(v),
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then the i.h. gives v[[u]]t1 . . . tn ∈ SN (K), so that in particular v, u, ti ∈ SN (K).

We show that t ∈ SN (K) by induction on ηK(v) + ηK(u) + Σi=1...nηK(ti).

As before, let us analyze the reducts of t.

If t → (λx.v′)ut1 . . . tn = t′, where v → v′ or t → (λx.v)u′t1 . . . tn = t′, where
u → u′, or t → (λx.v)ut1 . . . t

′
i . . . tn = t′, where ti → t′i, then t′ ∈ SN (K) by the

second i.h..

If t → v[[u]]t1 . . . tn = t′, then we have remarked already that t′ ∈ SN (K) by

the first i.h.

Since all reducts of t are in SN (K), then t ∈ SN (K).

(S) If v[[u]]t1 . . . tn ∈ ISN (K) where (vt1 . . . tn)[[u]] ∈ ISN (K) and n ≥ 1, then the

only possibility is vt1 . . . tn, u ∈ ISN (K). We can then apply the i.h. to get

vt1 . . . tn, u ∈ SN (K), so that (vt1 . . . tn)[[u]] ≡ v[[u]]t1 . . . tn ∈ SN (K).

(V) If t = v[[u]] ∈ ISN (K), where v, u ∈ ISN (K), then the i.h. gives u, v ∈ SN (K) so

that the term v[[u]] is trivially in SN (K).

�

Since SN (K) and ISN (K) are equivalent sets, we can now derive K-typability

from K-strong normalization by using this equivalence.

Theorem 4.3 If t ∈ SN (K) then t is K-typable.

Proof. By induction on the structure of t ∈ ISN (K) = SN (K).

(H) If t = xt1 · · · tn (n ≥ 0) where t1, . . . , tn ∈ ISN (K) then, by the i.h. ∀1≤i≤n,Γi �
ti:σi. Let τ = [σ1]→ · · · [σn]→α, for α ∈ A, and Γ = x : [τ ] + Γ1 + · · · + Γn.

Then, x : [τ ] � x:τ by the rule (ax) and, by n applications of the rule (→e),

Γ � xt1 · · · tn:α.
(A) If t = λx.v where v ∈ ISN (K) then, by the i.h. Γ � v:τ thus, by the rule (→i),

Γ \\x � λx.v:Γ(x)→τ .

(I) If t = (λx.v)ut1 · · · tn where x ∈ fv(v) and v{x/u}t1 · · · tn ∈ ISN (K) then, by

the i.h. Γ � v{x/u}t1 · · · tn:τ . Therefore, by Theorem 3.6, Γ � (λx.v)ut1 · · · tn:τ .
(G) If t = (λx.v)ut1 · · · tn where x /∈ fv(v) and v[[u]]t1 · · · tn ∈ ISN (K) then, by the

i.h. Γ � v[[u]]t1 · · · tn:τ . Therefore, by Theorem 3.6, Γ � (λx.v)ut1 · · · tn:τ .
(S) If t = v[[u]]t1 · · · tn where (vt1 · · · tn)[[u]] ∈ ISN (K), then by the i.h. we have

Γ � (vt1 · · · tn)[[u]]:τ and, by Lemma 3.2, Γ � v[[u]]t1 · · · tn:τ .
(V) If t = v[[u]] where v, u ∈ ISN (K) then, by the i.h. Γ0 � v:τ and Γ1 � u:σ thus, by

the rule (m), Γ0 + Γ1 � v[[u]]:τ .

�

The converse can be simply shown by using the Weighted Subject Reduction

property. Notice that similar results for idempotent intersection type systems cannot

be proved in a combinatorial way, they are typically based on reducibility arguments

[31,17,25]. This is exactly the place where the quantitative approach by means of

non-idempotent types makes the difference.

Theorem 4.4 If t is K-typable then t ∈ SN (K).
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Proof. Let Φ 
 Γ � t:τ and suppose that t /∈ SN (K). Then, there exists an infinite

reduction sequence t = t0 → t1 ∼ t2 → t3 ∼ t4 → · · · → t2n+1 ∼ t2n+2 → · · · .
By Theorem 3.4 and Lemma 3.2 one has that ∀i ∈ N ∃Φi 
 Γ � ti:τ such that

sz(Φ2i) > sz(Φ2i+1) = sz(Φ2(i+1)). Contradiction, since sz(Φ) > 0, for any Φ.

Therefore, t ∈ SN (K). �

We have already remarked that the set of λ-terms is included in the set of

K-terms. In order to conclude, we need to show that a λ-term t is β-strongly

normalizable if and only if the K-term obtained by embedding t in the K-calculus is

K-strongly normalizable.

Lemma 4.5 Let t be a λ-term. If t ∈ SN (K), then t ∈ SN (β).

Proof. By induction on 〈ηK(t), |t|〉. We only show the interesting case. Let t =

(λx.v)ut1 · · · tn. By hypothesis v, u, ti ∈ SN (K) so that by the i.h. we get v, u, ti ∈
SN (β). To prove that t ∈ SN (β) it is sufficient to show that every β-reduct of t is

in SN (β). We proceed by induction on ηβ(v) + ηβ(u) + Σi=1···nηβ(ti).
If t →β t′ reduces a subterm v, u, ti, then the property trivially holds.

Otherwise, if t →β t′ reduces the head redex, there are two cases to consider.

If x ∈ fv(v), then also t →K v{x/u}t1 · · · tn = t′, so that t′ ∈ SN (β) by the first

i.h. If x /∈ fv(v), then t →β vt1 · · · tn = t′. However, t →K v[[u]]t1 · · · tn = t′ ≡
(vt1 · · · tn)[[u]]. We have ηK(vt1 · · · tn) ≤ ηK((vt1 · · · tn)[[u]]) < ηK(t) so that the first

i.h. gives vt1 · · · tn = t′ ∈ SN (β) and thus we are done. �

Lemma 4.6 Let t be a λ-term. If t ∈ SN (β), then t ∈ SN (K).

Proof. By Lemma 4.1 and Lemma 4.2 it is sufficient to show that t ∈ ISN (β)

implies t ∈ ISN (K).

• If t = xt1 . . . tn ∈ ISN (β), where t1, . . . , tn ∈ ISN (β), then the i.h. gives

t1, . . . , tn ∈ ISN (K) so that t ∈ ISN (K) by rule (H).

• If t = λx.v ∈ ISN (β), where v ∈ ISN (β), then the i.h. gives v ∈ ISN (K) so

that λx.v ∈ ISN (K) by rule (A).

• If t = (λx.v)ut1 . . . tn ∈ ISN (β), where v{x/u}t1 . . . tn, u ∈ ISN (β), then we

reason by cases.

Suppose x ∈ fv(v). The i.h. gives v{x/u}t1 . . . tn ∈ ISN (K) so that t ∈
ISN (K) by rule (I).

Suppose x /∈ fv(v). The i.h. gives vt1 . . . tn, u ∈ ISN (K) so that (vt1 . . . tn)[[u]] ∈
ISN (K) by rule (V), and thus t ∈ ISN (K) by rule (G).

�

The last two lemmas, and the fact the λ-terms are strictly included in K-terms,

allow to conclude:

Corollary 4.7 Let t be a λ-term. Then t is K-typable if and only if t ∈ SN (β).
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5 Conclusion

We have presented a characterization of β-strongly normalizing λ-terms via a typing

system based on non-idempotent intersection types, through an embedding of the

λ-calculus into the memory K-calculus.

As a matter of fact, the same result can be proved more directly by using tech-

niques similar to those presented in [33,3]. This alternative proof goes as follows:

• Prove that typable λ-terms are strongly normalizing, by induction on typing

derivations, using the inductive characterization of strong normalization ISN (β),

presented in Section 4, and the fact that weighted subject reduction holds for

non-erasing β-reductions.

• Prove that strongly normalizing λ-terms are typable, by induction on ISN (β),

using the fact that subject expansion holds for non-erasing β-reductions.

It is possible to adapt this technique to the non-idempotent case. Still, the good

point of the memory calculus is its awareness: nothing is lost along reductions, and

therefore subject expansion does hold even for the type system characterizing strong

normalization, whereas it does not hold for other calculi, in general. This allows for

simple, modular proofs of strong normalization for calculi that can be embedded in

a memory-like calculus. In this paper, we show the simplest case, namely the one

of the pure λ-calculus, but extensions to other frameworks, inspired for instance by

classical or linear calculi may naturally be conceived.
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