A Min–Max Relation for Stable Sets in Graphs with no Odd-K_4

A. M. H. Gerards

Department of Econometrics,
Tilburg University, P.O. box 90153, 5000 LE Tilburg, The Netherlands

Communicated by the Editors

Received January 6, 1987

We prove the following min–max relations. Let G be an undirected graph, without isolated nodes, not containing an odd-K_4 (a homeomorph of K_4 (the complete graph with four nodes) in which the triangles of K_4 have become odd circuits). Then the maximum cardinality of a stable set in G is equal to the minimum cost of a collection of edges and odd circuits in G, covering the nodes of G. Here the cost of an edge is 1 and the cost of a circuit of length $2k + 1$ is equal to k. Moreover, the minimum cardinality of a node-cover for G is equal to the maximum profit of a collection of mutually node disjoint edges and odd circuits in G. Here the profit of an edge is 1 and the profit of a circuit of length $2k + 1$ is equal to $k + 1$. Also, weighted versions of these min–max relations hold. The result extends König's well-known min–max relations for stable sets and node-covers in bipartite graphs. It also extends results of Chvátal, Boulala, Fonlupt, and Uhry. A weaker, fractional, version of these min–max relations follows from earlier results obtained by Schrijver and the author. © 1989 Academic Press, Inc.

1. Introduction

The subject of this paper is to give an extension of the following well-known result due to König [21, 22]:

\[(1.1) \text{ If } G \text{ has no odd circuit, then } \alpha(G) = \rho(G) \text{ and } \tau(G) = v(G).\]

Here, and in the sequel, $G = (V(G), E(G))$ denotes an undirected graph without isolated nodes. As usual, the parameters $\alpha, \rho, \tau,$ and v are defined as:

$\alpha(G) :=$ the maximum cardinality of a stable set in G. ($S \subseteq V(G)$ is a stable set if $u, v \in S$ implies $uv \notin E(G).$)

$\rho(G) :=$ the minimum cardinality of an edge-cover for G. ($E' \subseteq E(G)$ is an edge-cover if for each $u \in V$ there exists an $e \in E'$ with endpoint $u.$)
\(v(G) := \) the maximum cardinality of a matching in \(G \). (\(M \subseteq E(G) \) is a

matching if \(e_1, e_2 \in M, e_1 \neq e_2 \) implies \(e_1 \) and \(e_2 \) have no common endpoint.)

\(\tau(G) := \) the minimum cardinality of a node-cover for \(G \). (\(N \subseteq V(G) \) is

a node-cover if \(uv \in E(G) \) implies \(u \in N \) or \(v \in N \).)

We introduce two new parameters:

\(\bar{\rho}(G) := \) the minimum cost of a collection of edges and odd circuits in

\(G \) covering the nodes of \(G \). The cost of an edge is equal to 1, and the cost

of a circuit with \(2k + 1 \) edges is equal to \(k \). The cost of a collection of edges

and odd circuits is equal to the sum of the costs of its members.

\(\bar{\nu}(G) := \) the maximum profit of a collection of mutually node disjoint edges and odd circuits in \(G \). The profit of an edge is equal to 1 and the profit of a circuit of length \(2k + 1 \) is equal to \(k + 1 \). The profit of a collection of edges and odd circuits is equal to the sum of the profits of its members.

The following inequalities are obvious:

1. \(\alpha(G) \leq \bar{\rho}(G) \leq \rho(G) \),

2. \(\tau(G) \geq \bar{\nu}(G) \geq \nu(G) \).

König's Theorem (1.1) can be extended to the following result, which follows from the more general Theorem 1.8 stated below.

Theorem 1.3. Let \(G \) be an undirected graph, without isolated nodes. If \(G \) does not contain an odd-\(K_4 \) as a subgraph, then \(\alpha(G) = \bar{\rho}(G) \) and \(\tau(G) = \bar{\nu}(G) \).

An odd-\(K_4 \) is a homeomorph of \(K_4 \) (the complete graph with four nodes) in which all triangles have become odd circuits. (See Fig. 1. wriggled lines stand for pairwise openly disjoint paths; odd indicates that the corresponding faces are odd circuits.)

![Figure 1](image-url)
To see that Theorem 1.3 extends König's Theorem (1.1), observe that a bipartite graph G has no odd-K_4, and trivially satisfies $\tilde{\rho}(G) = \rho(G)$ and $\tilde{v}(G) = v(G)$ (as G has no odd circuits).

The two equalities in (1.1) are equivalent, for any graph G. This follows from the following identities, due to Gallai [12, 13]

\[(1.4) \quad \alpha(G) + \tau(G) = |V(G)| = \rho(G) + v(G).\]

A similar equivalence for the equalities $\alpha(G) = \tilde{\rho}(G)$ and $\tau(G) = \tilde{v}(G)$ follows from the following result of A. Schrijver [personal communication], analogous to Gallai's result (1.4) above.

Theorem 1.5. Let G be an undirected graph without isolated nodes. Then $\tilde{\rho}(G) + \tilde{v}(G) = |V(G)|$.

Proof. First, let $e_1, ..., e_m, C_1, ..., C_n$ be a collection of mutually node disjoint edges and odd circuits such that the profit $m + \sum_{i=1}^n \frac{1}{2}(|V(C_i)| + 1)$ of the collection is equal to $\tilde{v}(G)$.

Let $V_1 := V(G) \setminus \bigcup_{i=1}^n V(C_i)$, and let G_1 be the subgraph of G induced by V_1. Then obviously $m = v(G_1)$. Let $f_1, ..., f_{\rho(G_1)}$ be a minimum edge-cover for G_1. Then $f_1, ..., f_{\rho(G_1)}$, $C_1, ..., C_n$ is a collection of edges and odd circuits covering $V(G)$. The cost of this collection is (using Gallai's identity (1.4))

\[
\rho(G_1) + \sum_{i=1}^n \frac{1}{2}(|V(C_i)| - 1)
\]

\[
= |V_1| - v(G_1) - \sum_{i=1}^n \frac{1}{2}(|V(C_i)| + 1) + \sum_{i=1}^n |V(C_i)|
\]

\[
= |V(G)| - \tilde{v}(G).
\]

Hence $\tilde{\rho}(G) + \tilde{v}(G) \leq |V(G)|$.

The reverse inequality is proved almost identically. However, there is a small technical difficulty, settled in the claim below.

Let $e_1, ..., e_m, C_1, ..., C_n$ be a collection of edges and odd circuits covering $V(G)$ such that the cost $m + \sum_{i=1}^n \frac{1}{2}(|V(C_i)| - 1)$ of the collection is equal to $\tilde{\rho}(G)$, and such that, moreover, n is small as possible.

Claim. For each $i, j = 1, ..., n$ ($i \neq j$), $k = 1, ..., m$ we have $V(C_i) \cap V(C_j) = \emptyset$, and no endpoint of e_k is an element of $V(C_i)$.

Proof of Claim. Suppose $u \in V(C_i)$ ($i = 1, ..., n$), such that u is also contained in another odd circuit among $C_1, ..., C_n$, or in one of the edges $e_1, ..., e_m$. Let $f_1, ..., f_p \in E(C_i)$ be the unique maximum cardinality matching in C_i not covering u. Then $p = \frac{1}{2}(|V(C_i)| - 1)$. Obviously...
e_1, \ldots, e_m, f_1, \ldots, f_p, C_1, \ldots, C_{i-1}, C_{i+1}, \ldots, C_n$ is a collection of edges and odd circuits covering $V(G)$. Its cost is $\tilde{p}(G)$. However, it contains only $n-1$ odd circuits, contradicting the minimality of n.

As before we define $V_1 = V(G) \setminus \bigcup_{i=1}^{n} V(C_i)$ as the subgraph of G induced by V_1. By similar arguments as used in the first part of the proof one gets:

$$\tilde{p}(G) = \rho(G_1) + \sum_{i=1}^{n} \frac{1}{2}(|V(C_i)| - 1)$$

$$\geq |V(G)| - \tilde{v}(G).$$

Corollary 1.6. Let G be an undirected graph without isolated nodes. Then $\alpha(G) = \tilde{p}(G)$ if and only if $\tau(G) = \tilde{v}(G)$.

As mentioned before there is a more general, weighted, version of Theorem 1.3 (Theorem 1.8 below).

Weighted Versions

We define weighted versions of the numbers $\alpha, \rho, \nu, \tau, \tilde{p}$, and \tilde{v} and state the obvious generalizations of the results mentioned. Let $w \in \mathbb{Z}^{V(G)}$.

$$\alpha_w(G) := \text{maximum } \{ \sum_{u \in S} w_u | S \text{ is a stable set in } G \}. $$

$$\rho_w(G) := \text{the minimum cardinality of a w-edge-cover for } G. (\text{A w-edge-cover for } G \text{ is a collection } e_1, \ldots, e_m \text{ in } E(G) \text{ (repetition allowed) such that for } u \in V(G) \text{ there are at least } w_u \text{ edges among } e_1, \ldots, e_m \text{ incident with } u. \text{ The cardinality of } e_1, \ldots, e_m \text{ is } m.)$$

$$\nu_w(G) := \text{the maximum cardinality of a w-matching in } G. (\text{A w-matching is a collection } e_1, \ldots, e_m \text{ in } E(G) \text{ (repetition allowed) such that for each } u \in E(G) \text{ there are at most } w_u \text{ edges among } e_1, \ldots, e_m \text{ incident with } u.)$$

$$\tau_w(G) := \text{minimum } \{ \sum_{u \in N} w_u | N \text{ is node-cover for } G \}. $$

Moreover we define:

A w-cover (w-packing, respectively) by edges and odd circuits is a collection e_1, \ldots, e_m of edges and C_1, \ldots, C_m of odd circuits (repetition allowed), such that for each $u \in V(G)$:

$$|\{i = 1, \ldots, m | u \text{ endpoint of } e_i\}|$$

$$+ |\{i = 1, \ldots, n | u \in V(C_i)\}| \geq w_u \quad (\leq w_u \text{ respectively}).$$
The cost of \(e_1, \ldots, e_m, C_1, \ldots, C_n \) is \(m + \sum_{i=1}^{n} \frac{1}{2}(|V(C_i)| - 1) \), its profit is

\[
\tilde{\rho}_w(G) := \text{the minimum cost of a } w\text{-cover by edges and odd circuits in } G.
\]

\[
\tilde{v}_w(G) := \text{the maximum profit of a } w\text{-packing by edges and odd circuits in } G.
\]

The numbers defined above satisfy:

\[
\text{(1.7) If } G \text{ has no odd circuit, then } \alpha_w(G) = \rho_w(G) \text{ and } \\
\tau_w(G) = \nu_w(G) \text{ (Egerváry [9]),} \\
\alpha_w(G) \leq \tilde{\rho}_w(G) \leq \rho_w(G), \\
\tau_w(G) \geq \tilde{v}_w(G) \geq \nu_w(G), \\
\alpha_w(G) + \tau_w(G) = \tilde{\rho}_w(G) + \tilde{v}_w(G) = \rho_w(G) + \nu_w(G) = \sum_{u \in V(G)} w_u.
\]

The statement of (1.7) can be proved easily from the cardinality versions stated before (with \(w = 1 \)), using the following construction. Define \(G_w \) by

\[
V(G_w) = \{ [u, i] \mid u \in V(G); i = 1, \ldots, w_u \}, \\
E(G_w) = \{ [u, i][v, j] \mid u, v \in V(G); uv \in E(G); i = 1, \ldots, w_u; j = 1, \ldots, w_v \}.
\]

Then one easily proves that \(\alpha_w(G) = \alpha(G_w), \) \(\rho_w(G) = \rho(G_w), \) \(\nu_w(G) = \nu(G_w), \)

\[
\tau_w(G) = \tau(G_w), \quad \tilde{\rho}_w(G) = \tilde{\rho}(G_w), \quad \tilde{v}_w(G) = \tilde{v}(G_w), \quad \text{and } \quad V(G_w) = \sum_{u \in V(G)} w_u.
\]

Moreover \(G_w \) is bipartite if and only if \(G \) is. All this yields (1.7).

Theorem (1.3) can be generalized as well:

Theorem 1.8. Let \(G \) be an undirected graph, without isolated nodes. If \(G \) contains no odd-\(K_4 \) as a subgraph, then \(\alpha_w(G) = \rho_w(G) \) and \(\tau_w(G) = \nu_w(G) \) for any \(w \in \mathbb{Z} \).

We prove this theorem later in Section 2. It should be noted that Theorem 1.8 does not follow from Theorem 1.3 by using \(G_w \). The reason is that it is possible that \(G_w \) contains an odd-\(K_4 \) even if \(G \) does not. This is illustrated by the graph in Fig. 2 (the bold edges in Fig. 2b form an odd-\(K_4 \)).

The statement \("\alpha_w(G) = \tilde{\rho}_w(G) \) for each \(w \in \mathbb{Z} \)\) can be reformulated in terms of integer linear programming:

\[
\text{(1.9) Both optima in the following primal-dual pair of linear programs are attained by integral vectors if } w \text{ is integer valued.}
\]
STABLE SETS IN GRAPHS

PRIMAL:

\[
\begin{align*}
\max & \sum_{u \in V(G)} w_u x_u \\
\text{s.t.} & \quad x_u + x_v \leq 1 \quad (uv \in E(G)); \\
& \quad \sum_{u \in V(C)} x_u \leq \frac{1}{2}(|V(C)| - 1) \quad (C \in \mathcal{C}(G)); \\
& \quad x_u \geq 0 \quad (u \in V(G)).
\end{align*}
\]

DUAL:

\[
\begin{align*}
\tilde{\rho}_w^*(G) & := \min \sum_{e \in E(G)} y_e + \sum_{C \in \mathcal{C}(G)} \frac{1}{2}(|V(C)| - 1) z_C \\
\text{s.t.} & \quad \sum_{e \in \delta(u)} y_e + \sum_{\begin{subarray}{l}
C \in \mathcal{C}(G) \\
u \in V(C)
\end{subarray}} z_C \geq w_u \quad (u \in V(G)); \\
& \quad y_e \geq 0 \quad (e \in E(G)); \\
& \quad z_C \geq 0 \quad (C \in \mathcal{C}(G)).
\end{align*}
\]

(\mathcal{C}(G) denotes the collection of odd circuits \(C = (V(C), E(C))\) in \(G\). \(\delta(u)\) denotes the set of edges with endpoint \(u\).)

We conclude this section with some remarks. Section 2 contains the proof of Theorem 1.3 and 1.8. Finally, in Section 3, we consider some algorithmic aspects of the results in this paper.

Remarks. (i) Theorem 1.8 implies that if \(G\) contains no odd-\(K_4\), then \(\hat{\rho}_w(G) = \tilde{\rho}_w^*(G)\) for each \(w \in \mathcal{L}_+^\prime(G)\). In other words, the system of linear
inequalities in the primal problem of (1.9) is totally dual integral (cf. Edmonds and Gilles [7]). Consequently (Edmonds and Gilles [7], Hoffman [18]), if G contains no odd-K_4, then $\alpha_w(G) = \tilde{\rho}_w(G)$ for each $w \in \mathbb{Z}_{+}^{V(G)}$. This means that the system of linear inequalities in the primal problem of (1.9) describes the stable set polytope of G. (The stable set polytope of G is the convex hull of the characteristic vectors of the stable sets of G, considered as subsets of $V(G)$.)

Obviously, also the statement “$\tau_w(G) = \tilde{\nu}_w(G)$ for each $w \in \mathbb{Z}_{+}^{V(G)}$” can be formulated in a way similar to (1.9).

(ii) Theorem 1.8 (and Theorem 1.3) can be refined by allowing w-covers (w-packings) by edges and odd circuits only to use edges not contained in a triangle, and odd circuits not having a chord. In other words, if G has no odd-K_4, then the system

\begin{align*}
\sum_{u \in V(C)} x_u & \leq \frac{1}{2}(|V(C)| - 1) & (C \in \Gamma(G), C has no chord); \\
x_u & \geq 0 & (u \in V(G))
\end{align*}

is a totally dual integral system defining the stable set polytope of G. In fact the inequalities in (*) are all facets of the polyhedron defined by (*) (for any graph G). So (*) is the unique minimal totally dual integral system (cf. Schrijver [26]) for the stable set polytope of G, in case G has no odd-K_4.

(iii) Earlier results on this topic are:

- Chvátal [3]: If G is series-parallel (i.e., G contains no homeomorph of K_4), then $\alpha(G) = \tilde{\rho}(G)$.

- Boulala and Uhry [2]: If G is series-parallel, then $\alpha_w(G) = \tilde{\rho}_w(G)$ for each $w \in \mathbb{Z}_{+}^{V(G)}$. (In fact they only emphasize $\alpha_w(G) = \tilde{\rho}_w^*(G)$ (which was conjectured by Chvátal [3]), but their proof implicitly yields the stronger result. Recently, Mahjoub [23] gave a very short proof of $\alpha_w(G) = \tilde{\rho}_w^*(G)$ for each $w \in \mathbb{Z}_{+}^{V(G)}$ for series-parallel graphs G.)

- Fonlupt and Uhry [10]: If there exists a $u \in V(G)$ such that $u \in V(C)$ for each $C \in \Gamma(G)$, then $\alpha_u(G) = \tilde{\rho}_u^*(G)$ for each $w \in \mathbb{Z}_{+}^{V(G)}$. Sbihi and Uhry [25] give a new proof of Fonlupt and Uhry's result. This proof implicitly yields $\alpha_w(G) = \tilde{\rho}_w^*(G)$ for each $w \in \mathbb{Z}_{+}^{V(G)}$.

- Gerards and Schrijver [17]: If G has no odd-K_4 then $\alpha_w(G) = \tilde{\rho}_w^*(G)$ for each $w \in \mathbb{Z}_{+}^{V(G)}$.

(iv) Gerards et al. [16] give a constructive characterization of
graphs with no odd-K_4: G has no odd-K_4 if and only if one of the following holds:

- There exists a $u \in V(G)$ such that $u \in V(C)$ for all $C \in \mathcal{I}(G)$ (Fonlupt and Uhry's case mentioned in remark (iii) above).
- G is planar, and at most two faces of G are odd circuits.
- G is the graph in Fig. 3.
- G can be decomposed into smaller graphs with no odd-K_4.

2. The Proof of Theorem 1.8

We first derive a special case of Theorem 1.8. To state and prove it we need some extra notions and an auxiliary result (Theorem 2.1). An odd-K_3^2 is a graph as indicated in Fig. 4 (wriggled and dotted lines stand for pairwise openly disjoint paths, dotted lines may have length zero, wriggled
lines always have positive length, odd indicates that the corresponding faces are odd circuits.

An orientation of an undirected graph G is a directed graph obtained from G by replacing the undirected edges by directed edges. We say that a directed graph has discrepancy 1 if in each circuit the number of forwardly directed arcs minus the number of backwardly directed arcs is 0 or ±1.

Theorem 2.1 (Gerards [15]). Let G be an undirected graph. Then G contains neither an odd-K_4 nor an odd-K_3^2 if and only if G has an orientation with discrepancy 1.

Using this theorem we obtain the following special case of Theorem 1.8.

Theorem 2.2. Let G be an undirected graph without isolated nodes. If G contains neither an odd-K_4 nor an odd-K_3^2, then $\alpha_u(G) = \bar{\rho}_u(G)$ and $\tau_u(G) = \bar{\tau}_u(G)$ for each $w \in \mathbb{Z}^{V(G)}$.

Proof. According to Theorem 2.1, G has an orientation with discrepancy 1. Let \bar{A} denote the set of arcs in this orientation. For each $\bar{uv} \in \bar{A}$ we add a reversely directed arc \bar{vu} too. Denote $\bar{A} := \{ \bar{uv} : \bar{uv} \in \bar{A} \}$. Consider the following “circulation” problem:

\[
\begin{aligned}
\text{min} \quad & \sum_{a \in \bar{A}} f_a \\
\text{s.t.} \quad & \sum_{a \in \bar{A} \cup \bar{A}} f_a - \sum_{a \in \bar{A} \cup \bar{A}} f_a = 0 \quad (u \in V(G)); \\
& \sum_{a \in \bar{A} \cup \bar{A}} f_a \geq w_u \quad (u \in V(G)); \\
& f_a \geq 0 \quad (a \in \bar{A} \cup \bar{A});
\end{aligned}
\]

and its linear programming dual:

\[
\begin{aligned}
\text{max} \quad & \sum_{u \in V(G)} w_u x_u \\
\text{s.t.} \quad & \pi_v - \pi_u + x_v \leq 1 \quad (\bar{uv} \in \bar{A}); \\
& \pi_u - \pi_v + x_u \leq 0 \quad (\bar{vu} \in \bar{A}); \\
& x_u \geq 0 \quad (u \in V(G)).
\end{aligned}
\]

The theorem is proved with the help of the following three propositions.

Proposition 1. The constraint matrix of (2.3) is totally unimodular. Consequently both (2.3) and (2.4) have integral optimal solutions (Hoffman and Kruskal [19]).
STABLE SETS IN GRAPHS

PROPOSITION 2. Let \(\pi \in \mathbb{Z}^{V(G)} \), \(x \in \mathbb{Z}^{V(G)} \) be a feasible solution of (2.4). Then \(x \) is a feasible solution of the primal problem of (1.9).

PROPOSITION 3. Let \(f \in \mathbb{Z}^{\bar{A} \cup \bar{A}} \) be a feasible solution of (2.3). Then there exists a \(y \in \mathbb{Z}^{E(G)} \) and \(z \in \mathbb{Z}^{T(G)} \), which form a feasible solution of the dual problem of (1.9), such that

\[
\sum_{e \in E(G)} y_e + \sum_{C \in T(G)} \frac{1}{2}(|V(C)| - 1)z_C \leq \sum_{a \in \bar{A}} f_a.
\]

Indeed, the three propositions together prove that \(\alpha_w(G) \geq \bar{\beta}_w(G) \). By (1.7), this yields \(\alpha_w(G) = \bar{\beta}_w(G) \) and \(\tau_w(G) = \bar{\tau}_w(G) \). The three propositions above are shown as follows:

Proof of Proposition 1. If we are given a directed graph \(D = (V(D), A(D)) \) and a spanning directed tree \(T = (V(D), A(T)) \) on the same node set (not necessarily \(A(T) \subset A(D) \)), then the network matrix \(N \) of \(D \) with respect to \(T \) is defined as follows: \(N \in \{0, 1, -1\}^{A(T) \times A(D)} \). For \(u, v \in V(D) \) let \(P(u, v) \subset A(T) \) be the unique path in \(T \) from \(u \) to \(v \). Then for each \(a, \in A(T), a, = \overrightarrow{w} \in A(D): \)

\[
N_{a,1} := \begin{cases}
1 & \text{if } a, \in P(u, v), \text{ and } a, \text{ is passed forwardly going along } P(u, v) \text{ from } u \text{ to } v; \\
-1 & \text{if } a, \in P(u, v), \text{ and } a, \text{ is passed backwardly going along } P(u, v) \text{ from } u \text{ to } v; \\
0 & \text{if } a, \notin P(u, v).
\end{cases}
\]

Network matrices are totally unimodular (Tutte [28]). We prove Proposition 1 by showing that the constraint matrix of (2.3) is a network matrix. Indeed, let \(V(D) := V(T) := \{v_0\} \cup \{[u, i] | u \in V(G), i \in \{1, 2\}\}, A(D) := \{[u, 1][v, 2] | \overrightarrow{uv} \in \bar{A}\} \text{ and } A(T) := \{v_0[u, 1] | u \in V(G)\} \cup \{[u, 1][u, 2] | u \in V(G)\}. \)

Proof of Proposition 2. Since \(x \) is integral we only need to prove that \(x_u + x_v \leq 1 \) for \(uv \in E(G) \). Indeed, \(x_v + x_u \leq (1 - \pi_v + \pi_u) + (\pi_v - \pi_u) = 1 \) if \(uv \in E(G) \) (\(uv \in \bar{A} \)).

Proof of Proposition 3. We can write \(f = \sum_{D \in \mathcal{A}} \lambda_D f^D \), where \(\mathcal{A} \) is a collection of directed circuits in \(\bar{A} \cup \bar{A} \), \(\lambda_D \in \mathbb{Z}_+ \) for each \(D \in \mathcal{A} \), and where \(f^D \in \{0, 1\}^{\bar{A} \cup \bar{A}} \) satisfies that \(f^D_a = 1 \) if and only if \(a \in D \).

For every even circuit \(D \in \mathcal{A} \), let \(M_D \) be an arbitrary maximum
cardinality matching in \(\{ uv \in E(G) | \overrightarrow{u} \in D \text{ or } \overrightarrow{v} \in D \} \). (In particular, if \(D = \{ \overrightarrow{w}, \overrightarrow{u} \} \), then \(M_D = \{ uv \} \).) Define \(y^D \in \mathbb{Z}^{E(G)} \) by

\[
y_e^D = \begin{cases}
\lambda_D & \text{if } e \in M_D; \\
0 & \text{else.}
\end{cases}
\]

Next \(y \in \mathbb{Z}^{V(G)} \) is defined by

\[
y = \sum_{D \in A} y^D.
\]

For each odd circuit \(D \in A \), let \(C_D \in \mathcal{F}(G) \) be defined by \(C_D = \{ uv | \overrightarrow{u} \in D \text{ or } \overrightarrow{v} \in D \} \). Define \(z \in \mathbb{Z}^{\mathcal{F}(G)} \) by

\[
z_c = \begin{cases}
\lambda_D & \text{if } C = C_D \text{ for some } D, D \in A, |D| \text{ odd;}
\\
0 & \text{else.}
\end{cases}
\]

The vectors \(y \in \mathbb{Z}^{E(G)} \) and \(z \in \mathbb{Z}^{\mathcal{F}(G)} \) form a feasible solution to the dual problem of (1.9). Moreover,

\[
\sum_a f_a = \sum_{D \in A} \lambda_D |\bar{A} \cap D|
\geq \sum_{D \in A} \lambda_D |M_D| + \sum_{D \in A \text{ odd}} \lambda_D \cdot \frac{1}{2}(|V(C_D)| - 1)
= \sum_{c \in \mathcal{F}(G)} y_c + \sum_{c \in \mathcal{F}(G)} \frac{1}{2}(|V(C)| - 1) z_c.
\]

Before we prove Theorem 1.8 we state a result of Gerards et al. [16]. This result indicates that, in a sense, Theorem 2.2 is the core of Theorem 1.8.

Theorem 2.5. Let \(G \) be an undirected graph, containing no odd-\(K_4 \). If \(G \) contains an odd-\(K_3 \), then \(G \) has two subgraphs \(G_1 \) and \(G_2 \) such that

- \(E(G_1) \cup E(G_2) = E(G) \); \(E(G_1) \cap E(G_2) = \emptyset \); \(E(G_1) \neq \emptyset, E(G_2) \neq \emptyset \);
- \(V(G_1) \cup V(G_2) = V(G) \); \(|V(G_1) \cap V(G_2)| \leq 2 \);
- If \(|V(G_1) \cap V(G_2)| = 2 \), then \(G_1 \) and \(G_2 \) are not bipartite.

Using this we finally prove Theorem 1.8.

Proof of Theorem 1.8. Let \(G \) be a graph with no odd-\(K_4 \). Assume that all graphs \(G' \) with \(|E(G')| < |E(G)| \) satisfy Theorem 1.8. We shall prove that \(G \) then satisfies Theorem 1.8. Obviously, we may assume \(G \) to be connected. Let \(w \in \mathbb{Z}^{V(G)} \). By the weighted version of Theorem 1.5 we only
need to prove that $\alpha_w(G) = \bar{\rho}_w(G)$. Obviously we may assume that $w_u \geq 0$ for each $u \in V(G)$.

According to Theorems 2.2 and 2.5 we may assume that there are subsets V_1, V_2 of $V(G)$ such that $|V_1 \cap V_2| \leq 2$, $V_1 \cup V_2 = V(G)$, and both $V_1 \setminus V_2$ and $V_2 \setminus V_1$ are nonempty sets not joined by an edge in $E(G)$. Moreover, in case $|V_1 \cap V_2| = 2$, the subgraphs G_1 and G_2 in G induced by V_1, V_2, respectively, are not bipartite. In the sequel we shall use the following notation: For each stable set $U \subseteq V_1 \cap V_2$ the number $s(U)$ ($s'(U)$, $s^2(U)$, respectively) denotes the maximum weight $\sum_{u \in S} w_u$ of a stable set S in G (G_1, G_2, respectively) satisfying $S \cap V_1 \cap V_2 = U$. Note that $s(U) = s'(U) + s^2(U) - \sum_{u \in U} w_u$ for each stable set U in $V_1 \cap V_2$.

We consider two cases.

Case I. $V_1 \cap V_2$ induces a complete subgraph in G. Define the following weight functions:

$w'_u := \begin{cases} \w_u & \text{if } u \in V_1 \cap V_2; \\ \w_u + s'(\emptyset) - s'(\{u\}) & \text{if } u \in V_1 \cap V_2; \\ \end{cases}$

$w''_u := \begin{cases} \w_u & \text{if } u \in V_2 \setminus V_1; \\ s'(\{u\}) - s'(\emptyset) & \text{if } u \in V_1 \cap V_2. \\ \end{cases}$

Obviously, neither G_1 nor G_2 contains an odd-K_4. Moreover $|E(G_1)| < |E(G)|$, $|E(G_2)| < |E(G)|$. Hence there exists a w'- and a w''-cover by edges and odd circuits in G_1, G_2, respectively, with cost $s'(\emptyset)$, $\alpha_w(G) - s'(\emptyset)$, respectively. The union of these two covers is a w-cover with edges and odd circuits in G with cost $\alpha_w(G)$. Hence $\alpha_w(G) = \bar{\rho}_w(G)$.

Case II. $|V_1 \cap V_2| = 2$, $V_1 \cap V_2 = \{u_1, u_2\}$ say, and $u_1 u_2 \notin E(G)$. Define for $i = 1, 2$, $k = 2, 3$ the graph G_i^k by adding to G_i a path from u_1 to u_2 with k edges. (See Figs. 5 and 6.)

Claim 1. We may assume that G_i^k does not contain an odd-K_4 ($i = 1, 2$, $k = 2, 3$). Moreover, $|E(G_i^k)| < |E(G)|$.

\[\text{Figure 5} \]
Proof of Claim 1. To prove the first assertion (for \(i = 1 \)), it is sufficient to prove that in \(G_2 \) there exists an odd as well as an even path from \(u_1 \) to \(u_2 \). Suppose this is not the case. Since \(G_2 \) is not bipartite this implies the existence of a cutnode in \(G_2 \) separating \(\{u_1, u_2\} \) from an odd circuit in \(G_2 \). But such a cutnode is also a cutnode of \(G \). In that case we can apply Case I to prove \(\alpha_w(G) = \bar{\rho}_w(G) \). So we may assume that \(G_1^i \) has no odd-\(K_4 \).

If \(|E(G_1^i)| \geq |E(G)| \), then \(|E(G_2)| \leq 3 \). Hence, since \(G_2 \) is not bipartite, \(G_2 \) is a triangle. So \(u_1u_2 \in E(G) \), contradicting our assumption that \(u_1u_2 \notin E(G) \).

Define \(\Delta := s^3(\{u_1\}) + s^3(\{u_2\}) - s^3(\{u_1, u_2\}) - s^3(\emptyset) \). Again we consider two cases.

Case Ia. \(\Delta \geq 0 \). Let \(b_1, b_2 \) be the new nodes in \(G_1^1 \), \(b \) the new node in \(G_2^1 \). (See Fig. 5.) Moreover, let \(e_1, e_2, e, f_1 \), and \(f_2 \) be the edges indicated in Fig. 5.

We define the following weight functions:

\[
\begin{align*}
\text{if } u \notin \{b, b_1, b_2\}, w_1^i &= s^2(\{u\}) - s^2(\emptyset) \\
\text{if } u \in \{b, b_1, b_2\}, w_1^i &= \Delta \\
\text{if } u \notin \{u_1, u_2\}, w_2^i &= s^2(\{u\}) + \Delta \\
\text{if } u \in \emptyset, w_2^i &= \Delta
\end{align*}
\]

Claim 2. \(\alpha_w(G_1^1) = \alpha_w(G) + \Delta - s^2(\emptyset) \) and \(\alpha_w(G_2^1) = s^2(\emptyset) + \Delta \). Moreover, for \(i = 1, 2 \) there exists a stable set \(S \) in \(G_2^i \) with \(\sum_{u \in S} w_2^i = \alpha_w(G^i_2) \), \(u \notin S \), and \(b \notin S \).

Proof of Claim 2. Straightforward case checking.

By Claim 1 there exists a \(w^1 \)-cover \(E^1 \), \(\Gamma^1 \) by edges and odd circuits in \(G_1^i \) with cost \(\alpha_w(G_1^1) = \alpha_w(G) + \Delta - s^2(\emptyset) \). Let \(\gamma_1, \gamma_2, \) and \(\bar{\gamma} \) denote the multiplicity of \(e_1, e_2, \bar{e} \), respectively, in \(E^1 \). Let \(\beta \) denote the sum of the multiplicities of the odd cycles in \(\Gamma^1 \) containing \(b_1 \) (and \(b_2 \)). Assume \(E^1 \) and \(\Gamma^1 \) are such that \(\gamma_1 + \gamma_2 + 2\bar{\gamma} + \beta \) is minimal.

Claim 3. \(\gamma_i + \bar{\gamma} + \beta = \Delta \) for \(i = 1, 2 \). Consequently, \(\gamma_1 = \gamma_2 \).

Proof of Claim 3. \(\gamma_1 + \bar{\gamma} + \beta \geq \Delta \), since \(E^1, \Gamma^1 \) is a \(w^1 \)-cover. Suppose \(\gamma_1 + \bar{\gamma} + \beta > \Delta \). Then \(\bar{\gamma} = 0 \). Indeed, if not, then increasing \(\gamma_2 \) by 1 and decreasing \(\bar{\gamma} \) by 1 would yield a \(w^1 \)-cover with cost \(\alpha_w(G_1^1) \), and smaller \(\gamma_1 + \gamma_2 + 2\bar{\gamma} + \beta \). Moreover, \(\gamma_1 = 0 \). Otherwise, take some \(u, v \in E(G^1) \). Adding \(u_1v \) to \(E^1 \) (or increasing its multiplicity in \(E^1 \)) and decreasing \(\bar{\gamma} \) by
1 again yields a w^1-cover with cost $\alpha_w(G_1^2)$, and smaller $\gamma_1 + \gamma_2 + 2\gamma + \beta$.

Finally, $\beta = 0$, contradicting the fact that $\Delta \geq 0$. Indeed, if $\beta > 0$ remove an odd circuit C with $b_1 \in V(C)$ from Γ', and add the edges in the unique maximum cardinality matching $M \subseteq E(C)$ not covering b_1 to Γ^1. Since $|M| = \frac{1}{2}(|V(C)| - 1)$ this again yields a w^1-cover with cost $\alpha_w(G_3^1)$, and smaller $\gamma_1 + \gamma_2 + 2\gamma + \beta$.

By Claim 1, there also exists a w^2-cover E^2, Γ^2 by edges and odd circuits in G_2^2 with cost $\alpha_w(G_2^2) = s^2(\emptyset) + \Delta$. Let E^2 and Γ^2 be such that the sum, δ say, of the multiplicities of the odd cycles in Γ^2 containing b is minimal.

Claim 4. f_1 and f_2 do not occur (i.e., have multiplicity 0) in E^2. Moreover, $\delta = \Delta$.

Proof of Claim 4. Since the cost of E^2, Γ^2 is $\alpha_w(G_2^2)$ and there exists a stable set S in G_2^2 with $\sum_{u \in S} n_u = \alpha_w(G_2^2)$ and with $u_1, b \notin S$ (Claim 2), the edge f_1 does not occur in E^2 ("complementary slackness"). Equivalently f_2 does not occur in E^2. The proof that $\delta = \Delta$ is similar to the proof of Claim 3.

Using E^1, Γ^1 and E^2, Γ^2 we are now able to construct a w-cover \bar{E}, $\bar{\Gamma}$ in G by edges and odd circuits with cost $\alpha_w(G)$, thus proving $\alpha_w(G) = \bar{\alpha}_w(G)$. The construction goes as follows:

Step 1. The edges in E^1 and E^2, except e_1, e_2, and \bar{e}, are added to \bar{E} (with the same multiplicity). The odd circuits in Γ^1 and Γ^2 not containing b_1 (b_2) or b are added to $\bar{\Gamma}$.

Step 2. Let C_2^2, \ldots, C_β^2 be the odd circuits in Γ^2 containing b. (Remember that some of them may be equal.)

(i) Let C_1^1, \ldots, C_β^1 be the odd circuits in Γ^1 containing b_1. Define for each $i = 1, \ldots, \beta$ the odd circuit $C_i \in \Gamma(G)$ by

$$E(C_i) = E(C_i^1) \cup E(C_i^2) \setminus \{e_1, e_2, \bar{e}, f_1, f_2\}.$$

Add all the odd circuits C_1, \ldots, C_β to $\bar{\Gamma}$. Note that, for each $i = 1, \ldots, \beta, \frac{1}{2}(|V(C_i)| - 1) = \frac{1}{2}(|V(C_i^1)| - 1) + \frac{1}{2}(|V(C_i^2)| - 1) - 2$.

(ii) Define for each $i = \beta + 1, \ldots, \beta + c$ the collection of edges M_i as the unique maximum cardinality matching in $E(C_i^2)$ not covering b. Each edge occurring in M_i ($i = \beta + 1, \ldots, \beta + c$) is added to \bar{E} (as often as it occurs in any M_i). Note that, for each $i = \beta + 1, \ldots, \beta + c$, $|M_i| = \frac{1}{2}(|V(C_i^2)| - 1)$.

(iii) Define for each $i = \beta + c + 1, \ldots, \beta + c + \gamma$ ($= \Delta$) the collection of edges N_i as the unique maximum cardinality matching in $E(C_i^1)$ not covering u_1 and not covering u_2. All the edges occurring in any N_i are
added to \tilde{E} (as often as they occur in any N_i). Note that, for each $i = \beta + \gamma_1 + 1, \ldots, A$, $|N_i| = \frac{1}{2}(|V(C_i^2)| - 1) - 1$.

Claim 5. The collections \tilde{E}, \tilde{F} form a w-cover by edges and odd circuits in G.

Proof of Claim 5. It is not hard to see that each $u \in (V_1 \setminus V_2) \cup (V_2 \setminus V_1)$ is covered w_u times by \tilde{E}, \tilde{F}. (The matchings in step 2(ii) and in step 2(iii) of the construction do not decrease the number of times that a node in $V_2 \setminus V_1$ is covered.) The node u_1 is covered as least $s^2(\{u_1\}) - s^2(\emptyset) - A$ times by E^1, Γ^1, and at least $w_{u_1} + s^2(\emptyset) - s^2(\{u_1\}) + \Delta$ times by E^2, Γ^2. So u_1 is covered at least $w_{u_1} + \Delta$ times by E^1, Γ^1 and E^2, Γ^2 together. During the construction this amount is decreased with β by step 2(i), with γ_1 by step 2(ii), and with γ_2 by step 2(iii). Since $\beta + \gamma_1 + \gamma_2 = A$, \tilde{E} and \tilde{F} cover u_1 at least w_{u_1} times. Similarly one deals with u_2, as $\gamma_1 = \gamma_2$.

Claim 6. The cost of \tilde{E}, \tilde{F} is $\alpha_w(G)$.

Proof of Claim 6. The cost of E^1, Γ^1 plus the cost of E^2, Γ^2 is equal to $\alpha_w(G^1) + \alpha_w(G^2) = \alpha_w(G) + A - s^2(\emptyset) - s^2(\emptyset) + \Delta = \alpha_w(G) + 2A$. During the construction we lost exactly: 2β in step 2(i), γ_2 in step 2(ii), and $2\gamma_1 + \gamma_2$ by ignoring the edges e_1, e_2, \tilde{e}. So the cost of \tilde{E}, \tilde{F} is $\alpha_w(G) + 2A - 2\beta - \gamma_2 - (2\gamma_1 + \gamma_2) = \alpha_w(G)$. Claims 5 and 6 together yield that $\alpha_w(G) = \tilde{\rho}_w(G)$.

Case IIb. $A \leq 0$. The proof of this case is similar to the proof of Case IIa. Therefore we shall only give the beginning of it.

Let b the new node in G^3_1 and let b_1 and b_2 be the new nodes in G^3_2 (see Fig. 6).

Define the following weight functions:

$$ w^1 \in \mathbb{Z}^{V(G^1_2)} \quad \text{by} \quad w^1_u := \begin{cases} w_u & \text{if } u \in V_1 \setminus V_2; \\ s^2(\{u\}) - s^2(\emptyset) - \Delta & \text{if } u \in \{u_1, u_2\}; \\ -\Delta & \text{if } u = b; \end{cases} $$

$$ w^2 \in \mathbb{Z}^{V(G^3_2)} \quad \text{by} \quad w^2_u := \begin{cases} w_u & \text{if } u \in V_2 \setminus V_1; \\ w_u + s^2(\emptyset) - s^2(\{u\}) & \text{if } u \in \{u_1, u_2\}; \\ -\Delta & \text{if } u \in \{b_1, b_2\}. \end{cases} $$

The first thing to be proved now is

Claim 7. $\alpha_w(G^1_2) = \alpha_w(G) - \Delta - s^2(\emptyset)$ and $\alpha_w(G^3_2) = -\Delta + s^2(\emptyset)$. Moreover, for each $U \in \{\{u_1, b_1\}, \{b_1, b_2\}, \{u_2, b_2\}\}$ there exists a stable set S in G^3_2 with $\sum_{u \in S} w_u = \alpha_w(G^3_2)$, and $S \cap U = \emptyset$.
From this point it is not hard to see how arguments similar to those used in Case IIa prove that \(\alpha_w(G) = \bar{\rho}_w(G) \).

Remarks on the Proof of Theorem 3.8. The proof of Case I is identical with the proof of Theorem 4.1 in Chvátal [3]. The techniques used in Case IIa and Case IIb of the proof are similar to the techniques used by Boulala and Uhry [2]. However, they restrict \(G_2 \) to paths and odd circuits. Sbihi and Uhry [25] also use the decompositions of Case II. However, they used these decompositions in case \(G_2 \) is bipartite. Recently, Barahona and Mahjoub [1] derived a construction to derive all facets of the stable set polytope of \(G \), in case \(G \) has a two node cutset \(\{u_1, u_2\} \), from the facets of the stable set polytopes of \(G_i^+ \) and \(G_2^+ \). (Here \(G_1 \) and \(G_2 \) are as in the proof above; \(G_i^+ \) is derived from \(G_i \) by adding a five circuit \(\{u_1, b, u_2, b_1, b_2\} \).)

3. COMPUTATIONAL ASPECTS

We conclude this section by paying some attention to the computational complexity of the problems: Given \(G \) and \(w \in \mathbb{Z}^{V(G)} \), determine \(\alpha_w(G) \), \(\bar{\rho}_w(G) \), \(\rho_w(G) \), \(\tau_w(G) \), \(\bar{\nu}_w(G) \), and \(\nu_w(G) \). Well-known results are:

— It is \(NP \)-hard to determine \(\alpha_w(G) \), \(\tau_w(G) \), even if \(w \equiv 1 \) (Karp [20]).

— There exists a polynomial-time algorithm to determine a maximum cardinality \(w \)-matching, or a minimum cardinality \(w \)-edge-cover (Edmonds [6] for \(w \equiv 1 \), Cunningham and Marsh [4] for general \(w \)).

W. R. Pulleyblank [personal communication] observed that determining \(\bar{\rho}_w(G) \) or \(\bar{\nu}_w(G) \) is \(NP \)-hard, even if \(w \equiv 1 \). There is a reduction from PARTITION INTO TRIANGLES (cf. Garey and Johnson [14]). Indeed, given a graph \(G \) there is partition of \(V(G) \) into triangles in \(G \) if and only if \(\bar{\rho}(G) \leq \frac{1}{3}|V(G)| \). Since PARTITION INTO TRIANGLES remains \(NP \)-complete for planar graphs (Dyer and Frieze [5]), determining \(\bar{\rho}(G) \) or \(\bar{\nu}(G) \) remains \(NP \)-hard even if \(G \) is planar.
If \(G \) contains no odd-\(K_4 \), then \(\tilde{\nu}_w(G) \) and \(\tilde{\nu}_v(G) \) can be found in polynomial time. Indeed, an algorithm can be obtained from the proofs given in Section 2 above (proofs of Theorems 2.2 and 1.8). However, there are some difficulties to be settled.

Finding an Orientation of Discrepancy 1

Using a constructive characterization of graphs with no odd-\(K_4 \) and no odd-\(K^3_2 \) (Gerards et al. [16]) similar to the result indicated in Remark (iv) of Section 1, one easily derives a polynomial-time algorithm to find an orientation of discrepancy 1 or to decide that such an orientation does not exist (i.e., that \(G \) has an odd-\(K_4 \) or an odd-\(K^3_2 \), Theorem 2.1).

Solving (2.3) and (2.4)

Having an orientation \(\tilde{A} \) of discrepancy 1 one can solve (2.3) and (2.4) as follows: Define the directed graph \(D = (V(D), A(D)) \) by \(V(D) := \{u_i | u \in V(G); i = 1, 2\} \) and \(A(D) := A_1(D) \cup A_2(D) \), with \(A_1(D) := \{u_1 u_2 | u \in V(G)\} \) and \(A_2(D) := \{u_2 v_i | u, v \in V(G), \overrightarrow{uv} \in \tilde{A}\} \). Then (2.3) is equivalent to the min-cost-circulation problem:

\[
(3.1) \quad \min \sum_{a \in A_2(D)} g_a \\
\text{s.t. } g \text{ is a nonnegative circulation in } D \text{ and } g_\overrightarrow{u_i u_j} \geq w_u (u \in V(D)).
\]

Problem (3.1) can be efficiently solved by the out-of-kilter method of Ford and Fulkerson [11]. (Note that since the cost function is \{0, 1\}-valued, there is no need to appeal to more sophisticated techniques as used by Edmonds and Karp [8], Röck [24], or Tardos [27].)

Decomposition

If \(G \) has no orientation of discrepancy 1, then it has a one or two node cutset (with, in the latter case, both sides not bipartite). We can now go along the lines of Cases I and II in the proof of Theorem 1.8. In this way we get a recursive algorithm. However, in one side of the decomposition we have to solve two or three stable set problems to determine the numbers \(s'(U) \). (See the proof of Theorem 1.8.) Next we have to solve a stable set problem on both parts of the decomposition. If solving all of these four or five problems again needs a decomposition this might lead to an exponential number of steps. However, there is a way to avoid this. Any time we have to decompose the graph we search for a decomposition in which the smallest side, \(G_1 \) say, is as small as possible. In that case \(G_2 \) and \(G_3 \) have an orientation of discrepancy 1. So the two or three stable set problems to determine the numbers \(s'(U) \) as well as the derived problems on \(G_2 \) or \(G_3 \)}.
can be solved without further recursion. If we organize our algorithm in this way there is no risk of exponential explosion.

ACKNOWLEDGMENT

I thank Alexander Schrijver for his support during the preparation of this paper. In particular I thank him for his help with the presentation and his suggestions for simplifying the proofs. I thank William R. Pulleyblank for his observation that determining \(\rho \) or \(\bar{v} \) is \(NP \)-hard.

REFERENCES