
 Procedia CIRP 54 (2016) 175 – 180

Available online at www.sciencedirect.com

2212-8271 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the 6th CIRP Conference on Learning Factories
doi: 10.1016/j.procir.2016.05.066

ScienceDirect

6th CLF - 6th CIRP Conference on Learning Factories

Handling of Frequent Design Changes in an Automated Assembly Cell for
Electronic Products

Alvaro Capellan a,*, Olivier Roulet-Dubonnet a

aSINTEF Raufoss Manufacturing AS, S.P. Andersens vei 5, 7031 Trondheim, Norway

* Corresponding author. E-mail address: alvaro.capellan@sintef.no

Abstract

This paper presents a prototype flexible assembly cell used for the assembly of electronic products. The cell is the first prototype
version of the coming assembly system for fire sensors at Autronica. It is developed specifically for testing different concepts to
reduce development time for design changes and introduction of new variants. The cell consists of a robot, grippers, sensors,
vision systems and fixturing systems which have been selected for in-line adaptivity and reconfiguration. The topics of
developing generic vision programs and reducing programming time for vision and robot have been central. The aspects needed
to be addressed during development are presented together with considered and chosen solutions. These solutions are also
discussed and compared to other systems presented in recent publications on flexible assembly.

© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 6th CIRP Conference on Learning Factories.

Keywords: Automation; Flexible assembly; Machine vision; Robotics; Electronic products

1. Introduction

An important challenge for learning factories is to
maximize the factory's capability to adapt to changes resulting
from continuous learning and improvement. In this context,
flexible manufacturing is a key topic. Flexibility in a
manufacturing system is defined as the capability to produce
several products or variants, and to adapt to new, different, or
changing requirements [1, 2]. Flexibility enables companies to
reduce time and monetary investments under reconfiguration
of a production line for a new product or variant.

For the manufacturing of electronic products, flexibility is
of paramount importance. The electronic industry is under
constant press to renew its product spectrum, due to
continuous technological advances, consumer demand and
fierce competition. In high-cost lands, companies producing
electronic products are subject to high manufacturing cost
pressure and are often specialized in higher quality and lower
volume products. Manufacturing of such products is often
challenging to automate. They are therefore in strong need for

new flexible automated solutions, reflected in the increasing
number of industrial actors focus their attention to the
development of systems for automatic assembly of electronic
products.

The cell presented in this paper has recently been
reconfigured to host the prototype version of the future
assembly system for fire sensors at Autronica. The main
characteristic of this project is its focus on parallel design of
the product, supply-chain and production systems approaching
the different stages of product development in parallel. The
geometrical design of the product, electronic components, and
assembly methodology are developed in parallel and therefore
constantly updated. This methodology, known as concurrent
engineering, has the potential to save time during the
development of the product, but adds new challenges to the
actors in charge of the different stages [3]. Specifically for the
cell, concurrent engineering introduces a new order of
requirements for flexibility.

Flexible manufacturing is an active research area. G.
Michalos [4] made a review of technologies in 2010 where he

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientifi c committee of the 6th CIRP Conference on Learning Factories

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81975815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

176 Alvaro Capellan and Olivier Roulet-Dubonnet / Procedia CIRP 54 (2016) 175 – 180

mentioned more applicable technologies than the ones we can
mention in this paper. We can however note a few promising
technologies that have been of interest in our case:

As mentioned by G. Michalos [4], cooperating robots is a
solution to reduce number of fixtures and accessibility
constraints. In this context, dual-arm robots are to be
considered [5][6]. Our cell has two ceiling mounted
robots, only one has been used so far, but the second one
is currently being setup in order to reduce tool changes
and reduce assembly time by parallelizing operations.
Human machine cooperation is also to be considered.
Although we are aiming for a complete automation of the
assembly process without operators, some low volume
variant might be assembled by hand and solutions for
efficient cooperation with the robots have to be designed
[7].
Reducing or even removing fixtures is a promising idea
also noted by B. Shirinzadeh [8].
Instrumentation and the use of sensors to detect
geometrical changes is a very promising concept noted by
several authors [9, 10, 11]. Machine vision is named as a
fundamental component of flexible manufacturing [12].
Information and control systems are also important, as the
recent Industry 4.0 paradigm emphasizes. At the cell
level, the fundamental feature is to allow for external,
high level control and monitoring through, for example
the OPC-UA protocol and RFID integration [13], and
provide data to, for example, statistical analysis.
Integration with CAD data, has a high potential [14]
although its realization currently demands a lot of custom
development. Point cloud vision is in this area promising
as demonstrated as, for example, O. Skotheim [15].

The presented cell attempts to build on these recommended
technologies with a focus on design change, due to the
constant geometrical changes that the components to be
assembled are subject to during the product development
phase.

This article presents the complete system, explaining the
specific needs and reasons for the chosen hardware and
software solutions. A large number of the solutions can be
considered generic and easily transferred to other applications.

2. Assembly Cell description

Currently, the cell is used for assembling smoke detectors,
formed by a set of plastic components and the accompanying
electronic parts. Every component has a specific shape, and is
assembled to other components using snapping as the main
joining method.

The sequence of operations performed by the cell are the
following:

1. Components lay randomly on a work surface.
2. A machine vision system identifies the components on

the table, their positions and their orientations.
3. A robot arm picks the components and assembles them

on a jig.

The cell is composed by a robot arm, a camera (fixed on
top of it), fixturing and gripping devices. Figure 1 shows the
main components of the cell.

Fig.1 Assembly cell overview

2.1. Robot arm

An Universal Robots UR5 robot arm [16] is used for
performing assembly operations. The robot is controlled using
a python library that interfaces to the robot controller. The
robot is equipped with a 6D force sensor and mounted on a
linear axis.

Force feedback from the force sensor is planned to be used
to ensure correct assembly by storing and comparing the
assembly operation signatures, e.g. a missed or different click
on a snap operation. Later on, it will be used to increase the
flexibility of the process, for example by using force
monitoring to stop a snap, instead of hard programming a
move depth. It is also planned to be used together with
intelligent algorithms for monitoring the operation forces and
adjust operations. Force feedback is not implemented yet in
the cell.

The linear axis adds an additional Degree Of Freedom
(DOF) to the reach of the robot, increasing the size of the
working area; it is not used directly in this application, but
used regularly to reconfigure the cell for using the robots in
other projects.

2.2. Machine vision system

One camera is installed on top of the cell and is used for
capturing and analyzing the configuration of the different
electronic components on the table. For analyzing the images
captured by the camera, Tordivel's Scorpion vision software
[17] is used. The software is programmed for detecting
specific geometric features of the objects, and for
communicating to the robot the poses required for picking and
placing the components.

3D vision is used in the application for tackling with
perspective issues due to 1) distance between camera and
work surface, and 2) variations of height between
components.

177 Alvaro Capellan and Olivier Roulet-Dubonnet / Procedia CIRP 54 (2016) 175 – 180

2.3. Fixturing devices

Modular fixtures are used for holding the electronic
components in fixed positions. The fixtures are adjustable in
order to handle design changes. They permit only one DOF to
the component in one axis. This DOF allows the robot to
place the components along that axis in the fixture.

Fixtures are attached to the metallic assembly table using
magnets, making it easy to move fixtures or reconfigure the
entire cell to the requirements of different projects.

2.4. Gripping devices

Currently, the robot picks and places components using
three types of grippers:
a) Suction cups, vacuum.
b) Two-point servo-actuated parallel gripper.
c) Three-point rotary pneumatic gripper.

Each component to be assembled requires to be picked by a
specific gripper. A vacuum gripper is used for components
with a flat surface, whereas the parallel and rotary grippers are
used for components that can be gripped by clamping two
parallel surfaces, or a circular surface respectively.
Specialized grippers will have to be added for special parts
that will require to be assembled in future stages of the
project.

Using grippers adds time to the overall duration of the
assembly process, due to unproductive time used on tool
changing operations. Reducing the number of grippers is a
regular focus. Merged grippers, such as for example suction
cups mounted on side of linear gripper will probably be used
in the final industrial system.

2.5. Control program

The cell operations are controlled by a Python application.
The program directs the assembly operations by
communicating to the robot controller, the grippers, the
sensors and the vision software; distributing data between
devices. The communication to the devices is performed
mainly through non-real-time Ethernet using TCP/IP or UDP.

The following sections describe selected characteristics of
the cell and the aspects they attempt to solve or improve.

3. Image analysis program

In this project machine vision is used to localize
components to be assembled. Setting up a robust vision
program is a relatively time consuming operation. When a
geometric change of the part happens, it is essential to
minimize or better eliminate changes in the vision program.

Image analysis aims to identify specific components and
their location by detecting specific geometrical features of the
analyzed objects. The analysis is desired and implemented as
generic as possible, but, as Lanitis et al. [18] noted, the
specific nature of the components requires the implementation
of specific detection algorithms.

In our cell, image analysis is performed according to the
sequence presented in Figure 2. With the exception of specific
algorithms included in the third and fifth steps, all the steps
are generic and performed equally for the detection of every
component.

Fig. 2. Image analysis sequence

The different image analyzing functions are programmed
using Scorpion toolboxes, acting as modules of code with
generic functionalities. The main control program
communicates to the image analysis program the desired
inspection, and the results of the analysis are communicated
back to the main control program. A more detailed description
of the communication protocol is presented in Section 6.

The image analysis program starts when the main control
program requests the position and orientation of a specific
component. Hypothetical components, i.e. image regions that
contain pixel values different from the values corresponding
to an empty working surface, are detected by the image
analysis program.

The analyzing toolbox iterates through all the hypothetical
components, in search for specific geometrical features,
unique for the component that has been requested by the main
program. The iterative operation stops when the requested
component is found. The program finally identifies the
position and orientation of the object, which are then sent to
the main control program.

Identify hypotethical
components on table

Identify components'
position and
orientation

Component
request from

control program

Send position and
orientation to control

program

ANALYSIS: Hypothetical
component n with regards to

requested component

Is component n, the
requested component?

Yes

No

178 Alvaro Capellan and Olivier Roulet-Dubonnet / Procedia CIRP 54 (2016) 175 – 180

4. Control Architecture

For the control system, a modular approach orchestrated by
a main program has been chosen, see Figure 3. It is interesting
to note that there are conflicting opinions and interests in this
area. Until recently the robot manufacturers have built the
robot controllers with the idea that the main logic would be
implemented in the robot control. On the vision side, machine
vision application developers often conceive the vision system
as the place where the main control should reside, with robots
and other sensors as slaves.

This cell was developed with the idea that an automated
system is a collection of more or less intelligent devices that
need good interfaces to communicate. Advanced logic is hard
to implement in a system specialized for vision or robot
movement, this kind of logic and orchestration is therefore
implemented as an external software component in the cell.

Most of the control programs have been developed using
the Python programming language. There are many
parameters to consider for choosing the best environment
solution for implementing the logic. We often implement the
main logic using the Python programming with the arguments
that Python 1) is one the highest level programming languages
available, 2) does not require compiling, 3) has been designed
from the ground up for integration, and 4) is now very often
found as the available scripting languages for industrial
software systems, for example the Scorpion vision system.

The number of components to mount in the project is
currently around 10, but the number is increasing together
with the number of variants, and it will probably be around 30
at production start. If every component is composed of a pick
and a place path of 3 moves, this is about 180 moves to
program. There are fundamentally two ways to write a control
program for many operations:

a) A simple but long control program possibly split into
smaller ones. This has the obvious flaw of being: 1)
hard to maintain and; 2) costly to add a new variant
since a new complete program for that part must be
added.

b) A complex flexible program which handles all parts
using both programming language features and sensors
to adapt to different part geometries. The obvious
pitfall here is of course a too high level of complexity.

Manufacturing flexibility is a topic that we, as researchers,
are interested in developing further. We frequently collaborate
with companies needing to reduce reconfiguration cost for
variant handling or introduction of new products. Therefore,
we have embraced the second option (b) and our work has
focused on developing solutions to reducing maintenance and
complexity.

5. Robot control programming

The robots from Universal Robots can be controlled with a
few alternative methods. The method often demonstrated by
the company to new customers is to use the graphical
interface and jogging. Although quick and simple for a simple
operation, this method does not allow to reach the precision
necessary for the assembly of small electronic products.

The second official programming method is to write a
complex program using the offered URScript language. There
are two issues with this approach:

a) The robot controller is not designed to develop large
programs; this can be solved since Universal Robot offers
the possibility to write programs offline and send them to
the robot as TCP IP.

b) The URScript is a simple programming language with
limited support for common programming language
features found in generic languages such as C#, Python and
others.

We therefore chose to program the robot using an
alternative method: the Python programming language and the
python-urx [19] library written by one of the authors a few
years ago. This library has already been used and referenced
in a few publications from other teams [20, 21]. This
approach allows the use of all the Python ecosystem libraries
to program robots such as multithreading and homogeneous

<<Component>>
MainControlProgram

<<Component>>
RobotControlProgram

<<Component>>
ImageAnalysisProgram

<<Component>>
GripperControlProgram

<<Component>>
ProcessSpecificationFile

OperationSpecification

TargetPose

TargetRobotPose
ComponentRequest

RequestedComponent

LocationReqComponent

LocationReqComponent

GripOrder

GripOrder

<<Component>>
ForceSensorProgram

ForceValue

ForceValue

OperationSpecification

Fig. 3 Component diagram of cell

179 Alvaro Capellan and Olivier Roulet-Dubonnet / Procedia CIRP 54 (2016) 175 – 180

matrix through python-math3d [22]. Example code can be
seen in Figure 4.

connect and set robot using python-urx

rob = urx.Robot("192.168.1.100")
rob.set_tcp((0,0,0,0,0,0))
rob.set_payload(0.5, (0,0,0))
return transformation matrix from base to tcp
t = rob.get_pose()
matrix tranformation using python-math3d library
pose.orient.rotate_yb(90)
move robot to new pose using python-urx
rob.movel(pose, acc=0.1, vel=0.2)

Fig. 4. Code example of a simple robot operation

6. Vision system communication

Since the core logic is written in an external software
(Section 4), a solution to communicate with the vision system
is required. Scorpion vision supports several communication
modules such as RS232, OPC-DA (client), IO board,
Profibus, modbus TCP or TCP/IP socket. Some of these are
implemented in Scopion while others are available through
the Scorpion python support.

For control with external software, TCP/IP is probably the
most flexible and most used solution. Our team has developed
several variants of custom protocols implemented at different
customers or lab. This requires custom parsing of TCP stream
on both sides and can be cumbersome to modify, thus XML
messaging has also been used.

initialize communication with scorpion vision

scrp = scorpion.Scorpion(ip, cfg.vision_port)
take a picture
scrp.trigger()
set scorpion values
v.set_value("robot_calib.robot_poses.pose1_x", 9.9)
run a scorpion toobox
scrp.run_tool('RobotCalibration')
#run a tool and read following values when tool is
finished
x, y, c = scrp.run_tool("find_jig",

results=["find_jig.x",
"find_jig.y",
"find_jig.c"])

Fig. 5. Python commands to vision program

Based on preceding work, we propose to send JSON
(JavaScript Object Notation) messages using the JSON-RPC
protocol. This solution is currently implemented and tested in
our cell. JSON is a lightweight data-interchange format,
which is now often advised as a lighter and more human
friendly alternative to XML. The implementation is open-
source and can be found on the following repository:
https://github.com/SintefRaufossManufacturing/scorpion-
json-rpc
The current implementation allows exposing, configuring and
running generic Scorpion toolboxes from python, thus the

custom JSON/socket code does not need to be changed
between projects. The vision program is implemented in
Scorpion using the usual GUI Scorpion toolboxes. The
toolboxes are run from the external cell control system using
simple JSON-RPC calls, see Figure 5 for example code from
Python. Any programming language supporting sockets and
JSON can be used to control scorpion such as C#, C++, Go,
etc depending on project requirements.

7. Pick and place process language

Pick and place operations are very repetitive, some
operations may be complex but most are very similar. One
can reduce programming time using methods and objects. For
example:

op = MyOperation()

op.pick_pose = PP # specify pick pose for operation
op.tool = TL # specify tool for operation
op.exec() #execute operation

Fig. 6. Schematic example of operation definition

This does the work, but this way of programming might
not be the most efficient for defining such operations. In the
future one may want to use a user interface, but as an
intermediate step we propose a generic Pick and Place Process
Language. This method is implemented and tested in our cell
and enables the creation of GUI application to program the
operations.

An overview of the major process definition languages can
be found on internet [23]. These languages seem to focus on
business processes and the application to robotic operations
does not seem straightforward. In addition they are very
verbose, this might in part be a consequence using of XML.
Qiao et al. [24] present an attempt to specify a manufacturing
language, which focuses on manufacturing plan control, and
does not really fit robot move definition. The format is also
not very human friendly. The software generation system
presented by Spooner and Creak [25] seems to be alternative
to PLC languages such as IEC 61131-3.

In our specific cell, JSON was considered since it is
already used for vision communication, but JSON is rather
limited in this scenario. Especially it does not support
comments by design while we expect the description of a pick
and place operation to be documented. A custom XML format
is once again a possibility but XML is not easily readable for
humans and very verbose.

We therefore have chosen to use YAML, a human friendly
data serialization standard for all programming languages.
YAML is by design easily editable and readable by humans,
and is also easy to export and import to software systems.
YAML also allow the definition of references. For example
variant X1 of product X can reuse all operations of variant X2
and overwrite or add some.

An extract of a pick and place operation defined in YAML
can be seen in Figure 7. It shows an operation where a part
called 'component_1' whose position is assessed by a vision
system is to be placed on a part called 'jig' with a given offset
and approach direction.

180 Alvaro Capellan and Olivier Roulet-Dubonnet / Procedia CIRP 54 (2016) 175 – 180

The main control program reads the process.yaml
configuration file at startup and executes operations as
defined in the file. It is possible to have one YAML file per
product or a large file describing several variants or products.

jig:
localize:

pose: vision # vision system provides pick coords

offset: -0.007, -0.02, 0.33, 0, 1.57, 2.25

component_1:
gripper:

type: vacuum

pick:
pre:

io: 6, 0# reset robot io before pick operation

pose: vision

offset: 0, 0, 0.007, 0, 0, +1.54

place:
pose: jig # place on component named jig

offset: 0, -0.037, 0.010, 0, 0, -2.3

post:
io: 6, 1# set robot io after place operation

Fig. 7. YAML process specification file example

8. Conclusion

In this paper, a prototype cell for flexible assembly of
electronic components has been presented. Special attention
has been given to the generic aspects of the systems and
several solutions to increase flexibility and reduce
programming time have been proposed.

Different aspects of the cell that contribute to system
system flexibility from hardware to software are presented
and discussed.

The cell is based on the use of a single camera that is used
for locating the 3D coordinates of randomly placed
components, which are pick and placed by a robot using a set
of grippers for locating and assembling the components in
modular fixtures.

Use of a process specification file contributing to faster
operation specification is a central part of the system. The file,
written in a human readable format, allows the user to specify
in detail the different aspects to be considered for the
assembly operation. Moreover, changes to the assembly
operation can easily be implemented without investing large
amounts of time for adapting system control code.

The cell is still at the prototype stadium but it has already
provided results, such as triggering of design changes of the
product and refinement or development the concepts
described in this paper.

Acknowledgements

The authors would like to thank Norway's Research
council (Norges Forskningsrådet) for the partial funding of
the Parabel and Noca projects, where the work presented in
the paper has taken place. In addition, we would like thank the

industrial partners (Autronica, Inventas, Simpro/Noca) in
these projects for their collaboration, guidance and feedback.

References

[1] Merriam-Webster Dictionary of the English Language (www.merriam-
webster.com)

[2] De Toni A, Tonchia S. Manufacturing flexibility: a literature review.
International journal of production research, 36(6); 1998, p.1587-1617.

[3] Sohlenius G. Concurrent Engineering. CIRP Annals-Manufacturing
Technology; 1992

[4] Michalos G, Makris S, Papakostas N, Mourtzis D, Chryssolouris G.
Automotive assembly technologies review: challenges and outlook for a
flexible and adaptive approach. CIRP Journal of Manufacturing Science
and Technology, Volume 2, Issue 2; 2010, p. 81-91

[5] Krüger J, Schreck G, Surdilovic D. Dual arm robot for flexible and
cooperative assembly. CIRP Annals Manufacturing technology, Volume
60 (1); 2011, p. 5-8

[6] Tsarouchi P, Makris S, Michalos G, Stefos M, Fourtakas K, Kaltsoukalas
K, Kontovrakis D, Chryssolouris G; Robotized assembly process using
Dual arm robot; CATS 2014, 5th CIRP Conference on Assembly
Technologies and Systems , Volume 23; 2014, p. 47-52

[7] Michalos G, Makris S, Spiliotopoulos J, Misios I, Tsarouchi P,
Chryssolouris G; ROBO-PARTNER: Seamless Human-Robot
Cooperation for Intelligent, Flexible and Safe Operations in the Assembly
Factories of the Future. Procedia CIRP, 23; 2014, p. 71-76.

[8] Shirinzadeh Bi. Flexible fixturing for workpiece positioning and
constraining. Assembly Automation 22.2; 2002 p. 112-120

[9] Handelsman M. Advances in Industrial Robot Intelligence; 2016
http://www.industrialcontroldesignline.com/193001531;jsessionid=QXL0
L5R3DTJPUQSNDLQSKHSCJUNN2JVN?printableArticle=true

[10] Solhaug A, Wetterwald LE, Dransfeld S, Knauserud O. Safe Assembly
of Low Volume Complex Products. Proceedings of ISR/Robotik 2014,
41st International Symposium on Robotics; June 2014, p.1-8

[11] Jorg S, Langwald J, Stelter J, Hirzinger G, Natale C. Flexible robot-
assembly using a multi-sensory approach. Proceedings of ICRA 2000,
IEEE International Conference on Robotics and Automation; 2000, vol.4,
p.3687-3694

[12] Pena-Cabrera M, Lopez-Juarez I, Rios-Cabrera R, Corona-Castuera J.
Machine vision approach for robotic assembly. Assembly Automation
25.3; 2005 p. 204-216.

[13] Huang GQ, Zhang YF, Chen X, Newman, ST. RFID-enabled real-time
wireless manufacturing for adaptive assembly planning and control.
Journal of Intelligent Manufacturing, 19(6); 2008 p. 701-713

[14] Tsarouchi P, Michalos G, Makris S, Chryssolouris G; Vision System for
Robotic Handling of Randomly Placed Objects; Procedia CIRP, 2nd
CIRP Global Web Conference (CIRPe2013), Volume 9; 2013, p. 61-66

[15] Skotheim O, Lind M, Ystgaard P, Fjerdingen SA. A flexible 3D object
localization system for industrial part handling. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS); 2012 p.3326-3333

[16] http://www.universal-robots.com/products/ur5-robot/
[17] http://scorpion.tordivel.no/
[18] Lanitis A, Taylor CJ, Cootes TF. A Generic System For Classifying

Variable Objects Using Flexible Template Matching. BMVC; 1993
[19] https://github.com/SintefRaufossManufacturing/python-urx
[20] Radlak K, Fojcik M. Integration of Robotic Arm Manipulator with

ComputerVision in a Project-Based Learning Environment. Frontiers in
Education Conference (FIE); 2015

[21] Elashry K, Ruairi G. An Approach to Automated Construction Using
Adaptive Programing. Robotic Fabrication in Architecture, Art and
Design 2014. Springer International Publishing; 2014. p.51-66.

[22] http://git.automatics.dyndns.dk/?p=pymath3d.git
[23] www.ebpml.org/status
[24] Qiao L, Kao S, Zhang Y. Manufacturing process modelling using

process specification language. The International Journal of Advanced
Manufacturing Technology; July 2011, Volume 55, Issue 5, p. 549-563

[25] Spooner N R, Creak G A. Process description language: an experiment
in robust programming for manufacturing systems. Intelligent Systems in
Design and Manufacturing, 227; Oct 1998

