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Abstract

In this paper, we prove the validity of the Edgeworth expansion of the Discrete Fourier transforms
of some linear time series. This result is applied to approach moments of non-linear functionals of the
periodogram. As an illustration, we give an expression of the mean square error of the slightly modified
Geweke and Porter-Hudak estimator of the long memory parameter. We prove that this estimator is rate
optimal, extending the result of Giraitis et al. (1997) [12] from Gaussian to linear processes.
c© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Many estimators in time series analysis involve non-linear functionals of the periodogram.
Examples include the estimation of the innovation variance [4,21,5,11], log-periodogram re-
gression [28,30,26], robust non-parametric estimation of the spectral density [33,19]. Non-linear
functionals of the periodogram also play a predominant role in the analysis of long-memory
time-series: one of the much widely used estimators of the memory parameter is based on the
regression of the log-periodogram ordinates on the log-frequency [10], see also [25,22].

The statistical analysis of such functionals has proved to be a very challenging problem, due
to the intricate dependence structure of periodogram ordinates. The first attempts to study these
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statistics were made under the additional assumption that the underlying process is Gaussian.
Because the Fourier transform coefficients are in this case also Gaussian, one may then apply
results on non-linear transforms of Gaussian random variables; see for example [31,29,1].

These techniques do not extend to non-Gaussian processes. A first step to weaken this assump-
tion was taken by Chen and Hannan [4], who proved the consistency of an additive functional
of the log-periodogram of a linear stationary process, with an application to the estimation of
the innovation variance. These techniques were based on the so-called Bartlett [2] expansion;
this technique was later improved by Faÿ et al. [8], who proved central limit theorems for these
functionals. It used by Velasco [32] to establish the weak consistency of the log-periodogram
regression estimate of the long memory parameter for long range dependent linear time series.
Edgeworth expansions are used to estimates moments of the functional of the unobservable pe-
riodogram of the innovation sequence. Remainder terms can be bounded in probability. The
Bartlett expansion is indeed useful to establish limit theorems, but does not in general allow one
to determine the moments of these functionals.

An alternative approach has been considered by von Sachs [33] and Janas and Von Sachs [19].
These authors prove the mean-square consistency of a general additive functional of non-linear
transforms of the (tapered) periodogram, using Edgeworth expansions of the discrete Fourier
transform of the observed time series itself. Janas and von Sachs [19] apply these results to
prove the mean-square consistency of a Huberized (peak insensitive) non-parametric spectral
estimator. These results rely on the Edgeworth expansion of a triangular array of strongly mixing
processes with geometrically mixing coefficient established by Götze and Hipp [13]. The mixing
conditions herein are rather stringent, and thus the conclusions reached by Janas and von Sachs
[19] are proved under a set of restrictive assumptions, precluding, for instance, their use in a
long-memory context.

The main objective of this paper is to develop a method allowing one to compute the moments
of functionals of non-linear transforms of the (possibly tapered) periodogram of a linear process.
These results are based on Edgeworth expansion of a (possibly infinite) triangular array of i.i.d.
random variables, obtained earlier in [9] and recalled in Appendix A. The linearity of the process
is then crucial. Our results cover short, long and negative memory processes.

The remainder of the paper is organized as follows. In Section 2 we give the assumptions on
the linear structure of the time series and define the cumbersome notation related to Edgeworth
expansions. In Section 3, we formulate the validity of Edgeworth expansions and moment
bounds under the short memory set of hypotheses. As an application, we derive the mean-square
consistency of additive functionals of the non-linear transform of the periodogram for a short-
memory linear time-series. In Section 4, we follow the same lines, but in a long or negative
memory framework, and apply the moment bounds we obtain to control the mean-square error
of the Geweke and Porter-Hudak [10] estimator of the fractional difference parameter for a linear
process. We work out a modified version of this estimator, where regression is performed on
every two periodogram ordinates. This extends the rate optimality property of the Geweke and
Porter-Hudak (hereafter, GPH) estimator obtained earlier by Giraitis et al. [12] for Gaussian
processes. A Monte-Carlo experiment is run to confirm our results for finite-sample observations.
Proofs are postponed to the Appendices.

2. Notations and assumptions

Assume that X = (X t )t∈Z is a covariance stationary process that has a spectral density f . For
any integer r ≥ 0, we define the tapered discrete Fourier transform (DFT) and periodogram of



G. Faÿ / Stochastic Processes and their Applications 120 (2010) 983–1009 985

order r as

dr,n(λ)
def
= (2πnar )

−1/2
n∑

t=1

hr
t,n X t eitλ, Ir,n(λ)

def
= |dr,n(λ)|

2 (2.1)

where ht,n
def
= 1−e2iπ t/n is the data taper introduced in [17] and ar

def
= n−1∑n

t=1 |ht,n|
2r
=

(
2r
r

)
is a normalization factor. Denote dr,n,k = dr,n(λk) and Ir,n,k = Ir,n(λk) the tapered DFT and

tapered periodogram evaluated at the Fourier frequencies λk
def
=

2πk
n , k = 1, . . . , [(n − 1)/2].

Define for r ∈ N, Dr,n(λ) the normalized kernel function

Dr,n(λ)
def
= (nar )

−1/2
n∑

t=1

hr
t,n exp(itλ) = (nar )

−1/2
r∑

k=0

(r

k

)
(−1)k Dn(λ+ λk) (2.2)

where Dn(λ)
def
=

∑n
t=1 e−iλt denotes the non-symmetric Dirichlet kernel. The latter relation

implies that Dr,n(λk) = 0 for k ∈ {1, . . . , ñ}, with ñ
def
= b(n − 2r − 1)/2c, so that the tapered

Fourier transform is invariant to shift in the mean. As shown in [17], the decay rate of the kernel
in the frequency domain increases with the kernel order, namely

∀λ ∈ [−3π/2, 3π/2], |Dr,n(λ)| ≤
Cn1/2

(1+ n|λ|)r+1 . (2.3)

This property implies that higher order kernels are more effective to control frequency leakage.
Tapering (r > 0) allows one to prove accurate bounds on the covariance of the DFT’s in the
anti-persistent case (negative memory), as recalled in Lemma 8 adapted from [20] (see also the
hypotheses of Theorems 6 and 11, for instance). In this case, any spectral estimation of the
memory parameter is very sensitive with respect to the leakage from higher frequencies to the
null frequency, where the spectral density behaves as a power law with positive index.

If X is a white noise and r = 0, the DFT ordinates at different Fourier frequencies are uncor-
related. This property is lost by tapering. More precisely, for 1 ≤ k 6= j ≤ ñ, E[dr,n,kdr,n, j ] = 0,

and E[dr,n,kdr,n, j ]
def
= (2π)−1ςr (k − j), where z̄ denotes the complex conjugate of z and ςr

defined in (3.6).
Many statistical applications (see the references given in the Introduction) require one to study

weighted sums of non-linear functionals of the periodogram ordinates

Tn(X, φ) =
K∑

k=1

βn,kφ

(
Ir,n,k

f (λk)

)
, (2.4)

where (βn,k)k∈{1,...,K } is a triangular array of real numbers. If X is a Gaussian white noise,
then (Ir,n,k) are i.i.d and the moments of the sum Tn(X, φ) can be calculated explicitly. In any
other case, the random variables (Ir,n,k)k∈{1,...,K } are not independent, and the calculation of the
moments of Tn(X, φ) is a difficult problem. The only attempt to solve it has been made by Janas
and von Sachs [19], who proposed a technique to compute moments of order 1 and 2. As already
outlined, their results are based on mixing conditions, precluding their use for long-memory
processes.

Remark. Sometimes the periodogram ordinates are averaged along blocks of adjacent frequen-
cies. This technique is known as pooling and is appropriate to reduce asymptotic variance of the
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estimators of non-linear functionals of the periodogram (see [25,24]). For simplicity, we will not
present any explicit result or application with the pooled periodogram, but the Edgeworth expan-
sion results that follow allow one to derive moment bounds on functionals of tapered and pooled
periodogram as well.

In this contribution, we focus on strict sense linear processes, i.e. it is assumed that

X t =
∑
j∈Z

ψ j Z t− j ,
∑
j∈Z

ψ2
j <∞, (2.5)

where (Z j ) j∈Z is a sequence of i.i.d random variables such that E[Z1] = 0, E[Z2
1] = 1. In

addition, for some s ≥ 3, p ≥ 1 and p′ ≥ 0,

(A1) E[|Z1|
s
] <∞ and

∫
R |t |

p′
|E[eit Z1 ]|

p dt <∞.

Remark. Apart from a classical moment condition, (A1), suppose that the distribution of the
i.i.d. noise is smooth; for example, lattice distributions are forbidden. This condition is stronger
than the usual Cramér condition. It ensures that the distributions of the Fourier coefficients of
Z are eventually continuous. We need this continuity to bound moments of singular functionals
(such as the logarithm) of the periodogram. Note that this condition could be dispensed with,
were we concerned with smooth functionals.

Define ψ(λ) =
∑

j∈Z ψ j ei jλ (the convergence holds in L2([−π, π], dx)) the transfer

function of the linear filter (ψ j ) j∈Z and f (λ) = (2π)−1
|ψ(λ)|2 the spectral density of the

process X . For an integer k ∈ {1, . . . , ñ} such that f (λk) 6= 0, define the normalized DFT

ωr,n,k
def
=
√

2π dr,n,k/|ψ(λk)|. Let k1 < k2 < · · · < ku be an ordered u-tuple of such integers
in the range 1, . . . , ñ and write k = (k1, . . . , ku). Define (the reference to r is suppressed in the
notation)

Sn(k)
def
=
[
Re(ωr,n,k1), Im(ωr,n,k1), . . . ,Re(ωr,n,ku ), Im(ωr,n,ku )

]
. (2.6)

With those definitions,

In,k,r = f (λk)|ωr,n,k |
2
= f (λk)‖Sn(k)‖

2. (2.7)

Since X admits the linear representation (2.5), Sn(k) can be further expressed as a 2u-
dimensional infinite triangular array in the variables (Z t )t∈Z. Precisely

Sn(k) =
∑
j∈Z

Un, j (k)Z j , (2.8)

with

Un, j (k)
def
= (nar )

−1/2F−1
n (k)

n∑
t=1

ψt− j Cn,t (k), (2.9)

Cn,t (k)
def
=

r∑
p=0

(−1)p
(

r

p

)(
cos(tλk1+p), sin(tλk1+p), . . . , cos(tλku+p), sin(tλku+p)

)′
and Fn(k)

def
= diag

(
|ψ(λk1)|, |ψ(λk1)|, . . . , |ψ(λku )|, |ψ(λku )|

)
.

To formulate our results, some notations related to Edgeworth expansions are required, which
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we take from the monograph of Bhattacharya and Rao [3]. For u a positive integer, ν =
(ν1, . . . , νu) ∈ Nu and z = (z1, . . . , zu) ∈ Cu , denote |ν| =

∑u
i=1 νi , ν! = ν1!ν2! · · · νu !

and zν = zν1
1 zν2

2 · · · z
νu
u . If 1 ≤ |ν| ≤ s, denote χn,ν(k) the cumulants of Sn(k). Then

χn,ν(k) = κ|ν|
∑

j∈Z Uνn, j (k) where κr denotes the r -th cumulant of Z1, r ≤ s. Let Vn(k)
def
=

cov[Sn(k)] =
∑

j∈Z Un, j (k)U′n, j (k). Let χ = {χν; ν ∈ Nu
} be a set of real numbers. For any

integer r ≥ 2 and z ∈ Cu , define χr (z)
def
= r !

∑
|ν|=r

χν zν
ν! . The polynomials P̃r (z, χ) are formally

defined for r ≥ 1 by the identities

1+
∞∑

r=1

P̃r (z, χ)tr
= exp

{ ∞∑
r=3

χr (z)
r !

tr−2
}
= 1+

∞∑
m=1

1
m!

( ∞∑
r=3

χr (z)
r !

tr−2
)m
,

and we set P̃0 ≡ 0. Denote ϕV the density of a Gaussian r.v in Ru with zero mean and non-

singular covariance matrix V. Define Pr : Ru
7→ R by Pr (x,V, χ) =

[
P̃r (−D, χ)

]
ϕV(x) where,

for any polynomial P(z) =
∑
ν aνzν, P(−D) is interpreted as a polynomial in the differen-

tiation operator D, P(−D) =
∑
ν aν(−1)|ν|Dν, with Dν = ∂ |ν|

∂x
ν1
1 ...∂xνuu

, ν = (ν1, . . . , νu) ∈

Nu . By construction Pr and P̃r do not depend on the coefficient χν if |ν| > r + 2, and
P̃r (it, χ)e−t′Vt/2 is the Fourier transform of Pr (x,V, χ). Let ξΓ be a centered a-dimensional
Gaussian vector with covariance matrix Γ and g : Ra

→ R a measurable mapping. Define
Ns(g) =

∫
Ra (1+‖x‖s)−1

|g(x)| dx and ‖g‖2Γ = E[g2(ξΓ )]. The Hermite rank of g, ‖g‖2Γ <∞,
with respect to Γ is defined as the smallest integer τ such that there exists a polynomial P of de-
gree τ with E[g(ξΓ )P(ξΓ )] 6= 0. We denote τ(g,Γ ) the (positive) Hermite rank of g−E[g(ξΓ )]
with respect to Γ .

3. Moment bounds: Short memory case

In this section we consider short-range dependent processes. For any reals α, δ > 0 and
β <∞, denote by G(α, β, δ) the set of real sequences (ψ j ) j∈Z such that

|ψ0| +
∑
j∈Z
| j |1/2+δ|ψ j | ≤ β, (3.1)

α ≤ inf
λ∈[−π,π ]

|ψ(λ)| . (3.2)

Theorem 1. Assume (A1) with some integer s ≥ 3, p ≥ 1 and p′ = 0 and assume that
(ψ j ) j∈Z ∈ G(α, β, δ) for some α, δ > 0 and β < ∞. Then, there exists constants C and N
(depending only on s, p, α, β, δ, u and the distribution of Z0) such that, for all n ≥ N, and
all u-tuple k of distinct integers, the distribution of Sn(k) has a density qn,k with respect to
Lebesgue’s measure on R2u and

sup
x∈R2u

(1+ ‖x‖s)

∣∣∣∣∣qn,k(x)−
s−3∑
r=0

Pr (x,Vn(k), {χn,ν(k)})

∣∣∣∣∣ ≤ Cn−(s−2)/2. (3.3)

Several interesting consequences can be derived from this result. A straightforward integration of
the expansion (3.3) yields the following Corollary, which gives an Edgeworth expansion of some
moment E[g(Sn(k))] around the centered Gaussian distribution with covariance matrix Vn(k).
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Corollary 2. There exists a constant C and an integer N (depending only on s, p, α, β, δ, u and
the distribution of Z0) such that, for any u-tuple of distinct integers k, n ≥ N and measurable
function g satisfying Ns(g) <∞,∣∣∣∣∣E[g(Sn(k))] −

s−3∑
r=0

∫
R2u

g(x)Pr (x,Vn(k), {χn,ν(k)}) dx

∣∣∣∣∣ ≤ C Ns(g) n−(s−2)/2. (3.4)

One can also use Theorem 1 to develop the same moment around the limiting Gaussian
distribution of Sn . Recalling that ωr,n,k = a−1/2

r
∑r

s=0

( r
s

)
(−1)sω0,n,k+s , we have

lim
n→∞

Vn(k) = V(k)

under short memory conditions, where V(k) is the 2u × 2u matrix defined component-wise by

[V(k)]2i−1,2 j−1 = [V(k)]2i,2 j =
1
2
ςr (ki − k j ),

[V(k)]2i−1,2 j = [V(k)]2i,2 j−1 = 0, (3.5)

for i, j = 1, . . . , u, with

ςr (l)
def
=

0 if |l| > r,

a−1
r (−1)l

(
2r

r + l

)
if |l| ≤ r.

(3.6)

Note that V(k) = 1
2 I2u if r = 0.

Corollary 3. There exists a constant C and N (depending only on s, p, α, β, δ, u and the
distribution of Z0), such that for all measurable function g on R2u such that N3(g) < ∞,
all u-tuple of distinct integers k, and any n ≥ N,∣∣∣∣E [g(Sn(k))]−

∫
R2u

g(x)ϕV(k)(x) dx
∣∣∣∣ ≤ C

{
n−1/2 N3(g)+ n−τ(g,V(k))/2 ‖g‖V(k)

}
. (3.7)

For some functions g, it is possible to sharpen this result by considering higher-order (s > 3)
expansions and approximating the terms appearing in these expansions. We shall consider
mappings g : R2u

→ R such that

g(x1, . . . , x2u) =

u∏
j=1

g j (x2 j−1, x2 j )

with g j (x, y) = g j (y, x) = g j (−x, y), j = 1, . . . , u.

(3.8)

Recalling (2.7), products of functionals of the periodogram are included in this particular case.
Better bounds are obtained by considering frequencies k1, . . . , ku separated by r , so that the
asymptotic decorrelation is achieved, V(k) = 1

2 I2u as in the r = 0 case. Under those conditions,
the O(n−1/2) of Corollary 3 can be improved to O(n−1).

Corollary 4. Under the hypothesis that s ≥ 4, there exists a constant C and N (depending
only on s, p, α, β, δ, u and the distribution of Z0), such that for all measurable function
g satisfying (3.8) and such that Ns(g) < ∞, all u-tuple of ordered integers k such that
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ki < ki+1 − r , and any n ≥ N,∣∣∣∣E [g(Sn(k))]−
∫
R2u

g(x)ϕI2u/2(x) dx
∣∣∣∣

≤ C
{

n−(s−2)/2 Ns(g)+ n−1
‖(1+ ‖x‖s)g(x)‖I2u

}
. (3.9)

The proofs of Corollaries 3 and 4 are postponed to Appendix D.

Remark. Pushing to higher orders s ≥ 4 in Corollary 4 it is sometimes necessary to have
Ns(g) <∞ (see the applications below). But it does not improve the O(n−1) bound.

To illustrate the results above, we compute bounds for the mean-square error of plug-in
estimators of non-linear functionals of the spectral density Λ( f ) =

∫ π
0 w(λ)G( f (λ)) dλ, where

w is a function of bounded variation and G is a function such that there exists a function H
satisfying, for any x > 0,

∫
∞

0 |H(xv)|e
−v dv <∞ and

∫
v>0 H(xv)e−v dv = G(x), i.e. H is the

inverse Laplace transform of the function t 7→ G(1/t)/t . We consider the following estimator

Λ̂n = (π/ñ)
ñ∑

k=1

w(λk)H(In,k)

and put Λn = (π/ñ)
∑ñ

k=1w(λk)G( f (λk)). Here, r = 0 and In,k
def
= I0,n,k is the ordinary

periodogram. We assume that the approximation error Λn − Λ may be neglected in comparison
with the mean-square error E(Λ̂n − Λn)

2. These functionals have been studied in [29] in the
Gaussian case, and Janas and Von Sachs [19] for non-Gaussian linear process, under rather
stringent assumptions (see also [5] and the references therein). The moment bounds we have
established allow the extension of Janas and von Sachs’s [19]’s result, by relaxing the conditions
on the dependence (from |ψ j | < Cρ| j | for some ρ ∈ (0, 1) to

∑
j∈Z | j |

1/2
|ψ j | <∞).

Proposition 5. Let (X t )t∈Z be a sequence satisfying the assumptions of Theorem 1 with some
s ≥ 4. Put H1(x1, x2) = H(x2

1 + x2
2), H2(x1, x2, x3, x4) = H1(x1, x2)H1(x3, x4) and assume

that N3(H2
1 ) <∞ and N5(H2) <∞. Then, uniformly in f ∈ G(α, β, δ)

E[(Λ̂n − Λn)
2
] ≤ Cn−1.

Sketch of the proof. Applying Corollary 3 to the function gk, f (x1, x2) = H [ f (λk)(x2
1 +

x2
2)] and Corollary 4 to gk, j, f (x1, x2, x3, x4) = H [ f (λk)(x2

1 + x2
2)]H [ f (λ j )(x2

3 + x2
4)]

yield asymptotic expansions for the moments E[H2(In,k)] and E[H(In,k)H(In, j )], which are
sufficient to derive the result. The uniformity of the constant C follows from the existence of
bounds on N3(gk, f ) and N4(gk, j, f ), which are uniform with respect to ψ ∈ G(α, β, δ). �

4. Moment bounds: Long and negative memory case

4.1. Assumptions and main results

We consider two sets of assumptions, depending on available information on the behavior
of the spectral density outside a neighborhood of the zero frequency. Recall that a real valued
function φ defined in a neighborhood of zero is regularly varying at zero with index ρ ∈ R if,



990 G. Faÿ / Stochastic Processes and their Applications 120 (2010) 983–1009

for all x and all t > 0, limx→0 φ(t x)/φ(x) = tρ . If ρ = 0, the function φ is said to be slowly
varying at zero. Let ϑ ∈ (0, π), 0 < δ < 1/2, ∆ < δ. We say that the linear filter (ψ j ) j∈Z
belongs to the set F(ϑ, δ,∆, µ) if

∑
∞

j=−∞ ψ
2
j < ∞ and if there exists d ∈ [∆, δ] such that

ψ(λ) is regularly varying at zero with index −d and that∫ π
0 λ2d

|ψ(λ)|2 dλ

min
0≤|λ|≤ϑ

λ2d |ψ(λ)|2
≤ µ, (4.1)

∀ j ≥ 0,

|ψ j | +
∞∑
|t |≥ j
|ψt+1 − ψt |

min
0≤λ≤ϑ

λd |ψ(λ)|
≤ µ(1+ j)d−1. (4.2)

An example is provided by ψ(λ)
def
=
(
1− eiλ

)−d
, the transfer function of the causal fractional

integration filter, ψt = Γ (t + d)/(Γ (d)Γ (t + 1)), t ≥ 0.

Local-to-zero assumptions. We first consider local-to-zero assumptions for which nothing is
required outside a neighborhood of the zero frequency, apart from integrability of the spec-
tral density (see [25]). For β > 0, we say that the sequence (ψ j ) j∈Z belongs to the set
Flocal(ϑ, β, δ,∆, µ) if (ψ j ) j∈Z ∈ F(ϑ, δ,∆, µ) and

∀λ ∈ (0, ϑ],
|ψ∗(λ)− ψ∗(0)|

min
λ∈(0,ϑ]

|ψ∗(λ)|
≤ µλβ (4.3)

with ψ∗(λ) = (1 − eiλ)dψ(λ), where d is the index of regular variation of ψ . We define
f ∗ = |ψ∗|2. This class is quite general and includes the impulse response of FARIMA filters
(see [6] and the references therein) with β = 2 and ϑ = π , but also processes whose spectral
density may exhibit singularity outside the zero frequency, such as the Gegenbauer processes. As
seen below, under local-to-zero assumptions, the validity of the Edgeworth expansion can only
be established for the DFT coefficients in a degenerating neighborhood of zero frequency. This
is enough for, say, semi-parametric estimation of the long-memory index by the GPH method.

Global assumptions. In some situations, it is possible to formulate regularity assumptions over
the full frequency range [−π, π] or a subset of it. These assumptions allow one to prove the
validity of the Edgeworth expansion for O(n) frequency ordinates. We say that the sequence
(ψ j ) belongs to the set Fglobal(ϑ, β, δ,∆, µ) if (ψ j ) ∈ Flocal(ϑ, β, δ,∆, µ) and if in addition,
for all (λ, λ′) ∈ (0, ϑ] × (0, ϑ],

∣∣ψ∗(λ)− ψ∗(λ′)∣∣ ≤ µ |ψ∗(λ)| ∨ |ψ∗(λ′)|
|λ| ∧ |λ′|

|λ− λ′|. (4.4)

Under those assumptions and as in the short-memory case, we are able to prove the validity
of the Edgeworth expansion for the DFT’s (Theorem 6) and deduce some moment bounds
(Corollaries 7, 9 and 10). In comparison with short memory results, note that tapering (r > 0)
and (A1) with p′ ≥ s are required.

Theorem 6. Assume (A1) with some integer s ≥ 3, p ≥ 1 and p′ ≥ s. Let r be a positive
integer and β, δ, ∆, µ, ϑ be constants such that 0 < δ < 1/2, −r + 1/2 < ∆ ≤ 0, µ > 0 and
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ϑ ∈ (0, π]. Let (mn)n≥0 be a non-decreasing sequence. Assume either

(ψ j ) j∈Z ∈ Flocal(ϑ, β, δ,∆, µ) and lim
n→∞

( 1
mn
+

mn

n

)
= 0 (4.5)

or

(ψ j ) j∈Z ∈ Fglobal(ϑ, β, δ,∆, µ) and mn ≤ ϑ ñ. (4.6)

Then there exist a constant C and positive integers K0, N0 which depend only on ϑ , β, δ, ∆, µ,
the distribution of Z1 and the sequence (mn), such that for any n ≥ N0 and k = (k1, . . . , ku) of
integers in the range {K0, . . . ,mn}, the distribution of Sn(k) has a density qn,k with respect to
Lebesgue measure on R2u which satisfies

sup
x∈R2u

(1+ ‖x‖s)

∣∣∣∣∣qn,k(x)−
s−3∑
r=0

Pr (x,Vn(k), {χn,ν(k)})

∣∣∣∣∣ ≤ Cn−(s−2)/2. (4.7)

If u = 1, one can take K0 = 1.

Integrating some function g against the density qn,k and using (4.7) yields the following
corollary.

Corollary 7. Under the assumptions of Theorem 6, there exists a constant C and an integer
N depending only on ϑ , β, δ, ∆, µ, u, r and such that, for all u-tuple of distinct integers k
satisfying K0 ≤ min(k), max(k) ≤ mn and any n ≥ N, and all measurable function g such that
Ns(g) <∞,∣∣∣∣∣E[g(Sn(k))] −

s−3∑
r=0

∫
R2u

g(x)Pr (x,Vn(k), {χn,ν(k)}) dx

∣∣∣∣∣ ≤ C Ns(g) n−(s−2)/2. (4.8)

Similarly to the short-memory case, one could approximate E[g(Sn(k))] using the limiting
distribution of Sn(k) in place of the Gaussian approximation as Corollary 7. Under long-range
dependence and for fixed k, the limiting covariance matrix of Sn(k) fully depends on k and
not only on (k2 − k1, . . . , ku − ku−1). This behavior at “very-low frequencies” as been studied
for instance by Hurvich and Beltrao [15]. However, one can control the covariance of the
standardized DFT coefficients and then the difference Vn(k) − V(k) thanks to the following
lemma.

Lemma 8. For 1 ≤ k ≤ j ≤ ϑn/π − r and r ≥ 1, there exists a constant C depending only on
ϑ, β, δ,∆, µ such that∣∣E(ωr,n,kωr,n, j )

∣∣+ ∣∣E(ωr,n,kω̄r,n, j )− ςr (k − j)
∣∣ ≤ Cp(k, j, n, β) (4.9)

with

p(k, j, n, β) =

( jk)−1/2
+

(
j ∨ k

n

)β
under (4.5)

( jk)−1/2 under (4.6).
(4.10)

This Lemma is adapted from [20] to fit our need of uniformity of the bounds with respect to the
function ψ whether it belongs to Fglobal or Flocal only. For sake of brevity, its proof is omitted
and we refer the interested reader to their paper.
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Thus, we can develop the moments around the Gaussian distribution with covariance matrix
V(k) as in the short-memory context. The two following corollaries prove sufficient for our
applications. The next corollary is useful for moment bounds on one frequency k.

Corollary 9. Under the assumptions of Theorem 6, there exist a constant C and a positive
integer N0 which depend only on ϑ , β, δ, ∆, µ, the distribution of Z1 and the sequence (mn),
such that for any n ≥ N0, for any integer k in the range {1, . . . ,mn} and any measurable function
g on R4 such that N3(g) <∞∣∣∣∣E [g(Sn(k))]−

∫
R2

g(x)ϕI2/2(x)dx
∣∣∣∣

≤ C
{

n−1/2 N3(g)+ p(k, k, n, β)−τ(g,V(k))/2‖g(x)‖I2u

}
.

The next corollary is useful for moment bounds on two frequencies k < j − r .

Corollary 10. Under the assumptions of Theorem 6, there exist a constant C and positive
integers K1 ≥ K0, N0 which depends only on ϑ , β, δ, ∆, µ, the distribution of Z1 and the
sequence (mn), such that for any n ≥ N0 and for any couple k = (k, j) of integers in the range
{K0, . . . ,mn} such that k < j − r and any measurable function g on R4 verifying (3.8) and such
that N4(g) <∞∣∣∣∣E [g(Sn(k))]−

∫
R4

g(x)ϕI4/2(x)dx
∣∣∣∣

≤ C
{

n−(s−2)/2 Ns(g)+ n−1/2 p2(k, j, n, β)‖(1+ ‖x‖s)g(x)‖I4/2

}
.

4.2. GPH estimation of the memory parameter

4.2.1. Theoretical results
A very widely used estimator of the memory parameter d was introduced by Geweke and

Porter-Hudak [10]. It is obtained from the linear regression of the log-periodogram of the
observations using the logarithm of the frequencies as an explanatory variable. In contrast with
the Whittle estimator, the GPH is defined explicitly in terms of the log-periodogram ordinates.
Much theoretical work has been achieved on this estimator, in stationary or non-stationary
contexts (see [7] for a survey of the main results). For instance, Giraitis et al. [12] proved that
the GPH of Gaussian X is rate optimal for the quadratic risk and over some classes of spectral
densities that are included in our Flocal. To compute the risk of the GPH estimator, one needs to
compute or approximate moments of the log-periodogram. The log-periodogram is a non-smooth
function of the Fourier transform of the observation, which are Gaussian if X is Gaussian. The
proof by [12] relies on moment bounds of a non-linear function of Gaussian variables (see [1,
27]); this technique does not extend naturally to non-Gaussian time series. Here, we shall apply
the Edgeworth approximations obtained in the preceding section to extend this result to the case
of a strong sense linear process.

The next results and the numerical simulation consider a modified version of the GPH esti-
mator. Indeed, as we deal with non-Gaussian series, we need an Edgworth expansion machinery
to approach the moments of non-functionals of the DFT’s (using Corollaries 9 and 10). Tapering
is needed to control the covariance of those DFT’s. But tapering is also known to mix adjacent
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Fourier frequencies. For the sake of simplicity of exposition, we only consider a taper of order
r = 1 and write Ik = I1,n,k . Skipping every second Fourier frequency allows one to recover
some whitening in the periodogram ordinates: the quantities (I j/ f (λ j ), Ik/ f (λk)), j < k − 1
are asymptotically uncorrelated for non-degenerating frequencies. It follows that non-diagonal
terms in the expansion of the variance of the GPH estimator do not contribute to the MSE.

The classical GPH estimator is obtained by an ordinary least square regression of log(Ik) on
log |2 sin(λk/2)| (see [10,25]). With the frequency spacing and taper order r , one regresses on
every r + 1 frequency. For r = 1

(d̂m, Ĉ)
def
= arg min

d ′,C ′

m∑
k=1

{
log(I2k−1)+ 2d ′ log |2 sin(λ2k−1/2)| − C ′

}2

where m = m(n) is a bandwidth parameter. Explicitly

d̂m = s−2
m

m∑
k=1

νk log(I2k−1), (4.11)

with νk = −2
(

log |2 sin(λ2k−1/2)| − 1
m

∑m
j=1 log |2 sin(λ2 j−1/2)|

)
and s2

m =
∑m

k=1 ν
2
k . We

consider E[(d̂m − d)2] the mean square error (MSE) of the GPH estimator. Theorem 11 gives a
bound on the MSE which is uniform over a class of long or negative memory linear processes,
from which rate optimality can be deduced. As we take a taper of order 1, it covers any range of
memory parameter included in (−1/2, 1/2).

Theorem 11. Under the assumptions of Theorem 6 with r = 1, s ≥ 5, −1/2 < δ < ∆ < 1/2
and conditions (4.5), there exists a constant C which depends only on β, δ, ∆, ϑ , µ and the
distribution of Z1 such that

E[(d̂m − d)2] ≤ C

{(m

n

)2β
+

1
m

}
.

With m proportional to n2β/(2β+1), E[(d̂m − d)2] ≤ Cn−2β/(2β+1).

Remark. In comparison to this uniform mean-square convergence, the central limit theorem
holds for d ∈ (−1/2, 1/2) with the classical GPH with no tapering (see [25]).

Remark. The condition s ≥ 5 seems slightly stronger than necessary for bounding the MSE of
d̂ . The reason for this is technical, as it allows the function h(x1, . . . , x4) = g(x1, x2)g(x3, x4)

with g(x) = log(‖x‖2) − η̄ to have finite Ns(h) norm (see Corollary 4 and the remark that
follows).

Remark. The FEXP estimator is an alternative method for inferring the memory parameter. It
is based on a smooth expansion of the regular part of the log-spectral density that holds on
some non-degenerating neighborhood [−ϑ, ϑ] of the null frequency. It is called a global semi-
parametric estimator (see [23]), in contrast with the GPH or local Whittle estimators, which are
local semi-parametric estimators. To prove mean-square convergence of the FEXP estimator in
the linear case using the results presented here, one needs to verify the hypotheses of Theorem 6
under global conditions (4.6).

Assuming more stringent global conditions on the regularity of the spectral density allows
one to evaluate the bias term in the decomposition of the mean squared error. For comparison,
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we shall use the same set of hypotheses as [16]. Let F0 the set of the spectral densities f such
that f (λ) = |1 − e−iλ

|
−2d f ∗(λ) where −1/2 < d < 1/2, where f ∗ is even, positive and

continuous on [−π, π] with first derivative f ∗′(0) = 0 and second and third derivatives f ∗′′ and
f ∗′′′ bounded in a neighborhood of zero.

Corollary 12. Assume that the spectral density f of the process X is in F0. Assume that the
sequence m = m(n) is such that limn→∞ 1/m + m log(m)/n = 0. Then

E(d − d̂)2 =
16π4

81

{
f ∗′′(0)
f ∗(0)

}2 m4

n4 +
π2

24m
+ o

(
m4

n4

)
+ o

(
1
m

)

+ O

{
m(log3 m)

n2 +
m2 log m

n5/2

}
(4.12)

uniformly with respect to f ∈ F0.

Remark. The stronger assumption m log(m)/n → 0 (compared to m/n → 0 in previous
Theorem) is needed to control the bias term as given by Lemma 1 in [16]. The remainder
term O(m2 log m/n5/2) of the MSE expression comes from the Edgeworth technique and is not
present in [16, Theorem 1]. As long as m = Cnγ , the whole O() remainder term is negligible
compared to the first two terms of the right-hand side of (4.12) for any γ ∈ (3/4, 5/6). In the
Gaussian case, γ ∈ (2/3, 1) is enough. In any cases, this remainder term does not affect the MSE
if one chooses the optimal value γ = 4/5.

4.2.2. Monte Carlo results
It follows from Corollary 12 that the MSE of the GPH estimator is asymptotically insensitive

to the distribution of the innovation as soon as this distribution satisfies some moment and
regularity conditions. We illustrate this statement by a Monte Carlo study. For sample sizes n =
256, 512, 1024, 2048 and 4096, we have simulated a thousand realizations of a FARIMA(1, d, 0)
process defined by

(1− B)d(1− 0.3B)X t = Z t

where B is the back-shift operator and (Z t )t∈Z is a zero mean unit variance i.i.d sequence with
the following marginal distributions

(a) Gaussian;
(b) Laplacian;
(c) zero-mean (shifted) Pareto, with P(Z0 ≤ u) = (1− (u + 13/6)−7)1u≥−7/6.

We first consider taking d = 0.3, 0,−0.3. Whereas it is possible to simulate exactly a Gaussian
FARIMA(p, d, q) process (e.g. computing the covariance structure and using Levinson–Durbin
algorithm), there is no general way to do it for non-Gaussian processes. In this Monte-Carlo
experiment, the process (X t ) is obtained using either a truncated MA(∞) (if d < 0) or a truncated
AR(∞) (if d > 0) representation, so that the series involved are absolutely summable. For each
realization of each process, we evaluate the squared error (d̂m − d) and define the Monte Carlo
MSE as the average of those errors. Although we have not considered the issue of the data-driven
choice of the bandwidth, we have focused on the sensitivity with respect to the distribution of
Z of the bandwidth m which is optimal in the MSE sense. Fig. 1 illustrates the fact that both
the optimal bandwidth and minimal MSE are poorly sensitive to the shock distribution. Similar
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Table 1
Optimal bandwidth, variance, bias and MSE for processes (a), (b) and (c) and different sample sizes n. Here d = −0.3.

Innovations With taper and frequency skipping Classical GPH
m?n Variance Bias MSE m?n Variance Bias MSE

n = 256
Gaussian 27 0.020 0.104 0.030 43 0.013 0.081 0.020
Laplace 23 0.025 0.087 0.033 36 0.014 0.072 0.019
Pareto 27 0.021 0.109 0.033 37 0.014 0.074 0.019

n = 512
Gaussian 40 0.012 0.065 0.016 70 0.0074 0.0502 0.0099
Laplace 44 0.011 0.074 0.017 75 0.0063 0.0629 0.0102
Pareto 41 0.012 0.070 0.017 70 0.0066 0.0577 0.0099

n = 1024
Gaussian 74 0.0063 0.0461 0.0084 122 0.0041 0.0393 0.0057
Laplace 69 0.0068 0.0497 0.0093 113 0.0044 0.0352 0.0057
Pareto 70 0.0066 0.0518 0.0092 123 0.0037 0.0429 0.0055

n = 2048
Gaussian 101 0.0043 0.0263 0.0050 193 0.0023 0.0250 0.0029
Laplace 121 0.0039 0.0356 0.0052 200 0.0021 0.0313 0.0031
Pareto 121 0.0039 0.0327 0.0050 189 0.0022 0.0257 0.0029

n = 4096
Gaussian 214 0.0019 0.0287 0.0027 332 0.0013 0.0195 0.0016
Laplace 224 0.0021 0.0267 0.0028 359 0.0013 0.0213 0.0017
Pareto 196 0.0022 0.0228 0.0027 326 0.0013 0.0183 0.0016

Table 2
Optimal bandwidth, variance, bias and MSE for processes (a), (b) and (c) and different sample sizes n. Here d = 0.3.

Innovations With taper and frequency skipping Classical GPH
m?n Variance Bias MSE m?n Variance Bias MSE

n = 256
Gaussian 26 0.02 0.10 0.03 42 0.012 0.073 0.018
Laplace 25 0.022 0.107 0.033 42 0.011 0.086 0.018
Pareto 27 0.018 0.108 0.030 38 0.014 0.069 0.019

n = 512
Gaussian 39 0.012 0.075 0.018 64 0.008 0.051 0.011
Laplace 38 0.013 0.063 0.017 70 0.007 0.054 0.010
Pareto 43 0.011 0.070 0.016 74 0.0065 0.0595 0.0101

n = 1024
Gaussian 70 0.0071 0.0520 0.0098 122 0.0045 0.0404 0.0062
Laplace 77 0.0060 0.0518 0.0087 120 0.0041 0.0362 0.0054
Pareto 69 0.0058 0.0543 0.0088 122 0.0040 0.0407 0.0057

n = 2048
Gaussian 110 0.0043 0.0348 0.0055 185 0.0025 0.0285 0.0033
Laplace 122 0.0034 0.0367 0.0048 184 0.0024 0.0234 0.0029
Pareto 128 0.0036 0.0403 0.0053 188 0.0024 0.0245 0.0030

n = 4096
Gaussian 189 0.0022 0.0257 0.0028 332 0.0013 0.0218 0.0018
Laplace 209 0.0021 0.0275 0.0029 351 0.0012 0.0207 0.0016
Pareto 198 0.0023 0.0266 0.0031 335 0.0013 0.0199 0.0016

conclusions can be drawn from Tables 1–3. In those tables we display the value of the bias, the
variance, and of the mean square error of the GPH at the estimated optimal bandwidth.

For sake of comparison, we have run the more classical GPH with no frequency skipping
and no data taper (results are displayed on the right part of the three tables). Though we do
not provide a theoretical result similar to Theorem 11 in this case, it seems that this estimator
outperforms the GPH with frequency skipping. It can be well understood that both the variance
and the bias are smaller for the classical GPH in the following way. Taper induces some bias at
low frequency because it mixes adjacent raw periodogram ordinates. This breaks the power-law
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Table 3
Optimal bandwidth, variance, bias and MSE for processes (a), (b) and (c) and different sample sizes n. Here d = 0.

Innovations With taper and frequency skipping Classical GPH
m?n Variance Bias MSE m?n Variance Bias MSE

n = 256
Gaussian 27 0.020 0.102 0.030 44 0.012 0.073 0.017
Laplace 27 0.018 0.109 0.030 42 0.011 0.080 0.018
Pareto 23 0.022 0.085 0.029 45 0.011 0.078 0.018

n = 512
Gaussian 43 0.012 0.068 0.017 77 0.0059 0.0571 0.0092
Laplace 42 0.011 0.074 0.016 75 0.0063 0.0599 0.0098
Pareto 40 0.011 0.062 0.015 73 0.0064 0.0510 0.0090

n = 1024
Gaussian 72 0.0062 0.0490 0.0086 133 0.0035 0.0408 0.0052
Laplace 75 0.0062 0.0545 0.0091 112 0.0044 0.0340 0.0055
Pareto 72 0.0061 0.0482 0.0085 125 0.0037 0.0365 0.0050

n = 2048
Gaussian 113 0.004 0.031 0.005 203 0.0022 0.0246 0.0028
Laplace 119 0.0039 0.0358 0.0052 210 0.0022 0.0289 0.0030
Pareto 108 0.0037 0.0302 0.0046 193 0.0023 0.0252 0.0030

n = 4096
Gaussian 192 0.0023 0.0237 0.0029 351 0.0012 0.0195 0.0016
Laplace 184 0.0024 0.0194 0.0028 348 0.0012 0.0197 0.0016
Pareto 173 0.0025 0.0209 0.0030 324 0.0013 0.0186 0.0017

Fig. 1. Comparisons of the MSE versus the bandwidth for the FARIMA processes (a), (b) and (c) with d = 0.3. Sample
size n = 1024.

dependence between spectral density and frequencies. The fact that we drop out every second
frequency induces some loss in the variance by a factor 2, even if the periodogram ordinates are
not independent. Most arguably, tapering of order 1 for d ∈ (−1/2, 1/2) may be thought as a
condition stronger than what is strictly necessary. However, for lower values of d , tapering does
help and enables consistent estimation of d , whereas the classical GPH is highly and positively
biased. We have run the same simulation for d = −0.8 with a taper order equal to 2. Fig. 3
illustrates the wrong behavior of the classical GPH in this case.

Fig. 2 represents the box-and-whiskers plot of the GPH estimator for two different sample
sizes and the three models we are concerned with. Here again, the sensitivity with respect to the
distribution of the driving noise is hardly discernible.
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Fig. 2. Box-plot of the GPH estimator for processes (a), (b) and (c) with d = 0.3, sample size n = 512 (left panel) and
n = 4096 (right panel).

Fig. 3. With d < 0.5, the classical GPH (bottom panel) is biased, whereas the modified GPH (top panel) with taper
order equal to 3 and skipping of two frequencies out of three is mean-square convergent (see Theorem 11). Sample size
is n = 256, innovations are Laplacian random variables.

Appendix A. Edgeworth expansion for triangular arrays

In this section we recall the theorem established in [9]. Let (Z t )t∈Z be an i.i.d sequence and
(Un, j ) j∈Z,n∈N an array of vectors in Ru , where u is an integer. Define Sn =

∑
j∈Z Un, j Z j and

let Vn =
∑

j∈Z Un, j U′n, j . For ν ∈ Nu , 2 ≤ |ν| ≤ s, denote χn,ν the cumulants of Sn . Then
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χn,ν = κ|ν|
∑

j∈Z Uνn, j . where κr denotes the r -th cumulant of Z1, r ≤ s. Consider the following
assumptions.

(B1) There exist positive constants v∗ and v∗ such that

v∗ ≤ lim inf
n

vmin[Vn] ≤ lim sup
n

vmax[Vn] ≤ v
∗

where vmin[Vn] (resp. vmax[Vn]) is the smallest (resp. the largest) eigenvalue of Vn .
(B2) There exist positive constants η, c0, a sequence (Mn)n∈N of positive numbers, and a

sequence (Jn)n∈N of subsets of Z, such that, for all n ≥ 0

sup
j∈Z
‖Un, j‖ ≤ Mn (A.1)

lim
n→∞

Mn = 0 (A.2)

card(Jn) ≤ c0 M−2
n and

∑
j∈Jn

‖Un, j‖
2

∑
j∈Z
‖Un, j‖

2 ≥ η. (A.3)

(B3) There exist ζ ≥ 1 and a sequence (Mn)n∈N satisfying (A.1) such that

sup
n≥0

Mζ
n

∑
j∈Z
‖Un, j‖ <∞.

Theorem 13 ([9]). Let s ≥ 3, and p′ ≥ 0 be integers and p ≥ 1 be a real number. Assume
(A1) (s, p, p′), (B1) and (B2). Assume in addition either (B3) or p′ ≥ s in (A1) (s, p, p′).
Then, there exist a constant C and an integer N (depending only on the distribution of Z1, and
the constants appearing in the assumptions) such that, for all n ≥ N, the distribution of Sn has
a density qn with respect to Lebesgue measure on Ru which satisfies

sup
x∈Ru

(1+ ‖x‖s)

∣∣∣∣∣qn(x)−
s−3∑
r=0

Pr (x,Vn, {χn,ν})

∣∣∣∣∣ ≤ C
∑
j∈Z
‖Un, j‖

s . (A.4)

Appendix B. Proof of Theorem 1

The proof consists in checking that assumptions (B1), (B2) and (B3) hold uniformly with
respect to ψ ∈ G(α, β, δ) and k for Un, j ’s of the form (2.9). To prove (B1), write Vn(k) =
V(k) + Wn(k), with V(k) defined in (3.5). Define ‖W‖1 = max1≤i≤v

∑v
j=1 |wi, j | for any

matrix W = (wi, j )1≤i, j≤v . Similarly to Hannan [14, p. 54], we have under (3.1)

‖Wn(k)‖1 ≤ C(α, β)n−1. (B.1)

The matrices V(k) have the following algebraic property.

Lemma 14. There exist two positive constants v∗ and v∗ such that

2v∗ ≤ inf vmin[V(k)] ≤ sup vmax[V(k)] ≤ 2v∗ (B.2)

where the infimum and supremum are taken over all the u-tuples of distinct integers in Nu .
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Proof. Noting that trace[V(k)] = u,

vmax[V(k)] ≤ trace[V(k)]/2u = 1/2. (B.3)

Take v∗ = 1/4. Recall that k1 < · · · < ku . Note that, for any n ≥ 2ku + 2r + 1, V(k) is the
covariance matrix of

√
2π(cY

r,n,k1
, sY

r,n,k1
, . . . , cY

r,n,ku
, sY

r,n,ku
)

with cY
r,n,k = (2πar n)−1/2∑n

t=1 hr
t,nYt cos(tλk) and sY

r,n,k = (2πar n)−1/2∑n
t=1 hr

t,nYt sin(tλk)

the sine and cosine transform of a unit-variance zero-mean Gaussian white noise (Yn)n∈Z. Recall
that

cY
r,n,k = a−1/2

r

r∑
l=0

(−1)l
(r

l

)
cY

0,n,k+l and sY
r,n,k = a−1/2

r

r∑
l=0

(−1)l
(r

l

)
sY

0,n,k+l . (B.4)

The random variables c0,n,k and s0,n,k , k = 1, . . . , [(n − 1)/2] are centered i.i.d Gaussian with
variance 1/4π . Assume that V(k) is not invertible. It yields that for some 2u-tuple of reals
(α1, β1, . . . , αu, βu) 6= (0, 0, . . . , 0, 0),

u∑
j=1

(α j cr,n,k j + β j sr,n,k j )
L2
= 0.

Then by (B.4), there exists a linear combination of c0,n,k’s and s0,n,k’s that is equal to
zero. c0,n,ku+r and s0,n,ku+r appear in this combination with coefficients a−1/2

r (−1)rαu and
a−1/2

r (−1)rβu , respectively. It follows from the independence and non-degeneracy of the c0,n,k’s
and s0,n,k’s that αu = βu = 0. Iterating the argument yields the contradiction αu = βu = αu−1 =

βu−1 = · · · = α1 = β1 = 0. Thus for any u-tuple k of distinct integers

vmin[V(k)] > 0. (B.5)

It remains to prove that vmin[V(k)] is bounded away from zero uniformly in k. Define

Ku = {k = (k1, . . . , ku′) ∈ Nu′ , 1 ≤ u′ ≤ u, 0 < ki+1 − ki ≤ r}.

Note now that by (3.5), vmin[V(k)] is a function of the vector (k2 − k1, k3 − k2, . . . , ku − ku−1),
thus taking finitely many different values on Ku . From the this remark and (B.5),

v1
def
= inf

k∈Ku
vmin[V(k)] > 0 (B.6)

since the infimum is taken on a finite set of positive values. Consider now a u-tuple k that does
not belong to Ku ; In this case, for some i ∈ {1, . . . , u − 1}, ki+1 − ki > r , and then k may be
partitioned as L ≥ 2 blocks of indexes (k1, . . . ,kL) such that all the ki ’s belong to Ku and, for all
i ∈ {1, . . . , L−1}, min ki+1−max ki > r . Let li denote the length of the block ki , i = 1, . . . , L .
By this construction and (3.5), the matrix V(k) has a block-diagonal structure

V(k) =

V(k1) 0
. . .

0 V(kL)

 .
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Using (B.6),

vmin[V(k)](vmax[V(k)])2u−1
≥ det[V(k)] =

L∏
i=1

det[V(ki )] ≥

L∏
i=1

v
2li
1 = v

2u
1 . (B.7)

We conclude from (B.7) and (B.3) that

vmin[V(k)] ≥ v2u
1 22u−1

=: v2 > 0. (B.8)

(B.2) follows from (B.6) and (B.8) with v∗ = 1
2 min(v1, v2). �

Proof of Theorem 1. By (B.1) and Lemma 14, (B1) holds with v∗ and v∗ of Lemma 14, for
some N0, n ≥ N0 and uniformly in k, α and β. With (B.3),∣∣∣∣∣∣

∑
j∈Z
‖Un, j (k)‖2 − u

∣∣∣∣∣∣ = |trace[Vn(k)] − u| ≤ C(α, β)n−1/2. (B.9)

Prove now that (B2) is verified. Since f is bounded away from zero and
∑

j∈Z |ψ j | ≤ β < ∞,

(A.1) and (A.2) are verified with Mn
def
= C(r)βα−1/2n−1/2. Put Jn = { j, | j | < 2n}. Then

card(Jn) ≤ c0 M−2
n for some c0 depending only on r, α, β and

∑
| j |∈Z\Jn

‖Un, j (k)‖2 ≤ C(r)α−2n−1
∑
| j |≥2n

(
n∑

t=1

|ψt+ j |

)2

≤ C(r)α−2
∑
| j |≥2n

n∑
t=1

ψ2
t+ j ≤ C(r)α−2

∑
| j |≥n

| j |ψ2
j . (B.10)

Under (3.1), |ψ j | ≤ β| j |−1/2−δ so that∑
| j |≥n

| j |ψ2
j ≤ βn−2δ

∑
| j |≥n

| j |1/2+δ|ψ j | ≤ β
2n−2δ. (B.11)

For any ε > 0 and large enough n,
∑
| j |≥n ‖Un, j (k)‖2 ≤ ε uniformly in k and ψ ∈ G(α, β, δ).

(A.3) follows from (B.9)–(B.11). Finally,∑
j∈Z
‖Un, j (k)‖ ≤ C(r)α−1/2n−1/2

n∑
t=1

∑
j∈Z
|ψt+ j | = C(r)α−1/2n1/2

∑
j∈Z
|ψ j |

≤ C(r)α−1/2βn1/2
= C(r)2α−1β2 M−1

n

so that (B3) holds with ζ = 1. �

Appendix C. Proof of Theorem 6

The proof of Theorem 6 consists in checking that assumptions (B1), (B2) hold uniformly.

Lemma 15. There exist integers N0, K0, and v∗ > 0, v∗ > 0 (depending only on ϑ, β, δ,∆, µ)
such that, for all n ≥ N0, we have,

(1) for all u-tuple k of distinct integers, 1 ≤ min k ≤ max k ≤ mn ,

vmax[Vn(k)] ≤ v∗; (C.1)
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(2) for all integer k, 1 ≤ k ≤ mn

v∗ ≤ vmin[Vn(k)]; (C.2)

(3) for all u-tuple k of distinct integers, K0 ≤ min k ≤ max k ≤ mn ,

v∗ ≤ vmin[Vn(k)]. (C.3)

Proof. As in Appendix B, we put Vn(k) = V(k) + Wn(k) where V(k) is defined in (3.5).
Applying Lemma 8, we obtain

‖Wn(k)‖1 ≤ C(ϑ, β, δ,∆, µ)


1
k1
+

(mn

n

)β
log

(mn

n

)
under (4.5),

1
k1

under (4.6).
(C.4)

(C.1) follows immediately. The proof of (C.3) follows by picking N0, K0 large enough. For (C.2),
it remains to prove that for any integer k, 1 ≤ k ≤ K0, Vn(k) converges to a positive definite
matrix Ṽ(k) and that this convergence is uniform w.r.t to ψ , for ψ ∈ Flocal(ϑ, β, δ,∆, µ) or
ψ ∈ Fglobal(ϑ, β, δ,∆, µ). What follows is an adaptation of Iouditsky et al. [18, Lemma 7.3].
Write

E[|ωr,n,k |
2
] =

1
f (λk)

(∫
|λ|≤ϑπ

+

∫
|λ|>ϑπ

)
|Dr,n(λ− λk)|

2 f (λ)dλ =: A1 + A2 (C.5)

where Dr,n is defined in (2.2). For n ≥ 4πK0/ϑ , 1 ≤ k ≤ K0 and |λ| ≥ ϑπ , |n(λ−λk)| ≥ nϑ/2.
Using (2.3) and (4.1), we get

A2 ≤
Cλ2d

k

λ2d
k f (λk)

n−2r−1
∫
|λ|>ϑπ

λ2d f (λ)dλ ≤ Cn−2r . (C.6)

By change of variable,

A1 =
n2d
|1− e−iλk |

2d

f ∗(λk)

∫
|λ|≤nϑ

∣∣∣n−1/2 Dr,n(λ/n − λk)

∣∣∣2 n−2d
|1− e−iλ/n

|
−2d f ∗

(
λ

n

)
dλ.

Write limn→∞ n−1/2 Dr,n(λ/n) = 1
√

2πar

∫ 1
0 (1 − e2iπs)r e−isλds =: ĥr (λ). By Riemann

approximation, it can be seen that |n−1/2 Dr,n(λ/n) − ĥr (λ)| ≤ C(1 + |λ|)/n. Note also that
|ĥr (λ)| ≤ C |λ|−r−1. Then∣∣∣∣A1 −

n2d
|1− eiλk |

2d

f ∗(λk)
×

∫ nϑ

−nϑ

∣∣∣ĥr (λ− 2πk)
∣∣∣2 n−2d

|1− eiλ/n
|
−2d f ∗

(
λ

n

)
dλ

∣∣∣∣
≤ Ck2dn−r

≤ Cn−r . (C.7)

Here and in the following, C is a generic constant which depends only on ϑ, β, δ,∆, µ, r and
K0. For |λ| ≤ nϑ , using (4.5),

f ∗(0)
f ∗(λk)

∣∣∣n−2d
|1− eiλ/n

|
−2d
− |λ|−2d

∣∣∣+ | f ∗(λn )− f ∗(0)|

f ∗(λk)
n−2d
|1− eiλ/n

|
−2d

≤ C

{∣∣∣n−2d
|1− eiλ/n

|
−2d
− |λ|−2d

∣∣∣+ n−2d
|1− eiλ/n

|
−2d

∣∣∣∣λn
∣∣∣∣β ′
}

(C.8)
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with β ′ = β∧1. For x ∈ [−π, π], 2
π
|x | ≤ |eix

−1| = |2 sin x
2 | ≤ |x | and ‖eix

−1|−|x‖ ≤ x2/2.
Also, for any υ ∈ R, x > 0, y > 0, |xυ − yυ | ≤ |υ|(xυ−1

∨ yυ−1)|x − y|. Using those relations,
write, for λ ∈ [−nπ, nπ ],∣∣∣n−2d

|1− eiλ/n
|
−2d
− |λ|−2d

∣∣∣ ≤ Cn−2d
∣∣∣∣λn
∣∣∣∣−2d−1 ∣∣∣∣|1− eiλ/n

| − |
λ

n
|

∣∣∣∣
≤ Cn−1

|λ|−2d+1.

Then ∫ nϑ

−nϑ
|ĥr (2πk − λ)|2

∣∣∣n−2d
|1− eiλ/n

|
−2d
− |λ|−2d

∣∣∣ dλ

≤ Cn−1
∫ nϑ

−nϑ
|ĥr (2πk − λ)|2|λ|−2d+1dλ

≤ Cn−1
∫ nϑ

−nϑ
|ĥr (2πk − λ)|2|λ|2r dλ ≤ Cn−1 (C.9)

and ∫ nϑ

−nϑ
|ĥr (2πk − λ)|2n−2d

|1− eiλ/n
|
−2d

∣∣∣∣λn
∣∣∣∣β ′ dλ

≤ n−β
′

∫ nϑ

−nϑ
|ĥr (2πk − λ)|2|λ|−2d+β ′dλ

≤ Cn−β
′

. (C.10)

Gathering (C.5), (C.6), (C.7), (C.8), (C.9), (C.10) yields∣∣∣∣E[|ωr,n,k |
2
] −

(2π)2dk2d f ∗(0)
f ∗(λk)

∫
+∞

∞

∣∣∣ĥr (λ− 2πk)
∣∣∣2 |λ|−2ddλ

∣∣∣∣ ≤ Cn−β
′

.

Similar arguments leads to∣∣∣∣E[ω2
r,n,k] −

(2π)2dk2d f ∗(0)
f ∗(λk)

∫
+∞

∞

ĥr (λ− 2πk)ĥr (λ+ 2πk)|λ|−2ddλ

∣∣∣∣ ≤ Cn−β
′

.

Defining the scalar product (u, v)d =
∫
R u(λ)v(λ)|λ|−2ddλ, Then det Vn(k) is uniformly

approximated by the Gram determinant of the functions ĥr (λ−2kπ) and ĥr (λ+2kπ) associated
with the product (·, ·)d and then is a continuous function of ηk(d) := limn→∞ E[|ωr,n,k |

2
]

and η′k(d) := limn→∞ E[ω2
r,n,k]. The whole set of functions ĥr (λ + 2 jπ), j ∈ Z is linearly

independent, so that those determinant are positive. Using continuity of ηk and η′k w.r.t. d , the
infimum on the compact set [−∆, δ] and the minimum over k = 1, . . . , K0 is positive too, which
concludes the proof. �

Lemma 16. There exists a constant C (depending only on ϑ , β, δ, ∆, µ, r ) such that for all
k ∈ {1, . . . , ñ},

1
√

n f (λk)

∣∣∣∣∣ n∑
t=1

hr
t,nψt+ j eitλk

∣∣∣∣∣ ≤ Cn−1/2. (C.11)
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Proof. The main tool of the proof is the bound (2.3) and the technique is the same as the one
used in the proof of Lemma 8. Decompose

|ψ(λk)|
−1 1
√

2πar n

n∑
t=1

hr
t,nψt− j eitλk = |ψ(λk)|

−1
∫ π

−π

ψ(λ)ei jλDn,r (λk − λ)dλ

into

A1 = |ψ(λk)|
−1
(∫
−ϑ

−π

+

∫ π

ϑ

)
ψ(λ)ei jλDn,r (λk − λ)dλ,

A2 = |ψ(λk)|
−1ψ∗(0)

∫ ϑ

−ϑ

(1− eiλ)−dei jλDn,r (λk − λ)dλ,

A3 = |ψ(λk)|
−1
∫ ϑ

−ϑ

(1− eiλ)−d(ψ∗(λ)− ψ∗(0))ei jλDn,r (λk − λ)dλ.

By Eq. (2.3), if |λ| ∈ [ϑ, π], |Dn,r (λk − λ)| ≤ Cn−1/2−r . Note that n−1λd
k =

n−1λ−1
k λd+1

k ≤ 1/(2πk). (4.1) implies that |A1| ≤ Cn1/2−r k−1
≤ Cn−1/2. Consider A2. Since∫ π

−π
Dn,r (λ)dλ = 0,

A2 =

∫ ϑ

−ϑ

∆(λ, λk)Dn,r (λk − λ)dλ,

∆(λ, λk) =
(
(1− eiλ)−d

− (1− eiλk )−d
)

ei jλ
|ψ(λk)|

−1.

Decompose this integral on the intervals [−ϑ,−λk/2], [−λk/2, λk/2], [λk/2, 2λk] and [2λk, ϑ].
If λ ∈ [−λk/2, λk/2], then |Dn,r (λk − λ)| ≤ C

√
nk−r−1 and |∆(λ, λk)| ≤ C

(
|λ|−dλd

k + 1
)
.

Hence:∣∣∣∣∣
∫ λk/2

−λk/2
∆(λ, λk)Dn,r (λk − λ)dλ

∣∣∣∣∣ ≤ Ck−r n−1/2.

If λ ∈ [λk/2, 2λk], then |∆(λ, λk)| ≤ C
(
λ−1

k |λ− λk | + 1
)

. Since
∫ λk
−λk/2

(1 + n|λ|)−r−1dλ ≤

Cn−1, we have∣∣∣∣∣
∫ 2λk

λk/2
∆(λ, λk) Dn,r (λk − λ)dλ

∣∣∣∣∣ ≤ Cn−1/2.

If λ ∈ [2λk, ϑ] (and similarly on [−ϑ,−λk/2]), we use that |∆(λ, λk)| ≤ C(λ−dλd
k + 1) and

|Dn,r (λ− λk)| ≤ n−1/2−r
|λ− λk |

−1−r . Hence,∣∣∣∣∫ ϑ

2λk

∆(λ, λk)Dn,r (λk − λ)dλ

∣∣∣∣ ≤ Cn−1/2−r
∫
∞

λk

(
λdλ−d

k + 1
)
λ−1−r dλ ≤ Cn−1/2k−r .

Consider A3. Under (4.3), we have

|A3| ≤ Cλd
k

∫ ϑ

−ϑ

|λ|−d+β
|Dn,r (λ− λk)|dλ.

Decompose this integral as above. If λ ∈ [−λk/2, λk/2], proceeding as above:

λd
k

∫ λk/2

−λk/2
|λ|−d+β

|Dn,r (λ− λk)|dλ ≤ Cn−1/2k−rλ
β
k .
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If λk ∈ [λk/2, 2λk], λd
k |λ|
−d+β

≤ Cλβk , and
∫ 2λk
λk/2
|Dn,r (λ− λk)|dλ ≤ Cn−1/2. Hence:

λd
k

∫ 2λk

λk/2
|λ|−d+β

|Dn,r (λ− λk)|dλ ≤ Cn−1/2λ
β
k .

Finally, if λ ∈ [2λk, ϑ] (and similarly, if λ ∈ [−ϑ,−λk/2]), we have as above:

λd
k

∫ ϑ

2λk

λ−d+βλ−1−r dλ ≤ Cλd
k n−1/2−r

∫ ϑ

λk

λ−d−1−r dλ = Cn−1/2k−r . �

Lemma 17. There exists a constant C (depending only on ϑ , β, δ, ∆, µ, r ) such that for all
k ∈ {1, . . . , ñ},

1
√

n f (λk)

∣∣∣∣∣ n∑
t=1

hr
t,nψt+ j eitλk

∣∣∣∣∣ ≤ Cn−1/2 λd−1
k (1+ | j |)d−1

≤ Cn−1/2((1+ | j |)/n)d−1. (C.12)

Proof. By applying the definition of the weights hr
t,n and summation by parts, we have:

n∑
t=1

hr
t,nψt+ j eitλ

=

r∑
p=0

(−1)p
(

r
p

) n∑
t=1

ψt+ j eit (λ+λp),

n∑
t=1

ψt+ j eitλk =

n−1∑
t=1

{(
t∑

u=1

eiuλk

)
(ψt+ j − ψt+ j+1)+

(
n∑

u=1

eiuλk

)
ψn+ j

}
.

For all y ∈ (0, π) and all ` ∈ N∗,
∣∣∣∑`

u=1 eiuy
∣∣∣ ≤ 2/y. The proof follows from

condition (4.2). �

Proceed now with the proof of Theorem 6. If | j | ≥ n, then ((1 + | j |)/n)d−1
≤ 1. Hence by

Lemma 16, for some constant C which depends only on β, δ, ∆, ϑ , µ, r and the distribution of
Z1,

∀ j, n,k, Mn, j
def
= Cn−1/2

(
1 ∧ ((1+ | j |)/n)δ−1

)
≥ ‖Un, j (k)‖.

Note that

Mn
def
= sup

j∈Z
Mn, j = Cn−1/2.

Then (A.1) and (A.2) hold uniformly in k. By Lemma 15, Eq. (C.3) or (C.2), we have∑
j

‖Un, j (k)‖2 = trace[Vn(k)] ≥ v∗ > 0.

Finally, define for any γ ≥ 1 the set Jn = { j ∈ Z, | j | ≤ γ n}. Then card(Jn) ≤ c0 M−2
n and∑

j∈Z\Jn

‖Un, j (k)‖2∑
j∈Z
‖Un, j (k)‖2

≤

∑
j∈Z\Jn

M2
n, j∑

j∈Z
‖Un, j (k)‖2

≤ C(v∗)
−1n1−2δ

∑
| j |≥γ n

j2δ−2
≤ C(v∗)

−1γ 2δ−1.

Choosing γ large enough yields (A.3) uniformly.
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Appendix D. Proofs of Corollaries 3, 4, 9 and 10

Proof of Corollary 3. By the triangle inequality, the LHS of inequality (3.7) is bounded by∣∣∣∣E [g(Sn(k))]−
∫
R2u

g(x)ϕVn(k)(x) dx
∣∣∣∣+ ∣∣∣∣∫

R2u
g(x)

{
ϕVn(k)(x)− ϕV(k)(x)

}
dx
∣∣∣∣ .

By Corollary 2 with s = 3, the first term of the previous display is bounded by Cn−1/2 N3(g).
For A a matrix, denote ρ(A) its spectral radius. Denote Ia the a-dimensional identity matrix.
To bound the second term, note that ρ(Vn(k) − V(k)) ≤ C(α, β)n−1 by (B.1) and that
τ(g,V(k)) ≥ 1 by definition, then apply the following lemma which is an easy adaptation of
Soulier [27, Theorem 2.1]. �

Lemma 18. Let Γ be a u-dimensional positive matrix. There exists ε > 0 and a constant C such
that, for all symmetric positive matrix Γ ′ verifying ρ(Γ ′−1

− Γ−1) < ε, and for all measurable
functions g on Ru satisfying ‖g‖2Γ <∞, we have∣∣∣∣∫

Ru
g(x) {ϕΓ ′(x)− ϕΓ (x)} dx

∣∣∣∣ ≤ Cρτ(g,Γ )/2(Γ ′ − Γ )‖g‖Γ .

Proof of Corollary 4. The LHS of (3.9) is bounded by A1 + A2 + A3 + A4 with

A1 =

∣∣∣∣∣E [g(Sn(k))]−
∫
R2u

g(x)
s−3∑
r=0

Pr (x,Vn(k), {χn,ν(k)}) dx

∣∣∣∣∣ ,
A2 =

∣∣∣∣∫
R2u

g(x)
{
ϕVn(k)(x)− ϕI2u/2(x)

}
dx
∣∣∣∣ ,

A3 =

∣∣∣∣∫
R2u

g(x)P1(x,Vn(k), {χn,ν(k)}) dx
∣∣∣∣ ,

A4 =

∣∣∣∣∣
∫
R2u

g(x)
s−3∑
r=2

Pr (x,Vn(k), {χn,ν(k)}) dx

∣∣∣∣∣ ,
A4 = 0 if s = 4. Using (3.8), we get τ(g, I2u/2) = 2. It follows, as in the proof of Corollary 3
that A2 is bounded by Cn−1

‖g‖V(k), whereas A1 is bounded by Cn−(s−2)/2 Ns(g). Write shortly
Pr (x,Vn(k), {χn,ν(k)}) = Rr (x)ϕVn(k), where Rr is a polynomial of order r+2 (the dependence
w.r.t Vn(k) and {χn,ν(k)} is omitted in this notation). Note also that

|χn,ν(k)| ≤ |κ|ν||
∑
j∈Z
‖Un, j (k)‖|ν| ≤ |κ|ν||M |ν|−2

n

∑
j∈Z
‖Un, j (k)‖2


≤ |κ|ν||M

|ν|−2
n trace[Vn(k)] ≤ C |κ|ν||M

|ν|−2
n (D.1)

where Mn ≤ C(α, β)n−1/2. Then, the coefficients of Rr are O(n−(r/2)) uniformly in k and ψ
since they involve χn,ν(k)’s with |ν| = r and elements of V−1

n (k) (for details, see [3]). Let

Fn(k)
def
= (V−1

n (k)− V−1(k))/2 and write∫
g(x)ϕVn(k)(x)Rr (x) dx

=

∣∣∣∣ det V(k)
det Vn(k)

∣∣∣∣1/2 ∫ g(x)Rr (x) exp{−x′Fn(k)x}ϕV(k)(x) dx. (D.2)
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By (B.1), ‖Fn(k)‖1 ≤ Cn−1 and | det(Vn(k))−1/2
− det(I2u/2)−1/2

| ≤ Cn−1 uniformly so that
A4 ≤ Cn−1

‖(1 + ‖x‖s)g(x)‖2I2u/3. We can derive this way that A3 ≤ Cn−1/2, which is not
enough. Improving this bound requires some care and uses the symmetries of g. Actually, R1 is
a sum of polynomials which are odd with respect to one or three components. Write

| exp{−x′Fn(k)x} − 1+ x′Fn(k)x| ≤ Cn−2
‖x‖4 exp

{
Cn−1

‖x‖2
}

(D.3)

and notice that {1− x′Fn(k)x}R1(x) is a sum of polynomials of the form
∏

i ri (x2i−1, x2i ), each
of them being odd with respect to at least one variable. Consider a typical term odd with respect
to x1, say. Using (3.8)∫

R2u
g(x)

∏
i

ri (x2i−1, x2i )ϕI2u/2(x) dx =
∫
R2

g1(x1, x2)r1(x1, x2)ϕI2/2(x1, x2) dx1 dx2

×

∫
R2u−2

∏
i>1

gi (x2i−1, x2i )ri (x2i−1, x2i )ϕI2u−2/2(x) dx3 · · · dx2u = 0,

since the first integral vanishes. Hence,
∫
R4 h(x)R1(x)(x′Fn(k)x)ϕI4(x) dx = 0. Gathering

(D.1)–(D.3), A3 ≤ Cn−2. �

Proof of Corollaries 9 and 10. As those Corollaries are the counterparts of Corollaries 3 and 4
in a long memory context, we only give the necessary adaptations from the preceding proofs.
From Lemma 8, ρ(Vn(k)− V(k)) ≤ Cp(k, k, n, β), ‖Fn(k)‖1 ≤ Cp(k, j, n, β) and

| det(Vn(k))−1/2
− det(V(k))−1/2

| ≤ Cp(k, j, n, β).

The LHS of (D.3) is now bounded by p2(k, j, n, β)‖x‖4 exp
{
Cp(k, j, n, β)‖x‖2

}
. The term A3

is then bounded by

Cn−1/2 p2(k, j, n, β)
∫
R4
‖x‖5h(x) exp{−‖x‖2(1+ Cp(k, j, n, β))} dx.

If m = o(n) and K1 > 2C , then for large enough n and K1 ≤ k < j − r ≤ m − r , the integral
is uniformly bounded. Thus A3 ≤ Cn−1/2 p2(k, j, n, β) whereas A1 ≤ Cp2(k, j, n, β). �

Appendix E. Proof of Theorem 11

In the sequel, C denotes a constant which depends only on β, δ, ϑ , µ and the distribution of
Z1 and whose value may change upon each appearance. Note first that |νk | = O(log(k)), s2

m =

4m(1 + o(1)) (see for instance [25], or [16]). Define L(λ) = log( f ∗(λ)/ f ∗(0)). Since ψ ∈
F(ϑ, β, δ,∆, µ), there exists a constant C such that

∀k ∈ {1, . . . ,m}, |L(λk)| ≤ C |λk |
β . (E.1)

Let η̄ denote E(log ‖Y‖2), where Y is a centered Gaussian random vector with covariance matrix
I2/2. Define ηk = log(Ik/ f (λk))− η̄, 1 ≤ k ≤ m. With these notations and since

∑m
k=1 νk = 0,

(4.11) yields

d̂m = d + s−2
m

m∑
k=1

νkηk + s−2
m

m∑
k=1

νk L(λk) =: d +Wm + bm . (E.2)

The mean-square error of the GPH writes E((d̂m − d)2) = EW 2
m + 2bmEWm + b2

m . Applying
(E.1) and the Cauchy–Schwartz inequality,
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|bm | ≤ Cs−2
m

m∑
k=1

|νk |λ
β
k ≤ C(m/n)β . (E.3)

Thus, to prove Theorem 11, we only need to show that E[W 2
m] ≤ Cm−1. We now compute

E[W 2
m]. Let ` = `(m) be a non-decreasing sequence of integers such that 1 ≤ ` ≤ m and define

W1,m = s−2
m
∑`

k=1 νkηk and W2,m = Wm −W1,m . We first give a bound for E[W 2
1,m]. Note that

E[W 2
1,m] ≤ `s

−4
m

∑̀
k=1

ν2
k E[η2

k ]. (E.4)

For x ∈ R2, define g(x) = log(‖x‖2) − η̄. Then ηk = g(Sn,k) and N3(g2) < ∞. For
(x1, . . . , x4) ∈ R2, define h(x1, . . . , x4) = g(x1, x2)g(x3, x4). Then ηkη j = h(Sn,(k, j)), h has
property (3.8) and

N5(h) =
∫
R4

g((x1, x2))g((x3, x4))

1+ ‖x‖5
≤ 4(N5/2(g))

2 dx <∞

where we have used 4(1+ (a2
+ b2)s/2) ≥ (1+ |a|s/2)(1+ |b|s/2). Note that N4(h) = N2(g) =

+∞, which motivates the expansion up to order s = 5. Let σ 2 def
= var(log ‖Y‖2) = π2/6.

Applying Corollaries 9 and 10 respectively to the functions g, h, we get for some integer l0 and
any k, j such that l0 ≤ k < j ≤ m,

|E[η2
k ] − σ

2
| ≤ C(β, δ, ϑ, µ)

{
k−1
+ (k/n)β + n−1/2

}
(E.5)∣∣E[ηkη j ]

∣∣ ≤ C(β, δ, ϑ, µ)
{

k−2
+ ( j/n)2β + n−1

}
. (E.6)

(E.4) and (E.5) yield E[W 2
1,m] ≤ C`2m−2. We now bound E[W 2

2,m]:

E[W 2
2,m] = s−4

m

m∑
k=`+1

ν2
k E[η2

k ] + 2s−4
m

∑
`<k< j≤m

νkν j E[ηkη j ].

Using (E.5) and (E.6), we obtain∣∣∣E[W 2
2,m] − s−2

m σ 2
∣∣∣ ≤ C(β, δ, ϑ, µ)s−4

m

m∑
k=`+1

ν2
k

(
k−1
+ (k/n)β + n−1/2

)
+C(β, δ, ϑ, µ)s−4

m

∑
`<k< j≤m

νkν j

(
k−2
+ ( j/n)2β + n−1

)
= C(β, δ, ϑ, µ)s−2

m

{
1+ O

(
`−1/2

+ m1/2l−3/2
+ m2β+1n−2β

+ m/n
)}
. (E.7)

Choosing ` ≤ m such that `2
= o(m) and m = o(`3) (for instance ` = [mη

] with
1/3 < η < 1/2) yields E[W 2

m] = O(m−1). This bound and (E.3) conclude the proof of
Theorem 11.

Appendix F. Proof of Corollary 12

Hurvich et al. [16] have shown (4.12) in the Gaussian case. The deterministic “bias” term
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bm = s−2
m

m∑
k=1

νk{log( f ∗(λk))− log( f ∗(0))}

is treated by their Lemma 1, up to some multiplicative constant due to the fact that we regress on
every two frequencies. We have here

bm = −
4π2

9
f ∗
′′

(0)
f ∗(0)

m2

n2 {1+ o(1)}. (F.1)

We use the same decomposition (E.2) as in the proof of Theorem 11, but as the hypotheses
of the Corollary implies the global assumptions (4.6), we apply Corollaries 9 and 10 with
p(k, j, n, β) ≤ k−1. Then the bound (E.7) reduces to

E[W 2
2,m] =

π2

6s2
m

{
1+ O

(
`−1/2

+ m1/2`−3/2
+ m/n

)}
.

Choosing ` such that `2
= o(m) and m = o(`3), and using s2

m = 4m(1 + o(1)) yields the
variance term of the MSE, namely

E[W 2
m] =

π2

24m
(1+ o(1)). (F.2)

Treat now the cross term 2bnE[Wm]. Denote by E0
[Wm] the expectation of Wm under the

Gaussian assumption. Then (see [16] Lemma 8)

E0
[Wm] = O

( log3 m

m

)
.

Using Corollary 9, we get
∣∣E[ηk] − E0

[ηk]
∣∣ ≤ C(n−1/2

+ k−1). It follows that

E[Wm] = O
( log3 m

m
+ n−1/2 log m

)
. (F.3)

Corollary 12 follows from (F.1)–(F.3).
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