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Coordinated Remodeling of Cellular
Metabolism during Iron Deficiency
through Targeted mRNA Degradation

anisms of action in both prokaryotic and eukaryotic cells
(Escolar et al., 1999; Hentze et al., 2004; Van Ho et al.,
2002). Studies with the baker’s yeast Saccharomyces
cerevisiae have demonstrated that, in response to Fe
deprivation, cells utilize the Fe-responsive transcription
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Durham, North Carolina 27710 factors Aft1 and Aft2 to induce expression of the so-

called iron regulon (Rutherford et al., 2003; Shakoury-
Elizeh et al., 2004), which includes proteins involved in
Fe reduction at the plasma membrane, uptake, mobiliza-Summary
tion from intracellular stores, and utilization from heme,
among others (Van Ho et al., 2002). Less attention hasIron (Fe) is an essential micronutrient for virtually all
been dedicated to the characterization of metabolicorganisms and serves as a cofactor for a wide variety
pathways that are specifically downregulated by Feof vital cellular processes. Although Fe deficiency is
depletion. Recent studies have shown that mRNA levelsthe primary nutritional disorder in the world, cellular
of genes involved in biotin synthesis, glutamate metabo-responses to Fe deprivation are poorly understood.
lism and heme assembly are downregulated under lowWe have discovered a posttranscriptional regulatory
Fe conditions (Lesuisse et al., 2003; Shakoury-Elizeh etprocess controlled by Fe deficiency, which coordi-
al., 2004). However, the mechanisms controlling the Fenately drives widespread metabolic reprogramming.
deprivation-dependent downregulation of these genes,We demonstrate that, in response to Fe deficiency,
and other global metabolic pathways altered as a conse-the Saccharomyces cerevisiae Cth2 protein specifi-
quence of Fe deficiency, have not been elucidated.cally downregulates mRNAs encoding proteins that

In mammals, one response to iron scarcity is posttran-participate in many Fe-dependent processes. mRNA
scriptionally controlled by the iron-regulatory proteinsturnover requires the binding of Cth2, an RNA binding
IRP1 and IRP2. In response to Fe deprivation, IRP1 bindsprotein conserved in plants and mammals, to specific
to specific mRNA stem-loop structures known as iron-AU-rich elements in the 3� untranslated region of
responsive elements (IREs). IRP1 binding to IREs in themRNAs targeted for degradation. These studies eluci-
5� untranslated region inhibits translation of erythroiddate coordinated global metabolic reprogramming in
aminolevulinic acid synthase, mitochondrial aconitase,response to Fe deficiency and identify a mechanism
the ferroportin Fe efflux pump, and subunits of the Fefor achieving this by targeting specific mRNA mole-
storage protein ferritin. IRP1 binding to IREs in the 3�cules for degradation, thereby facilitating the utiliza-
untranslated region (3�UTR) of the transferrin receptor 1tion of limited cellular Fe levels.
isoform stabilizes the mRNA, thereby increasing protein
levels and enhancing Fe uptake via Fe loaded transferrinIntroduction
(Hentze et al., 2004; Theil, 2000). A posttranscriptional
downregulation of Fe-dependent pathways, which de-Iron (Fe) is an essential nutrient for virtually all organ-
pends on small antisense RNAs, has recently been de-isms. Fe serves as a cofactor for a wide variety of cellular
scribed in bacteria (Masse and Gottesman, 2002; Wil-processes, including oxygen transport, cellular respira-
derman et al., 2004).tion, the tricarboxylic acid (TCA) cycle, lipid metabolism,

While several dozen metabolic enzymes require Fesynthesis of metabolic intermediates, gene regulation,
for catalysis in eukaryotic cells, little is known aboutand DNA replication and repair. Despite its abundance
global reprogramming and regulatory mechanisms gov-in the earth’s crust, Fe bioavailability is highly restricted
erning this process in response to Fe deficiency. Wedue to its extreme insolubility at physiological pH. In-
have discovered a mechanism that mediates globaldeed, Fe deficiency is the primary nutritional disorder
posttranscriptional control of multiple components ofin the world, estimated to affect over two billion people
Fe-dependent pathways to respond in a concerted fash-and resulting in iron deficiency anemia (Baynes and
ion to Fe deficiency. The Fe-regulated protein Cth2 coor-Bothwell, 1990). Alterations in iron homeostasis underlie
dinates this process by binding to and targeting specificmany human diseases, including Friedreich’s ataxia, he-
mRNA molecules for degradation under Fe deficiency,reditary hemochromatosis, aceruloplasminemia, Par-
thereby facilitating the utilization of limited available Fekinson’s disease, aging, microbial pathogenesis, and
for normal growth.cancer (Hentze et al., 2004; Nittis and Gitlin, 2002; Roy

and Andrews, 2001).
ResultsElegant genetic, biochemical, and physiological stud-

ies have elucidated many of the components that func-
Genome-Wide Response of Saccharomycestion in Fe uptake, efflux, and distribution and their mech-
cerevisiae to Iron Deprivation
Although Fe plays a crucial role in a wide array of cellular
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Figure 1. Response of Fe-Dependent Processes to Fe Depletion in Yeast

B4741 wild-type cells were grown in SC containing 300 �M Fe or 100 �M BPS, and RNA was analyzed with DNA microarrays as detailed in
Experimental Procedures. Only components of multiple Fe-dependent pathways with a fold change greater than two have been represented.
A list of the genes grouped in each functional family is shown in Supplemental Tables S2 and S3.

deprivation, we compared the mRNA expression profile thermore, CTH2 expression under low Fe conditions is
significantly decreased in an aft1 strain and is undetect-of wild-type cells grown under Fe-replete conditions to

cells grown under Fe scarcity achieved by addition of able under either condition in the aft1aft2 double mutant.
Mutagenesis of two putative Aft1-Aft2 binding sites (Ya-the Fe(II) chelator bathophenantholine disulfonic acid

(BPS). We observed that, in addition to changes in other maguchi-Iwai et al., 1996) from the CTH2 upstream
sequence indicates that both sites cooperate in the acti-processes (data not shown), key components of multiple

Fe-dependent metabolic pathways are significantly al- vation of CTH2 by Fe starvation, although these experi-
ments do not exclude the participation of other cis-tered by Fe availability (Figure 1 and see Supplemental

Tables S2 and S3 at http://www.cell.com/cgi/content/ regulatory sequences in CTH2 regulation by Fe (see
Supplemental Figure S2 on the Cell web site).full/120/1/99/DC1/). In addition to the induction of the

Aft1/2-dependent Fe regulon previously described Given that CTH2 mRNA levels are tightly regulated by
Fe availability and the Aft1-Aft2 Fe-responsive transcrip-(Blaiseau et al., 2001; Rutherford et al., 2003; Shakoury-

Elizeh et al., 2004; Yamaguchi-Iwai et al., 1996), genes tion factors, we assayed growth of cth2 deletion mutant
cells under Fe deprivation conditions. cth2 cells exhib-involved in sterol biosynthesis (ERG genes) and the fatty

acid desaturase OLE1 are induced under Fe deprivation. ited a growth defect compared to wild-type cells in the
presence of the intracellular Fe-specific chelator ferroz-In addition, key components of multiple Fe-dependent

pathways and proteins including (1) the TCA cycle; (2) ine (Figure 3A). The cth2 growth defect on ferrozine was
reversed by addition of Fe (Figure 3A), demonstratingthe mitochondrial electron transport chain; (3) Fe-S clus-

ter, di-Fe-tyrosyl, and heme-containing proteins; and, (4) that the growth defect of cth2 cells occurs in response
to Fe deprivation rather than to ferrozine administration.as recently described (Lesuisse et al., 2003; Shakoury-

Elizeh et al., 2004), HEM15 encoding ferrochelatase, the The yeast genome harbors a gene encoding a protein
similar to Cth2, Cth1 (Thompson et al., 1996), whoselast step in heme biosynthesis, and two enzymes in-

volved in biotin synthesis are coordinately downregu- transcription is independent of Fe levels (Figure 2B).
Although cth1 cells did not display a growth defect underlated by Fe depletion (Figure 1 and Supplemental Table

S3). Taken together, these results demonstrate that Fe deprivation conditions, cells lacking both CTH1 and
CTH2 exhibited a more severe growth defect than thosemRNA levels of multiple components of Fe-dependent

metabolic pathways in S. cerevisiae are coordinately lacking only CTH2 (Figure 3A). Similarly, the cth1cth2
growth defect in the presence of ferrozine was partiallyregulated in response to Fe deprivation.
suppressed by CTH1 and completely recovered by
coexpression of both CTH1 and CTH2 (Figure 3B). TheseThe Aft1-Aft2 Target CTH2 Is Important for Growth
results demonstrate that CTH2 is important for growthunder Fe Limitation
under Fe deprivation induced by the membrane perme-Previous DNA microarray experiments strongly suggest
able Fe chelator ferrozine and suggest that Cth1 functionthat the CTH2 gene, which encodes a protein related to
in yeast cells may partially overlap with Cth2.the mammalian tandem zinc finger (TZF) protein triste-

traprolin or TTP (Figure 2A), is transcriptionally induced
under Fe limitation (Foury and Talibi, 2001; Rutherford CTH2 Coordinates the Downregulation of Multiple

Fe-Dependent Pathways under Fe Deprivationet al., 2003; Shakoury-Elizeh et al., 2004). As shown in
Figures 2B and 2C, the steady-state levels of CTH2 A prominent feature of Cth2 is the presence of a

Cx8Cx5Cx3H tandem zinc finger (TZF) domain near themRNA and a functional FLAG epitope-tagged Cth2 pro-
tein under Fe-adequate conditions are very low but dra- carboxyl terminus of the protein (Figure 2A and Supple-

mental Figure S1). This TZF motif is present in a family ofmatically increase in response to Fe deprivation. Fur-



Cth2 Controls a Posttranscriptional Fe Regulon
101

cleotide reductase, are only modestly decreased by Fe
deprivation (Figure 3C). Interestingly, this coordinated
mRNA downregulation does not occur in the absence
of CTH2 (Figure 3C, wt versus cth2 mutant). While mRNA
levels in cth1 cells did not change significantly with
respect to wild-type cells, the cth1cth2 mutant dis-
played reduced mRNA downregulation, suggesting that
Cth1 directly or indirectly influences in this process.
These results demonstrate that Cth2 functions in the
downregulation of specific mRNAs under conditions of
Fe deprivation.

We used DNA microarrays to ascertain which mRNAs
exhibit CTH2-dependent changes on a genome-wide
scale by comparing the gene expression profiles under
Fe deficiency of cth1cth2 cells expressing a plasmid-
borne CTH2 gene or transformed with vector alone.
Messenger RNAs corresponding to 84 genes were sig-
nificantly upregulated in the absence of CTH2 (Table 1).
Interestingly, 54% (45 of 84) of the upregulated genes
are involved in obvious Fe-dependent processes, 14%
(12 of 84) have other functions, and 32% (27 of 87) are
genes of unknown function. Among the 45 Fe-related
genes whose expression is increased in cth2 mutants
under low Fe conditions compared to wild-type cells,
we find (1) three members of the Fe regulon (FIT1, FIT2,
and HMX1); (2) genes encoding key enzymes involved
in heme biosynthesis (HEM15); (3) two genes encoding
proteins involved in Fe-S cluster assembly (ISA1 andFigure 2. Expression of CTH2 upon Fe Depletion Is Dependent on
NFU1); (4) eight genes encoding enzymes that parti-Both Aft1 and Aft2 Transcription Factors
cipate in the TCA cycle including aconitase (ACO1),(A) Model for the primary structure of S. cerevisiae Cth2 and Cth1
succinate dehydrogenase subunits SDH2 and SDH4,and human tristetraprolin (hTTP) protein. TZF, tandem zinc finger.

(B) CM3260 wild-type, aft1, aft2, and aft1aft2 cells were grown in �-ketoglutarate dehydrogenase (KGD1), and dihydroly-
SC containing 100 �M Fe (Fe �) or 100 �M BPS (Fe �) and RNA poyl transsuccinylase (KGD2); (5) 15 genes encoding
extracted and analyzed by RNA blotting. The Aft1 target FET3 was proteins that participate in the electron transfer chain
used as a control for Fe-regulated expression.

that include four subunits of the cytocrome c oxidase(C) cth1cth2 cells transformed with pRS416-FLAG2-CTH2 or
(COX4, COX6, COX8, COX9) and six subunits of thepRS416 (vector) were grown in SC-Ura containing 300 �M Fe (Fe �)
ubiquinol cytochrome c reductase complex (COR1-5or 100 �M BPS (Fe �) and protein extracted and analyzed by immu-

noblotting. Phosphoglycerate kinase (Pgk1) was used as a load- and RIP1); (6) eight members of the sterol and unsatu-
ing control. rated fatty acid synthesis and metabolism pathways

(ERG genes and OLE1); (7) ribonucleotide-diphosphate
reductase subunits (RNR4); and (8) genes encoding ad-RNA binding proteins typified by the mammalian protein
ditional Fe-S cluster-containing proteins (LIP5, encod-tristetraprolin (TTP). TTP mediates the targeted destabi-
ing lipoic acid synthase; LEU1, required for leucine bio-lization of tumor necrosis factor � (TNF�), cyclooxygen-
synthesis; and RLI1, related to RNase L inhibitor). Takenase-2, interleukin-3, and granulocyte/macrophage col-
together, these results demonstrate that Cth2 functionsony-stimulating factor (GM-CSF) mRNAs (Blackshear,
in the coordinated downregulation of multiple Fe-depen-2002; Carballo et al., 1998; Sawaoka et al., 2003;
dent metabolic pathways, and potentially other as yetStoecklin et al., 2001). An alignment of yeast Cth1 and
uncharacterized pathways, in yeast under conditions ofCth2 with human TTP shows that, while Cth1 and Cth2
Fe deficiency.proteins share 46% identity, hTTP homology to Cth1

and Cth2 is restricted to the TZF domains (Supplemental
Figure S1). Despite little homology in the rest of the A Conserved RNA Binding Motif Is Required

for Cth2-Mediated mRNA Downregulationprotein, we hypothesized that Cth2 could be involved
in posttranscriptional regulation of specific mRNAs un- Studies with TTP in mammalian systems have demon-

strated that the integrity of the zinc finger domains isder Fe deprivation. To test this hypothesis, we ascer-
tained the effect of Cth2 on multiple mRNAs we ob- required for binding and destabilization of specific

mRNAs (Blackshear, 2002; Lai et al., 1999, 2003). Weserved in our microarray to be downregulated by Fe
deficiency. As shown in Figure 3C, genes encoding pro- tested the role of the CCCH zinc fingers in Cth2-depen-

dent mRNA downregulation by mutagenizing conservedteins involved in the TCA cycle (SDH4), heme synthesis
(HEM15), Fe-S cluster assembly (ISA1), vacuolar Fe ac- cysteine residues, located in both zinc finger motifs, to

arginine. First, cells expressing CTH2-C190R or CTH2-cumulation (CCC1), and Fe-S proteins (LIP5) are dramat-
ically downregulated under Fe starvation in a wild-type C213R mutant alleles displayed a growth defect in the

presence of the Fe-chelator ferrozine (Figure 3E). Sec-strain. The mRNA levels of RNR2, encoding a subunit
of the essential di-Fe-tyrosil-dependent enzyme ribonu- ond, Cth2-dependent downregulation of SDH4, HEM15,
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Figure 3. CTH2 Is Required for Fe-Limited Growth and Fe Deficiency-Dependent mRNA Downregulation

(A) BY4741 wild-type, cth1, cth2, and cth1cth2 cells were assayed for growth on SC (Complete) and SC containing 750 �M ferrozine without
or with 300 �M Fe (� Fe).
(B) cth1cth2 cells cotransformed with pRS416 plus pRS415 (vector), pRS416-CTH1 plus pRS415 (CTH1), pRS416 plus pRS415-CTH2 (CTH2),
and pRS416-CTH1 plus pRS415-CTH2 (CTH1 � CTH2) were assayed on SC-Ura-Leu (�Ura � Leu) and SC containing 750 �M ferrozine.
(C) CTH2 is essential for Fe deficiency-dependent mRNA downregulation. Wild-type cth2, cth1, and cth1cth2 cells were grown in SC media
containing 300 �M Fe (Fe �) or 100 �M BPS (Fe �) and RNA extracted and analyzed by RNA blotting.
(D) Schematic representation of the CCCH TZF domain in Cth2 protein. Cysteine residues 190 and 213 (white characters) were mutagenized
to arginine.
(E) The Cth2 TZF domains are essential for growth in the presence of ferrozine. BY4741 wild-type and cth2 cells transformed with vector
alone or expressing CTH2, CTH2-C190R, and CTH2-C213R alleles were assayed for growth on ferrozine plates.
(F) The Cth2 CCCH TZF motifs are essential for mRNA downregulation. cth1cth2 cells containing vector or expressing CTH2, CTH2-C190R,
and CTH2-C213R alleles were analyzed by RNA blotting as described for (C).

LIP5, COX6, and other mRNAs (data not shown) was under low Fe conditions contain one or more putative
AREs, defined as 5�-UAUUUAUU-3� and 5�-UUAUUabrogated in both Cth2 mutants (Figure 3F). Similar re-

sults were obtained when cysteine residues 190 and 213 UAU-3� octamer sequences, located within 500 nucleo-
tides after the translation termination codon (Table 1).were mutagenized to alanine (data not shown). Control

experiments showed that the cysteine mutant proteins To test whether Cth2-dependent mRNA downregulation
during Fe deficiency occurs via AREs located within theare properly expressed (data not shown). Taken to-

gether, these results demonstrate that the integrity of 3�UTR, we used the mRNA encoding the membrane-
both CCCH zinc finger motifs is essential for Cth2 func- anchored heme-containing subunit of the succinate de-
tion in coordinated mRNA downregulation in response hydrogenase complex in mitochondria, SDH4, which is
to Fe deprivation. downregulated under Fe deprivation in a manner com-

pletely dependent on Cth2 (Figures 3C and 3F). The
SDH4 3�UTR contains three 5�-UUAUUUAUU-3� se-Downregulation of Specific mRNAs by Fe
quences beginning at 125, 135, and 158 nucleotidesDeprivation Requires AU-Rich Elements
after the translation termination codon (Table 1 and Fig-Human TTP binds to AU-rich elements (AREs) within the
ure 4A). The adenine nucleotides 127, 134, 141, and 1603�UTR of target mRNAs and induces RNA degradation
were mutated to cytosine in a plasmid-borne copy of(Blackshear et al., 2003; Lai et al., 1999). Interestingly,
the SDH4 gene (Figures 4A and 4B, SDH4-AREmt2) andin silico analysis and visual inspection reveals that ap-

proximately 80% of the mRNAs upregulated in cth2 cells mRNA levels assessed under high and low Fe conditions
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Table 1. Genes Upregulated in cth2 versus Wild-Type Cells under Fe-Limiting Conditions

ORF Gene Function Fold � SD Putative AREs

Iron regulon
YDR534C FIT1 Cell wall mannoprotein involved in siderophore-Fe uptake 2.0 � 0.2 263
YOR382W FIT2 Cell wall mannoprotein involved in siderophore-Fe uptake 1.6 � 0.1 255
YLR205C HMX1 Heme binding peroxidase involved in reutilization of heme Fe 2.0 � 0.4
Heme biosynthesis
YDR044W HEM13 Coproporphyrinogen III oxidase, oxygen-requiring enzyme 1.5 � 0.3a 68, 89
YOR176W HEM15 Ferrochelatase, catalyzes insertion of Fe(II) into 2.2 � 0.2 43, 99

protoporphyrin IX
Fe-S cluster biogenesis
YKL040C NFU1 NifU-like protein 2.0 � 0.2 191, 203
YLL027W ISA1 Member of Fe-S cluster biosynthesis machinery 1.9 � 0.1 46, 62
TCA cycle
YNR001C CIT1 Citrate synthase 2.0 � 0.2
YPR001W CIT3 Mitochondrial isoform of citrate synthase 1.7 � 0.4
YLR304C ACO1 Mitochondrial aconitase, Fe-S cluster protein 2.6 � 0.3 32, 150, 177
YIL125W KGD1 Alpha-ketoglutarate dehydrogenase 1.6 � 0.2 193, 230
YDR148C KGD2 Dihydrolipoyl transsuccinylase 1.8 � 0.2 242
YLL041C SDH2 Succinate dehydrogenase (ubiquinone) Fe-S cluster subunit 2.8 � 0.6 162, 309, 328
YDR178W SDH4 Succinate dehydrogenase membrane anchor heme-binding 3.2 � 0.7 125, 135, 158

subunit
YPL262W FUM1 Mitochondrial and cytoplasmic fumarase, Fe-S cluster protein 1.6 � 0.2
Mitochondrial respiration/electron transport chain
Cytochrome c oxidase
YGL187C COX4 Subunit IV of cytochrome c oxidase 1.9 � 0.4 53
YHR051W COX6 Subunit VI of cytochrome c oxidase 2.2 � 0.2 88
YLR395C COX8 Subunit VIII of cytochrome c oxidase 1.9 � 0.2 104
YDL067C COX9 Subunit VIIa of cytochrome c oxidase 1.8 � 0.2 44
Ubiquinol cytochrome c reductase
YBL045C QCR1/COR1 Core subunit I of ubiquinol cytochrome c reductase complex 2.0 � 0.2 140
YPR191W QCR2/COR2 Core subunit II of ubiquinol cytochrome c reductase complex 1.6 � 0.2 155
YFR033C QCR6/COR3 Subunit VI of ubiquinol cytochrome c reductase complex 1.7 � 0.3 31
YDR529C QCR7/COR4 Subunit VII of ubiquinol cytochrome c reductase complex 1.9 � 0.2 150, 239
YJL166W QCR8/COR5 Subunit VIII of ubiquinol cytochrome c reductase complex 1.8 � 0.3 97, 114
YEL024W RIP1 Rieske Fe-S protein of ubiquinol cytochrome c reductase 2.0 � 0.1 293, 355

complex
YOR356W Putative mitochondrial dehydrogenase flavoprotein 2.1 � 0.2 13, 37, 81
YGR255C COQ6 Flavin-dependent monooxygenase, ubiquinone biosynthesis 1.7 � 0.3 42
YKR066C CCP1 Cytochrome c peroxidase 2.8 � 0.5 18, 41, 50, 59
YMR145C NDE1 NADH dehydrogenase 1.6 � 0.2
YBL030C PET9/AAC2 Mitochondrial ADP/ATP carrier 1.6 � 0.2
Sterol and fatty acid synthesis and metabolism
YHR072W ERG7 Lanosterol synthase 2.0 � 0.3 4, 60
YHR007C ERG11 Lanosterol C-14 demethylase 1.6 � 0.1 174, 203, 273
YMR208W ERG12 Mevalonate kinase 1.6 � 0.1 19
YGR060W ERG25 C-4 methyl sterol oxidase 1.7 � 0.4
YER044C ERG28 ER membrane protein, may facilitate Erg26 and Erg27 1.6 � 0.3 52

interactions
YGL055W OLE1 Fatty acid desaturase 1.6 � 0.3 151, 187
YMR272C FAH1/SCS7 Hydroxylation of C-26 fatty acid in ceramide 1.7 � 0.2 89, 105
YPL170W DAP1 Damage response protein involved in sterol synthesis 1.6 � 0.1 18, 148
DNA replication and repair
YJL026W RNR2 Ribonucleotide-diphosphate reductase, di-Fe-tyrosyl cofactor 1.4 � 0.2a 68
YGR180C RNR4 Ribonucleotide-diphosphate reductase, Y4 subunit 1.6 � 0.4 39, 125
Other Fe-, Cu-, and oxygen-related function
YLR220W CCC1 Transporter that mediates vacuolar Fe storage 1.4 � 0.1a 24, 144
YOR196C LIP5 Lipoic acid synthase, Fe-S cluster protein 2.0 � 0.3 70, 92
YGL009C LEU1 Isopropylmalate isomerase, Fe-S cluster protein 1.7 � 0.3 85, 123
YDR091C RLI1 RNase L inhibitor, Fe-S cluster protein 1.6 � 0.2 280, 291
YKL109W HAP4 Subunit of Hap transcriptional activator 1.7 � 0.3 275, 303
YHR055C CUP1-2 Copper-binding metallothionein 1.6 � 0.4
YAR020C PAU7 Member of PAU family 1.7 � 0.2
YOR394W Member of PAU family 1.6 � 0.2
Other functions
YCR005C CIT2 Nonmitochondrial citrate synthase 1.6 � 0.3
YDR007W TRP1 Phosphoribosylanthranilate isomerase 1.8 � 0.2 16
YDR423C CAD1 Leucine zipper transcriptional activator 1.6 � 0.3
YER003C PMI40 Phosphomannose isomerase 1.6 � 0.2 54
YHR002W LEU5 Mitochondrial carrier protein 1.6 � 0.3

(continued)
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Table 1. Continued

ORF Gene Function Fold � SD Putative AREs

Other functions
YJL172W CPS1 Vacuolar carboxypeptidase 1.7 � 0.1
YJR016C ILV3 Dihydroxyacid dehydratase 1.6 � 0.2 98
YLR121C YPS3 GPI-anchored aspartic protease 1.7 � 0.2 314
YML028W TSA1 Thioredoxin-peroxidase 2.0 � 0.2
YOR230W WTM1 WD repeat containing transcriptional modulator I 2.3 � 0.2 145
YPL053C KTR6 Mannosylphosphate transferase 1.6 � 0.2 62
YPL154C PEP4 Vacuolar proteinase A 1.9 � 0.3
Unknown function
YBL043W ECM13 Unknown function 1.8 � 0.1
YBR187W Unknown function 1.8 � 0.1 109
YCR017C CWH43 Putative sensor/transporter protein 1.6 � 0.3
YDR366C Unknown function 1.6 � 0.2
YDR411C DFM1 Der1-like family member 1.8 � 0.2
YER048W-A Unknown function 1.6 � 0.3
YER138W-A Unknown function 1.7 � 0.3
YER156C Unknown function 1.8 � 0.3 59
YGL002W ERP6 Member of p24 family 1.7 � 0.1 71
YGL188C Unknown function 1.7 � 0.1
YHR045W Unknown function 1.7 � 0.2 19
YHR113W Putative vacuolar aminopeptidase 1.9 � 0.1 33
YJL171C Unknown function 1.7 � 0.2 81
YKR103W NFT1 Merged with YKR104 in some backgrounds 3.3 � 0.4
YKR104W NFT1 Putative MRP-type ABC transporter 3.6 � 0.7
YLR083C EMP70 Endosomal membrane protein 1.6 � 0.2 43, 194
YLR251W SYM1 Stress-induced yeast MPV17 homologue 1.6 � 0.2
YML089C Unknown function 1.8 � 0.2
YMR041C Unknown function 1.6 � 0.3 327
YMR110C Unknown function 1.7 � 0.3 83
YNL320W Unknown function 1.9 � 0.2 92
YOL083W Unknown function 1.8 � 0.3 52
YOL092W Unknown function 1.8 � 0.1 15
YOR214C Unknown function 1.6 � 0.2
YOR306C MCH5 Monocarboxylate permease homologue 1.6 � 0.1
YPL250C ICY2 Interacts with the cytoskeleton 1.6 � 0.1
YPR002W PDH1 Homologue to E. coli prpD 2.0 � 0.3 198

cth1cth2 cells expressing CTH2 or vector alone were independently grown by triplicate in the presence of 100 �M BPS (Fe depletion) until
exponential cell phase; RNA was extracted, labeled, and hybridized to yeast DNA microarrays as described in Experimental Procedures. The
gene expression profile of cells containing vector alone versus expressing CTH2 (cth2 versus CTH2) was determined and the average fold
induction represented. Only mRNAs with a fold induction in the cth2 mutant higher than 1.6-fold and a p value � 0.05 are shown. ORF,
open reading frame systematic name; gene, common name; function, description of the biological function of the protein according to the
Saccharomyces Genome Database, published data, and sequence homology; AREs, AU-rich elements (5�-UUAUUUAUU-3� nonamer sequence)
positioned within the 500 nucleotides after translation termination codon. 5�-UAUUUAUU-3� and 5�-UUAUUUAU-3� octamers were indicated
in italics. SD, standard deviation. The complete set of data is available at http://data.cgt.duke.edu/iron.php.
a Genes below the cutoff but confirmed by RNA blotting analysis.

by RNA blotting. As shown in Figure 4C, wild-type SDH4 starvation, GCN4-ACO1-3�UTR mRNA was dramatically
downregulated under Fe deprivation (Figure 4E). A simi-mRNA levels are dramatically downregulated under Fe

depletion, while SDH4-AREmt2 mRNA levels are unaf- lar result was obtained when the 3�UTR of the SDH4
mRNA was fused to GCN4 (Figure 4E). Importantly, mu-fected by Fe. Furthermore, downregulation of CCC1

mRNA by Fe depletion was also completely dependent tagenesis of the AREs in the SDH4-3�UTR abrogated
the Fe dependent downregulation of GCN4-SDH4-on the 3�UTR (Supplemental Figure S3). Taken together,

these results demonstrate that CTH2-dependent mRNA 3�UTR mRNA (Figure 4E, GCN4-SDH4-AREmt2). In addi-
tion, the downregulation of both GCN4-ACO1-3�UTRdownregulation under low Fe conditions is dependent

on the presence of specific AREs located in the 3�UTR. and GCN4-SDH4-3�UTR mRNAs was completely de-
pendent of the presence of a functional Cth2 proteinTo ascertain whether AREs are sufficient for mRNA

downregulation in response to Fe deprivation, chimeric (Figure 4F). cth1cth2gcn4 mutants expressing either
GCN4-ACO1-3�UTR or GCN4-SDH4-3�UTR were cotrans-transcripts were expressed that contain the coding se-

quence of GCN4, a gene not regulated by Cth2 (data formed with vector, wild-type CTH2, or the CTH2-C190R
mutant. As shown in Figure 4F, the Fe starvation-depen-not shown), and the 3�UTR from either SDH4 or ACO1

(Figures 4A and 4D), two genes whose mRNA steady- dent decrease in steady-state levels for both mRNA
species was abrogated in cells lacking CTH2 (vectorstate levels are regulated by Cth2. While wild-type GCN4

mRNA levels were not significantly decreased by Fe lanes) and in cells with a nonfunctional allele of CTH2
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Figure 4. AREs in the 3�UTR of CTH2 Targets Induce mRNA Destabilization of a Reporter Gene under Fe Scarcity

(A) Sequence of the 3� region of SDH4 and ACO1 genes. Putative AREs are shown underlined. SDH4-3�UTR adenine residues mutagenized
to cytosine in GCN4-SDH4-AREmt2 are shown in bold characters.
(B) Schematic representation of wild-type SDH4 and SDH4-3�UTR mutant 2 (SDH4-AREmt2).
(C) SDH4 downregulation in low Fe is dependent on the integrity of the AREs located in the 3�UTR. sdh4 cells expressing SDH4 and SDH4-
AREmt2 were grown and analyzed by RNA blotting as described in Figure 3C.
(D) Schematic representation of wild-type GCN4 and GCN4 with 3�UTR replaced by ACO1-3�UTR (GCN4-ACO1), wild-type SDH4-3�UTR (GCN4-
SDH4), and mutant SDH4-ARE-mt2 (GCN4-SDH4mt2).
(E) gcn4 cells expressing GCN4, GCN4-ACO1-3�UTR, GCN4-SDH4-3�UTR, and GCN4-SDH4-AREmt2 were grown in SC-Ura media (Fe �) and
SC-Ura containing 100 �M BPS (Fe �) and analyzed by RNA blotting with GCN4 and ACT1 probes.
(F) cth1cth2gcn4 cells expressing either GCN4-SDH4-3�UTR or GCN4-ACO1-3�UTR were transformed with vector alone or containing CTH2
or CTH2-C190R mutant allele and grown and analyzed by RNA blotting as described (E).

(C190R lanes). Taken together, these results demon- tose and the Fe chelator BPS to induce transcription
of GCN4-ACO1/SDH4-3�UTR and CTH2, respectively.strate that the AREs found in the 3�UTR of both ACO1

and SDH4 are necessary and sufficient to induce the Transcription of the GCN4-ACO1 or GCN4-SDH4-3�UTR
CTH2 and Fe limitation-dependent downregulation of genes was shut off by glucose addition and mRNA levels
GCN4 mRNA. analyzed over time by RNA blotting (Figure 5). The half-

life of GCN4-ACO1-3�UTR mRNA decreased from 7 min
to 3 min when CTH2 was expressed (Figure 5A). A similarCth2 Accelerates the Rate of mRNA Decay
decrease in the half-life, from 9 to 4 min, was observedOur data strongly implicate Cth2 and 3�UTR AREs in the
for GCN4-SDH4-3�UTR mRNA in cells expressing CTH2coordinated downregulation of specific mRNAs by Fe
(Figure 5B). No change in mRNA half-life was observeddeprivation. Steady-state mRNA measurements are the
when the cells expressed the CTH2-C190R mutant allelenet consequence of both transcription and the rate of
or when they were grown in the presence of Fe, condi-mRNA decay, and our analyses are consistent with Cth2
tions that severely repress the expression of CTH2 (dataacting at a posttranscriptional level. To evaluate the effects
not shown). Furthermore, while the half-life of a mRNAof Cth2 on mRNA decay rates, two Cth2-dependent target
including the SDH4 coding sequence and 3�UTR wasmRNAs were conditionally expressed in yeast using the
7 min in wild-type cells growing under Fe-deficient con-galactose-inducible and glucose-repressible GAL1 pro-
ditions, it increased to 14 min in either cells lacking CTH2,moter. cth1cth2gcn4 cells were cotransformed with
wild-type cells grown in Fe-replete conditions, or in CTH2GCN4-ACO1-3�UTR or GCN4-SDH4-3�UTR constructs
wild-type cells expressing SDH4 mRNA with mutateddriven by the GAL1 promoter (Figure 5) and plasmid-

borne CTH2 or empty vector. Cells were grown in galac- AREs (Figure 5C). Similar results were obtained for the
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Figure 5. Cth2 Accelerates the Decay of mRNAs Containing ACO1, SDH4, or CCP1 3�UTRs

cth1cth2gcn4 cells containing either p415GAL1-GCN4-ACO1-3�UTR (A) or p415GAL1-GCN4-SDH4-3�UTR (B) plasmids were cotransformed
with pRS416-CTH2 (CTH2) and pRS416 (vector). Cells were grown in galactose under low Fe (and Fe replete, data not shown) conditions until
exponential growth phase. Then glucose was added to stop transcription of GCN4-ACO1 and GCN4-SDH4 mRNAs and total RNA extracted
and analyzed by RNA blotting. (C) cth1cth2sdh4 cells containing either p415GAL1-SDH4 or p415GAL1-SDH4-AREmt2 plasmids were cotrans-
formed with pRS416-CTH2 (CTH2) and pRS416 (vector). (D) cth1cth2ccp1 cells containing plasmid p415GAL1-CCP1 were cotransformed with
pRS416-CTH2 (CTH2) and pRS416 (vector). Cells were grown and treated as described for (A) and (B). GCN4, SDH4, and CCP1 mRNA values
were normalized with ACT1 loading control. mRNA half-lives were calculated on the basis of at least two independent experiments.

half-life measurements of the cytochrome c peroxidase action is severely compromised when the ACO1 or SDH4
ARE-MS2 RNA is coexpressed with the Cth2 C190R-CCP1 mRNA (Figure 5D). Taken together, these results

demonstrate that CTH2 accelerates the destabilization Gal4 activation domain fusion, which is expressed at
levels similar to Cth2-Gal4 fusion protein (Figure 6C,of mRNAs containing ACO1, SDH4, or CCP1 3�UTRs,

which harbor AREs that function through Cth2. data not shown).
To further test the specificity of this Cth2-ARE interac-

tion, we mutagenized the AREs contained in the SDH4-Cth2 Binds to SDH4 and ACO1 AU-Rich Elements
To understand how Cth2 coordinately stimulates the MS2 fusion RNA. As shown in Figure 6C, mutagenesis

of adenine nucleotides 127, 134, and 141 to cytosinedecay of a large battery of specific mRNA molecules
in response to Fe deprivation in a 3�UTR-dependent (Figure 6B, mt1) decreased growth on minus histidine

plates, while the additional substitution of adenine nu-manner, we ascertained whether Cth2 binds to AREs
in vivo using the yeast three-hybrid system (Putz et al., cleotide 160 to cytosine (Figure 6B, mt2) completely

abrogated growth, suggesting that Cth2 binding to the1996; SenGupta et al., 1996). Sequences from both the
ACO1 and SDH4 3�UTRs containing functional AREs SDH4-3�UTR mRNA occurs through two ARE regions.

Additional evidence for differential binding betweenwere fused to bacteriophage MS2 RNA and coex-
pressed in yeast cells expressing a Cth2-Gal4 trans- Cth2 and the two mutant ARE alleles is evident from

both the addition of the His3 inhibitor 3-aminotriazoleactivation domain fusion protein (Figures 6A and 6B).
Cells coexpressing either the ACO1 or SDH4 3�UTR fu- (Figure 6C) and �-galactosidase assays demonstrating

that Cth2 interaction with the SDH4 3�UTR is reduced tosion RNAs, together with wild-type CTH2, grow in me-
dium lacking histidine, indicative of an interaction be- one third in SDH4-mt1 and almost completely abrogated

when all SDH4 AREs are mutated (Figure 6D, SDH4-tween Cth2 and the 3�UTR of each mRNA (Figure 6C).
Moreover, consistent with our evidence that Cth2 cys- mt2). These results strongly suggest that Cth2 binds

target mRNAs in vivo in a manner that is dependentteine residue 190 (as well as cysteine 213) is required
to mediate target mRNA destabilization in vivo, this inter- upon the functional integrity of both the CCCH tandem
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Figure 6. Cth2 Protein Specifically Interacts with AREs within ACO1 and SDH4 mRNAs

(A) Schematic representation of the yeast three-hybrid strategy (SenGupta et al., 1996) applied to monitor the in vivo interaction between
Cth2 protein and 3�UTR-RNA.
(B) 3�UTR sequences used in the yeast three-hybrid assay. The MS2 RNA was fused to ACO1, SDH4 wild-type, and SDH4 mutant 3�UTR
sequences. SDH4-3�UTR sequence was mutagenized in one (mt1) or both ARE patches (mt2) shown as underlined. Gs in italics substituted
Us to avoid premature termination of the RNA polymerase III transcription.
(C) Cells expressing wild-type Cth2 and 3�UTR from ACO1 and wild-type SDH4 grow in the absence of histidine. L40-coat cells were
cotransformed with (1) pIIIA/MS2-1 vector alone and containing the 3�UTR from ACO1, SDH4, SDH4-mt1, SDH4-mt2, and the iron-response
element (IRE) as a positive control; and (2) pACT2 vector alone and fused to CTH2, CTH2-C190R, and the iron-responsive protein (IRP) as a
positive control. Cells were grown on SC-Leu-Ura (�His), SC-Leu-Ura-His (�His), and SC-Leu-Ura-His � 1 mM 3-aminotriazol (�His � 3AT).
The same result was obtained with fusions to pIIIA/MS2-2 vector (data not shown).
(D) Cth2 interaction with SDH4-3�UTR depends on the integrity of SDH4 AREs. L40-coat cells cotransformed with (1) pACT2-CTH2 and (2)
pIIIA/MS2-1 fused to the 3�UTR from SDH4, SDH4-mt1, and SDH4-mt2 were grown on SC-Leu-Ura and assayed for �-galactosidase activity
in six independent experiments.

zinc finger motifs and specific AU-rich elements in the nents of Fe-dependent pathways are downregulated at
3�UTR of the mRNAs that exhibit decreased steady- the mRNA level in response to Fe depletion. While ge-
state levels in response to Fe deprivation. nome-wide expression profiles of yeast cells grown un-

der Fe limitation have been reported (Shakoury-Elizeh
et al., 2004), most of the Fe-regulated genes identifiedDiscussion
here have not been previously reported due to the use
of mild Fe deprivation conditions. Importantly, we haveWhile our understanding of Fe uptake and distribution
characterized the molecular mechanism that governsmechanisms has advanced greatly in recent years, the
this global coordinated response to Fe deficiency. Wemetabolic reprogramming of cells in response to Fe dep-
demonstrate that Cth2, which is specifically inducedrivation and the mechanisms that underlie these events
under Fe deprivation, binds to AREs within the 3�UTRare not well understood. We have addressed this ques-
of specific mRNAs and accelerates their degradation.tion using the eukaryotic microorganism S. cerevisiae,

Our DNA microarray data indicate that Cth2 downreg-for which the mechanisms involved in Fe sensing, Fe
ulates the steady-state levels of mRNAs coding for pro-uptake, and distribution are well understood. Studies
teins that participate in multiple Fe-dependent meta-on these genes and their functional orthologs in humans
bolic pathways including the TCA cycle, respiration, lipidhave led to important insights into Fe homeostasis and
metabolism, heme biosynthesis, and multiple Fe-S pro-diseases of Fe imbalance (Hentze et al., 2004; Nittis and
teins, as well as many proteins of as yet unknown func-Gitlin, 2002; Roy and Andrews, 2001). By using DNA

microarrays, we have discovered that multiple compo- tion. The majority of these mRNAs contain one or more
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5�-UUAUUUAUU-3� nonamers within the 3�UTR, strongly affecting transcript abundance through alterations in
transcriptional rates and mRNA stability.suggesting that they may be direct targets for Cth2-

Both our genome-wide transcript analyses and themediated degradation. Interestingly, genes highly af-
growth defect of cth2 mutants under Fe-limiting condi-fected by Cth2 defects, such as HEM15, ACO1, SDH2,
tions suggest that yeast cells undergo a Cth2-mediatedand SDH4, contain two or more overlapping 5�-UUAUU-
global metabolic reprogramming in response to Fe defi-UAUU-3� nonamers, while other genes more modestly
ciency to facilitate the utilization of limited available Feaffected, such as the essential subunit of the Fe-depen-
levels. In response to Fe limitation, bacteria utilize thedent enzyme ribonucleotide reductase encoded by
ferric uptake repressor protein Fur for transcriptionalRNR2, only contain a single 5�-UUAUUUAU-3� octamer
derepression of many genes directly or indirectly in-(Table 1). However, one third of the genes affected in a
volved in Fe acquisition (McHugh et al., 2003). Fur alsocth2 mutant strain do not contain AU-rich sequences
induces the expression of small RNAs, RyhB in Esche-defined as 5�-UUAUUUAU-3� or 5�-UAUUUAUU-3� oc-
richia coli and PrrF1 and Prrf2 in Pseudomonas aerugi-tamer sequences within 500 nucleotides downstream
nosa. Interestingly, these antisense RNAs stimulate theof the translation termination codon. A recent report has
degradation of mRNAs coding for the Fe-S cluster-con-shown that, although the optimal RNA binding motif
taining enzymes of the TCA cycle, Fe storage proteins,for the CCCH tandem zinc fingers of TTP is the 5�-
and an Fe-dependent superoxide dismutase (Masse andUUAUUUAUU-3� nonamer, other U-rich sequences con-
Gottesman, 2002; Wilderman et al., 2004). But why dotaining the motif AUnA (n 	 2–5) may serve as moderate
cells downregulate Fe-dependent pathways posttran-high-affinity binding sites (Brewer et al., 2004). There-
scriptionally? The relative contribution of mRNA decayfore, a possible explanation for our microarray results
to steady-state mRNA levels and gene expression isis that ARE variants from the 5�-UUAUUUAU-3� or 5�-
often underestimated. Recent studies show that approx-UAUUUAUU-3� octamer sequences may also modulate
imately 50% of changes in transcript levels occurring inCth2-dependent regulation. It is also possible that
response to environmental changes are associated withchanges in these mRNAs are a consequence of an indi-
mRNA turnover (Fan et al., 2002; Khodursky and Bern-rect effect of the cth2 mutation and, therefore, misregu-
stein, 2003). Furthermore, coordinated regulation oflated Fe homeostasis. In this sense, several genes in-
functionally related mRNAs at the level of transcript sta-cluding the other two subunits of the ribonucleotide
bility is known in both prokaryotic and eukaryotic cellsreductase complex RNR1 and RNR3, stress-response
and has been proposed to represent the posttranscrip-genes such as HSP12 and SSA1, and genes located
tional functional equivalent of a bacterial operon or de-near telomeres are significantly downregulated in cth2
cay operon (Gerber et al., 2004; Keene and Tenenbaum,mutants (data not shown). Therefore, the genome-wide
2002; Tenenbaum et al., 2000; Wilusz et al., 2001).studies in cth2 cells under Fe deficiency may provide

Mammalian cells express three proteins that containimportant information about both primary and second-
two Cx8Cx5Cx3H TZF domains: TTP, CMG1, and TIS11Dary responses of cells to misregulation in Fe-depen-
(Blackshear, 2002). The best-characterized member ofdent pathways.
this family is human tristetraprolin (Blackshear, 2002;

Biosynthesis of sterol and unsaturated fatty acids are
Carballo et al., 1998; Sawaoka et al., 2003; Stoecklin et

essential processes that depend on both oxygen and
al., 2001). The other two TTP-family members can also

Fe. It has been previously shown that these genes are destabilize ARE-containing mRNAs but are regulated
specifically induced under hypoxic conditions, perhaps and expressed differently (Blackshear, 2002). These re-
in an attempted compensatory response to reduced ox- sults, and the observation that yeast cells indeed regu-
ygen tension (Kwast et al., 2002). Interestingly, in this late mRNA decay via AREs (Vasudevan and Peltz, 2001),
study, we show that the mRNA levels of genes involved raise the question of whether the mammalian TTP iso-
in sterol synthesis (ERG genes) and unsaturated fatty forms function in Fe homeostasis. Furthermore, our ex-
acid biosynthesis (OLE1) increase upon Fe depletion. periments suggest that the Cth2 homolog Cth1, while
A potential explanation for this observation is that the not Fe regulated, may also contribute to a small extent
activity of Fe-requiring proteins in these pathways is to Fe homeostasis (data not shown); however, other
reduced, thereby limiting the levels of reaction products Cth1 cellular functions are also possible. Interestingly,
and resulting in decreased feedback inhibition and in- we have recently identified the CTH1 promoter as a
creased gene transcription. In addition, we also demon- target for the heat shock transcription factor HSF (Hahn
strate that the steady-state levels of ERG and OLE1 et al., 2004). Here we describe a master regulatory mech-
mRNAs are elevated in cth2 cells, suggesting that Cth2 anism that dictates the response of eukaryotic cells to
protein plays a role in the destabilization of these mRNAs Fe deficiency. A single regulatory protein, Cth2, controls
(Table 1 and data not shown). Furthermore, steady-state the coordinated response of multiple Fe-dependent
levels of mRNAs expressed from two members of the metabolic pathways to Fe deficiency by targeting spe-
Fe regulon, FIT1 and FIT2, are also upregulated in re- cific mRNA molecules for degradation. This mechanism
sponse to Fe depletion via Aft1-Aft2 and downregulated of regulation represents a functional “posttranscrip-
in the presence of a functional Cth2. The presence of tional Fe regulon” that optimizes the utilization of limited

available Fe.multiple putative AREs in the 3�UTR of these genes
strongly suggests that they are direct targets for Cth2

Experimental Proceduresregulation. We propose that this opposite transcriptional
and posttranscriptional control of mRNA levels provides Yeast Strains and Growth Conditions
cells with an additional degree of flexibility that opti- Genotypes for the yeast strains used in this study are listed in

Supplemental Table S1. To test growth under conditions of Fe depri-mizes its response to changing Fe availability by rapidly
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