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a b s t r a c t

In this paper, we consider the existence of solutions for the nonlinear fractional differential
equation

CDα
0+u(t) + rCDα−1

0+ u(t) = f (t, u(t)), t ∈ (0, 1)

with the boundary value conditions

u(0) = u(1), u(ξ) = η, ξ ∈ (0, 1),

where CDα
0+ and CDα−1

0+ are the standard Caputo derivative with 1 < α ≤ 2, r ≠ 0. By
using the contraction mapping principle and the Schauder fixed point theorem, some exis-
tence results are obtained. In addition, Lemma 2.6 in this paper is a valuable tool in seeking
solvability of the fractional differential equations.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concerned with the existence and uniqueness of solutions for the fractional differential equation

CDα
0+u(t) + rCDα−1

0+ u(t) = f (t, u(t)), t ∈ (0, 1) (1.1)

with the boundary value conditions

u(0) = u(1), u(ξ) = η, ξ ∈ (0, 1), (1.2)

where CDα
0+ and CDα−1

0+ are the standard Caputo derivative with 1 < α ≤ 2, and r ≠ 0.
Recently, differential equations of fractional order have proved to be valuable tools in the modeling of many phenomena

in various fields of science and engineering. Indeed, we can find numerous applications in viscoelasticity, electrochemistry,
control, porousmedia, electromagnetism, etc. (see [1–5]). There has been a significant development in the study of fractional
differential equations and inclusions in recent years; see the monographs of Kilbas et al. [6], Lakshmikantham et al. [7],
Podlubny [4], Samko, et al. [8], and the survey by Agarwal et al. [9]. For some recent contributions on fractional differential
equations, see [9–22] and the references therein.

However, no contributions exist, as far as we know, concerning the existence of solutions for problem (1.1)–(1.2). Since
the boundary value condition u(0) = u(1) in (1.2) involves the periodicity, we cannot expect to transform problem
(1.1)–(1.2) into integral equations directly as in the literaturementioned above. Sowe shall introduce a suitable substitution
of the variable to overcome the difficulty. By using the contractionmapping principle and the Schauder fixed point theorem,
the existence and uniqueness of solution (1.1)–(1.2) are obtained.
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Another important contribution of the present paper is Lemma 2.6 in this paper, which can be employed conveniently
in seeking the solvability of fractional differential equations in order to transform fractional differential equations into
integral equations. Therefore, Lemma2.6 in this paper is a valuable tool. Previously, Shuqin Zhang obtained a result similar to
Lemma 2.6 (see Lemma 2.3 in [17]). In recent years, Zhang’s Lemma 2.3 has been used in a great deal of literature. However,
the conditions in Zhang’s Lemma 2.3 are not clear, in otherwords, Zhang has not definitely given any condition in his Lemma
2.3. In addition, Zhang has not given a clear proof for Lemma 2.3 in [17]. In fact, in order to guarantee that the conclusions
in Zhang’s Lemma 2.3 are true, certain extra conditions are necessary. In the present paper, we definitely put forward the
conditions to ensure that the conclusion in Lemma 2.6 (or in Zhang’s Lemma 2.3) is true, and give a clear proof.

The organization of the paper is as follows. In Section 2, we present some necessary definitions and preliminary results
that will be used to prove our main results. The proofs of our main results are given in Section 3. Finally, we will give two
examples to demonstrate our main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used throughout this paper.
Let N be the set of positive integers, and R be the set of real numbers.

Definition 2.1 ([6]). The Riemann–Liouville fractional integral of order α > 0 of a function y : (a, b] → R is given by

Iαa+y(t) =
1

Γ (α)

∫ t

a
(t − s)α−1y(s)ds, t ∈ (a, b].

Definition 2.2 ([6]). The Riemann–Liouville fractional derivative of order α > 0 of a function y : (a, b] → R is given by

Dα
a+y(t) =

1
Γ (n − α)


d
dt

n ∫ t

a

y(s)
(t − s)α−n+1

ds, t ∈ (a, b],

where n = [α] + 1, [α] denote the integer part of α.

Definition 2.3 ([6]). The Caputo fractional of order α > 0 of function y on (a, b] is defined via the above Riemann–Liouville
derivatives by

(CDα
a+y)(x) =


Dα
a+


y(t) −

n−1−
k=0

y(k)(a)
k!

(t − a)k


(x), x ∈ (a, b],

where n = [α] + 1 for α ∉ N; n = α for α ∈ N.

Lemma 2.1 ([6]). Let n be a positive integer, α ∈ (n − 1, n]. If y ∈ Cn
[a, b], then

(Iαa+
CDα

a+y)(x) = y(x) −

n−1−
k=0

y(k)(a)
k!

(x − a)k

holds on [a, b].

Lemma 2.2 ([6]). Let m ∈ N, α ∈ (m − 1,m). If y ∈ Cm
[a, b], then

CDα
a+y(t) =

1
Γ (m − α)

∫ x

a

y(m)(t)
(x − t)α−m+1

dt

holds on [a, b].

Lemma 2.3 ([6]). Let k ∈ N, α > 0. If (Dα
a y)(x) and (Dα+k

a+ y)(x) exist, then

(DkDα
a+y)(x) = (Dα+k

a+ y)(x).

Lemma 2.4 ([6]). If α > 0, β > 0, α + β > 1, then

(Iαa+I
β
a+y)(x) = (Iα+β

a+ y)(x)

satisfies at any point on [a, b] for y ∈ Lp(a, b), 1 ≤ p ≤ ∞.

Lemma 2.5 ([6]). Let α > 0 and y ∈ C[a, b]. Then

(CDα
a+I

α
a+y)(x) = y(x)

holds on [a, b].
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The following lemma not only is fundamental in this paper, but also can be applied in other fractional differential
equations.

Lemma 2.6. Let n ∈ N with n ≥ 2, α ∈ (n − 1, n], If y ∈ Cn−1
[a, b] and CDα

a+y ∈ C(a, b), then

(Iαa+
CDα

a+y)(x) = y(x) −

n−1−
k=0

y(k)(a)
k!

(x − a)k

holds on (a, b).

Proof. If α = n, then noting that CDα
a+y = y(n) in this case, it is easy to verify that Lemma 2.6 is true. So, we need only give

the proof in the case n − 1 < α < n.
By Definition 2.3, we have

(CDα−1
a+ y)(x) =


Dα−1
a+


y(t) −

n−2−
k=0

y(k)(a)
k!

(t − a)k


(x), x ∈ (a, b]

and

(CDα
a+y)(x) =


Dα
a+


y(t) −

n−1−
k=0

y(k)(a)
k!

(t − a)k


(x)

= Dα
a+


y(t) −

n−2−
k=0

y(k)(a)
k!

(t − a)k


(x) −
y(n−1)(a)
(n − 1)!

[Dα
a+(t − a)n−1

](x)

=


Dα
a+


y(t) −

n−2−
k=0

y(k)(a)
k!

(t − a)k


(x) −
y(n−1)(a)
Γ (n − α)

(x − a)n−α−1 (2.1)

for any x ∈ (a, b).
On the other hand, in view of Lemma 2.3, we have

(D1CDα−1
a+ y)(x) =


D1Dα−1

a+


y(t) −

n−2−
k=0

y(k)(a)
k!

(t − a)k


(x)

=


Dα
a+


y(t) −

n−2−
k=0

y(k)(a)
k!

(t − a)k


(x), x ∈ (a, b). (2.2)

From Lemma 2.2 and the fact that y ∈ C (n−1)
[0, 1], we know that CDα−1

a+ y ∈ C[0, 1] and

lim
x→a+0

(CDα−1
a+ y)(x) = lim

x→a+0

1
Γ (n − α)

∫ x

a

y(n−1)(t)
(x − t)α−n+1

dt = 0.

Since CDα
a+y ∈ C(a, b), it is easy to see thatDα

a+


y(t) −

∑n−2
k=0

y(k)(a)
k! (t − a)k


∈ C(a, b) from (2.1), and so,D1CDα−1

a+ ∈ C(a, b)
from (2.2). Consequently, it follows that

(I1a+D
1CDα−1

a+ y)(x) =

∫ x

a
(CDα−1

a+ y)′(t)dt

= (CDα−1
a+ y)(x) − lim

t→a+0
(CDα−1

a+ y)(t)

= (CDα−1
a+ y)(x), x ∈ (a, b).

From the above equality, keeping in mind that CDα−1
a+ y ∈ C[0, 1], we can easily deduce that D1CDα−1

a+ y ∈ L(a, c) for any
c ∈ (a, b). Thus, by Lemma 2.4, it follows that

(Iαa+D
1CDα−1

a+ y)(x) = (Iα−1
a+ I1a+D

1CDα−1
a+ y)(x) = (Iα−1

a+
CDα−1

a+ y)(x), x ∈ (a, b). (2.3)

Thus, by Lemma 2.1 and (2.3), we have

(Iαa+D
1CDα−1

a+ y)(x) = y(x) −

n−2−
k=0

y(k)(a)
k!

(x − a)k, x ∈ (a, b). (2.4)
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Note that the condition (CDα
a+y)(x) ∈ C(a, b) guarantees that (Dα

a+y)(x) and (D(α−1)
a+ y)(x) exist on (a, b). So, by formula (2.1),

Lemma 2.3 and Definition 2.3, taking into account that y ∈ Cn−1
[a, b], we have

(CDα
a+y)(x) = D1Dα−1

a+


y(t) −

n−2−
k=0

y(k)(a)
k!

(t − a)k


(x) −
y(n−1)(a)
Γ (n − α)

(x − a)n−α−1

= [D1CDα−1
a+ y](x) −

y(n−1)(a)
Γ (n − α)

(x − a)n−α−1, x ∈ (a, b). (2.5)

Thus, (2.5) together with (2.4) implies

(Iαa+
CDα

a+y)(x) = (Iαa+D
1CDα−1y)(x) −

y(n−1)(a)
Γ (n − α)

[Iαa+(t − a)n−α−1
](x)

= y(x) −

n−2−
k=0

y(k)(a)
k!

(x − a)k −
y(n−1)(a)
(n − 1)!

(x − a)n−1

= y(x) −

n−1−
k=0

y(k)(a)
k!

(x − a)k, x ∈ (a, b).

Then the proof is completed. �

Remark 2.1. Lemma 2.6 is not only an improvement of Lemma 2.1, but also a more convenient tool than Lemma 2.1 in
application (this is very important).

Consider the following boundary value problem of a fractional differential equation

CDα
0+u(t) + rCDα−1

0+ u(t) = h(t), t ∈ (0, 1), (2.6)

u(0) = u(1), u(ξ) = η, ξ ∈ (0, 1). (2.7)

We have the following lemma which plays an important role in the proof of our main results.

Lemma 2.7. Let 1 < α ≤ 2, h ∈ C[0, 1], r ≠ 0. If u ∈ C1
[0, 1] is a solution of BVP (2.6) and (2.7), then v = uert satisfies

v(t) = ηert +
1 − er(t−ξ)

(er − 1)Γ (α − 1)

∫ 1

0
ersds

∫ s

0
(s − τ)α−2h(τ )dτ −

er(t−ξ)

Γ (α − 1)

∫ ξ

0
ersds

∫ s

0
(s − τ)α−2h(τ )dτ

+
1

Γ (α − 1)

∫ t

0
ersds

∫ s

0
(s − τ)α−2h(τ )dτ , t ∈ [0, 1]. (2.8)

Conversely, If v is given by (2.8), then u = ve−rt
∈ C1

[0, 1] and u is a solution of BVP (2.6) and (2.7).

Proof. Let u ∈ C1
[0, 1] be a solution of BVP (2.6) and (2.7). Then by Lemma 2.2, it is easy to see that CDα−1

0+ u ∈ C[0, 1]
because u′

∈ C[0, 1], and so CDα
0+u ∈ C(0, 1) from the relations CDα

0+u = h(t) − rCDα−1
0+ u and h ∈ C[0, 1]. Thus, by

Lemma 2.6, we have

Iα0+
CDα

0+u(t) = u(t) − b0 − b1t, t ∈ (0, 1) (2.9)

and

Iα−1
0+

CDα−1
0+ u(t) = u(t) − d1 ∈ (0, 1),

respectively.
Hence, in view of Lemma 2.4, it follows that

Iα0+
CDα−1

0+ u(t) = I10+I
α−1
0+

CDα−1
0+ u(t) =

∫ t

0
u(s)ds − d0 − d1t, t ∈ (0, 1). (2.10)

So, formulas (2.6), (2.9) and (2.10) imply

u(t) + r
∫ t

0
u(s)ds = c0 + c1t + Iα0+h(t), t ∈ (0, 1), (2.11)

where c1, c2 ∈ R, and Iα0+h(t) =
1

Γ (α)

 t
0 (t − s)α−1h(s)ds, t ∈ (0, 1).

Let φ(t) =
 t
0 (t − s)α−2h(s)ds. Now we show that φ ∈ C[0, 1].
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Indeed, for any given t ∈ (0, 1), taking δ > 0 with t + δ ∈ (0, 1), it follows from h ∈ C[0, 1] and 1 < α ≤ 2 that

|φ(t + 1t) − φ(t)| ≤

∫ t

0
((t − s)α−2

− (t + 1t − s)α−2)|h(s)|ds +

∫ t+1t

t
(t + 1t − s)α−2

|h(s)|ds

≤
m

α − 1
[tα−1

− (t + 1t)α−1
+ 2(1t)α−1

] (2.12)

holds for any1t ∈ (0, δ), wherem = maxs∈[0,1] |h(s)|. From (2.12), we conclude that lim1t→0+ φ(t+1t) = φ(t). Similarly,
we can obtain that lim1t→0− φ(t + 1t) = φ(t). Thus φ ∈ C(0, 1). In addition, it is easy to know that φ is continuous at
t = 0, 1. So φ ∈ C[0, 1]. Therefore, keeping in mind that u′

∈ C[0, 1], it follows from (2.11) that

u′(t) + ru(t) = c1 +
d
dt

Iα0+h(t)

= c1 +
1

Γ (α − 1)

∫ t

0
(t − s)α−2h(s)ds, t ∈ [0, 1]. (2.13)

Thus, setting v = uert , from (2.13), we immediately have

v′(t) = c1ert +
ert

Γ (α − 1)

∫ t

0
(t − s)α−2h(s)ds, t ∈ [0, 1]. (2.14)

By integrating both sides of (2.14) on [0, t], we have

v(t) = v(0) +
c1
r

(ert − 1) +
1

Γ (α − 1)

∫ t

0
ersds

∫ s

0
(s − τ)α−2h(τ )dτ , t ∈ [0, 1]. (2.15)

Since v(1) = erv(0) by condition u(0) = u(1) (cf. (2.7)), formula (2.15) gives

v(0) =
c1
r

+
1

(er − 1)Γ (α − 1)

∫ 1

0
ersds

∫ s

0
(s − τ)α−2h(τ )dτ . (2.16)

Substituting (2.16) into (2.15), it follows that

v(t) =
c1
r
ert +

1
(er − 1)Γ (α − 1)

∫ 1

0
ersds

∫ s

0
(s − τ)α−2h(τ )dτ

+
1

Γ (α − 1)

∫ t

0
ersds

∫ s

0
(s − τ)α−2h(τ )dτ , t ∈ [0, 1]. (2.17)

Furthermore, the condition u(ξ) = η in (2.7) implies that v(ξ) = ηerξ . Thus, it follows from (2.17) that

c1 = ηr −
re−rξ

(er − 1)Γ (α − 1)

∫ 1

0
ersds

∫ s

0
(s − τ)α−2h(τ )dτ

−
re−rξ

Γ (α − 1)

∫ ξ

0
ersds

∫ s

0
(s − τ)α−2h(τ )dτ . (2.18)

Now, substituting (2.18) into (2.17), we have the relation (2.8).
Conversely, assume that v is given by (2.8). By the previous proof, we know that φ =

 t
0 (t − s)α−2h(s)ds is continuous

on [0, 1] from the fact that h ∈ C[0, 1]. Thus, by differentiating both sides of (2.8), we get

v′(t) = c1ert +
1

Γ (α − 1)
ert
∫ t

0
(t − s)α−2h(s)ds, t ∈ [0, 1], (2.19)

where c1 is described as in (2.18), and so v ∈ C1
[0, 1]. Furthermore, formula (2.19) together with (2.8) and (2.18) ensure

that (2.17) holds on [0, 1], and

v(ξ) = ηerξ , v(1) = v(0)er . (2.20)

Let u = ve−rt . Then u′
∈ C[0, 1] from the fact that v ∈ C1

[0, 1]. Moreover it follows from (2.19) that

u′
+ ru = c1 + Iα−1

0+ h(t), t ∈ [0, 1]. (2.21)

Thus, in view of Lemma 2.5, we have
CDα−1

0+ u′(t) + rCDα−1
0+ u(t) =

CDα−1
0+ Iα−1

0+ h(t) = h(t), t ∈ (0, 1). (2.22)

Now, we show that CDα−1
0+ u′(t) =

CDα
0+u(t), t ∈ (0, 1).
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In fact, owing to the fact that u′
∈ C[0, 1], 1 < α ≤ 2, we have

CDα
0+u(t) = [Dα

0+(u(x) − u(0) − u′(0)x)](t)

= [Dα
0+u](t) −

u(0)
Γ (1 − α)

t−α
−

u′(0)
Γ (2 − α)

t1−α, t ∈ (0, 1) (2.23)

from Definition 2.3, and

[Dα
0+u](t) =

1
Γ (2 − α)


d
dt

2 ∫ t

0
(t − x)1−αu(x)dx

=
1

(α − 2)Γ (2 − α)


d
dt

2 ∫ t

0
u(x)d(t − x)2−α

=
1

(2 − α)Γ (2 − α)


d
dt

2 [
u(0)t2−α

+

∫ t

0
(t − x)2−αu′(x)dx

]
=

1
Γ (2 − α)

d
dt

[
u(0)t1−α

+

∫ t

0
(t − x)1−αu′(x)dx

]
=

1 − α

Γ (2 − α)
u(0)t−α

+
1

Γ (2 − α)

d
dt

∫ t

0
(t − x)1−αu′(x)dx

=
1 − α

Γ (2 − α)
u(0)t−α

+ [Dα−1
0+ u′(x)](t), t ∈ (0, 1) (2.24)

from Definition 2.2.
Now, formulas (2.23) and (2.24) imply

[
CDα

0+u(x)](t) = [Dα−1
0+ u′(x)](t) −

u′(0)
Γ (2 − α)

t1−α

= [Dα−1
0+ (u′(x) − u′(0))](t)

= [
CDα−1

0+ u′(x)](t), t ∈ (0, 1).

Thus, it follows from (2.22) that
CDα

0+u(t) + rCDα−1
0+ u(t) = h(t), t ∈ (0, 1).

On the other hand, formula (2.20) with u = ve−rt implies that u(0) = u(1) and u(ξ) = η.
To summarize, u ∈ C1

[0, 1] is a solution of BVP (2.6) and (2.7). �

Finally, for the remainder of this section, we give some hypotheses which will be used in the paper.

(H1) f ∈ C([0, 1] × R, R), and there exists a constant L > 0 such that

|f (t, x) − f (t, y)| ≤ L|x − y|

for each t ∈ [0, 1] and all x, y ∈ R, where L satisfies the condition: if r > 0, then L < Γ (α)r
2(1−e−r )

; if r < 0, then

L <
Γ (α)|r|
2(e|r|−1)

.
(H1) f ∈ C([0, 1] × R, R), and there exists two nonnegative constants A, B such that

|f (t, x)| ≤ A + B|x|

for each t ∈ [0, 1] and all x ∈ R, where B satisfies the condition: if r > 0, then 0 < B < Γ (α)r
2(1−e−r )

; if r < 0, then

0 < B <
Γ (α)|r|
2(e|r|−1)

.

3. Main results

We are now in a position to state our main theorems.

Theorem 3.1. Assume (H1) holds. Then BVP (1.1)–(1.2) has a unique solution u with u ∈ C1
[0, 1].

Proof. We first introduce some notations. Let X = C[0, 1] be a Banach spacewith the usual norm ‖u‖C = maxt∈[0,1] {|u(t)|}.
We also equip the space X with the norm ‖u‖r = maxt∈[0,1]


|u(t)|e−rt


, where r is described as in (1.1)–(1.2). It is well

known that the norm ‖u‖r is equivalent to the norm ‖u‖C .
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Denote the operator on X by

Av = ηert +
1 − er(t−ξ)

(er − 1)Γ (α − 1)

∫ 1

0
ersds

∫ s

0
(s − τ)α−2f (τ , ve−rτ )dτ

−
er(t−ξ)

Γ (α − 1)

∫ ξ

0
ersds

∫ s

0
(s − τ)α−2f (τ , ve−rτ )dτ

+
1

Γ (α − 1)

∫ t

0
ersds

∫ s

0
(s − τ)α−2f (τ , ve−rτ )dτ , t ∈ [0, 1]. (3.1)

From (H1), the function f (t, v(t)e−rt) is continuous on [0, 1] for any v ∈ X . Clearly, the operator Amaps X into X . In view of
Lemma 2.7, the operator A has a fixed point v ∈ X if and only if u = ve−rt is a solution of BVP (1.1)–(1.2) with u ∈ C1

[0, 1].
Therefore, we only need to seek a fixed point of operator A in X .

For any v1, v2 ∈ X , by (H1), we have

|f (s, v2(s)e−rs) − f (s, v1(s)e−rs)| ≤ L|v2(s)e−rs
− v1(s)e−rs

|

≤ L‖v2 − v1‖r , s ∈ [0, 1].

Thus, it follows from (3.1) that

|(Av2 − Av1)(t)| ≤
L

Γ (α − 1)
‖v2 − v1‖r

[
|1 − er(t−ξ)

|

|er − 1|

∫ 1

0
ersds

∫ s

0
(s − τ)α−2dτ

+ er(t−ξ)

∫ ξ

0
ersds

∫ s

0
(s − τ)α−2dτ +

∫ t

0
ersds

∫ s

0
(s − τ)α−2dτ

]
≤

L‖v2 − v1‖r

Γ (α)|r|
[|1 − er(t−ξ)

| + er(t−ξ)
|erξ − 1| + |ert − 1|] (3.2)

for all t ∈ [0, 1].
Hence, if r > 0, then from (3.2) and 0 < ξ < 1, the following inequality

|(Av2 − Av1)(t)| ≤
2L

Γ (α)r
‖v2 − v1‖rert(1 − e−r), t ∈ [0, 1]

holds. So, ‖Av2 − Av1‖r ≤
2L(1−e−r )

Γ (α)r ‖v2 − v1‖r . Moreover, 2L(1−e−r )
Γ (α)r < 1 from hypothesis (H1).

Similarly, if r < 0, then ‖Av2 − Av1‖r ≤
2L(e|r|−1)
Γ (α)|r| ‖v2 − v1‖r and 2L(e|r|−1)

Γ (α)|r| < 1.
Hence, whether r > 0 or r < 0, we always conclude that the operator A has a unique fixed point v in X by the Banach

contraction principle. Then u = e−rtv is a unique solution of BVP (1.1)–(1.2) with u ∈ C1
[0, 1] from Lemma 2.7. �

Theorem 3.2. Let (H2) holds. Then BVP (1.1)–(1.2) has at least one solution u with u ∈ C1
[0, 1].

Proof. Let v0 = ηert . Take R > 2A(1−e−r )
Γ (α)r−2B(1−e−r )

if r > 0 or R > 2A(e|r|−1)
Γ (α)|r|−2B(e|r|−1)

if r < 0. Put ΩR = {x ∈ X : ‖v − v0‖r ≤ R}.
Define the operator A as (3.1). We first show that AΩR ⊂ ΩR.

In fact, by (H2), for any v ∈ ΩR, we have

|f (s, v(s)e−rs)| ≤ A + B|v(s)e−rs
| ≤ A + B‖v‖r ≤ A + BR, s ∈ [0, 1].

Thus, doing argument analogous to that of formula (3.2), we have

|(Av − v0)(t)| ≤
A + BR
Γ (α)|r|

[|1 − er(t−ξ)
| + er(t−ξ)

|erξ − 1| + |ert − 1|], t ∈ [0, 1].

Therefore, if r > 0, then the following inequality

‖Av − v0‖r ≤
2(A + BR)(1 − e−r)

Γ (α)r

=
2A(1 − e−r)

Γ (α)r
+

2B(1 − e−r)

Γ (α)r
R < R

holds from (H2) and the choice of R.
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Similarly, if r < 0, then

‖Av − v0‖r ≤
2(A + BR)(e|r|

− 1)
Γ (α)|r|

=
2A(e|r|

− 1)
Γ (α)|r|

+
2B(e|r|

− 1)
Γ (α)|r|

R < R.

Thus Amaps ΩR into ΩR.
Now, we show that A is completely continuous on ΩR. In what follows, we will assume that r > 0; for the case r < 0,

the proof is similar.
Owing to the equivalence on the norms ‖u‖r and ‖u‖C , we will give the proof in the case that X is equipped with the

norm ‖u‖C .
First, from AΩR ⊂ ΩR, it follows that ‖Av‖C ≤ ‖Av‖rer ≤ Rer for any v ∈ ΩR, and so {w|w ∈ AΩR} is uniformly bounded.
Second, we show that AΩR is equicontinuous.
Indeed, for any v ∈ ΩR, formula (3.1) implies

(Av)′(t) = ηrert −
rer(t−ξ)

(er − 1)Γ (α − 1)

∫ 1

0
ersds

∫ s

0
(s − τ)α−2f (τ , ve−rτ )dτ

−
rer(t−ξ)

Γ (α − 1)

∫ ξ

0
ersds

∫ s

0
(s − τ)α−2f (τ , ve−rτ )dτ

+
1

Γ (α − 1)
ert
∫ t

0
(t − τ)α−2f (τ , ve−rτ )dτ , t ∈ [0, 1].

Thus, by (H2), it follows that

|(Av)′(t)| ≤ ηrer +
3er(A + BR)

Γ (α)
, t ∈ [0, 1].

Thus, AΩR is equicontinuous. By the Arzela–Ascoli theorem, AΩR is relatively compact.
Finally, we show that A is continuous on ΩR.
Let {vn} be an arbitrary sequence in ΩR with ‖vn − v‖C → 0(n → ∞), v ∈ ΩR. Then ‖vn − v‖r → 0(n → ∞), and

so, there exist two constants D1,D2 such that v(t)e−rt
∈ [D1,D2] and vn(t)e−rt

∈ [D1,D2], n = 1, 2 . . . for each t ∈ [0, 1].
Furthermore, the uniform continuity of f on [0, 1] × [D1,D2] implies that for any ε > 0, there exists δ > 0, when ever
|x1 − x2| < δ, x1, x2 ∈ [D1,D2], the following inequality

|f (t, x2) − f (t, x1)| < Gε (3.3)

holds for any t ∈ [0, 1], where G =
Γ (α)r
2(er−1) .

Since vn → v, we have that there exists N ≥ 1 such that the following inequality

|vn(t)e−rt
− v(t)e−rt

| < δ

holds for all t ∈ [0, 1] and n ≥ N . Hence, by (3.1) together with (3.3), we have

|(Avn − Av)(t)| ≤
Gε

Γ (α − 1)

[
|1 − er(t−ξ)

|

er − 1

∫ 1

0
ersds

∫ s

0
(s − τ)α−2dτ

+ er(t−ξ)

∫ ξ

0
ersds

∫ s

0
(s − τ)α−2dτ +

∫ t

0
ersds

∫ s

0
(s − τ)α−2dτ

]
≤

Gε

Γ (α)r
[|1 − er(t−ξ)

| + er(t−ξ)(erξ − 1) + (ert − 1)]

≤
2Gε

Γ (α)r
(er − 1), t ∈ [0, 1]

for any n ≥ N .
Thus

‖Avn − Av‖C ≤
2Gε

Γ (α)r
(er − 1) = ε

for any n ≥ N .
Summing up the above analysis, we obtain that A : ΩR → ΩR is completely continuous. Thus, by the Schauder fixed

point theorem, there exists a point v ∈ ΩR with v = Av. In view of Lemma 2.7, we know that u = e−rtv is a solution of BVP
(1.1)–(1.2) with u ∈ C1

[0, 1]. This completes the proof. �
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Example 3.1. Consider the following boundary value problem
CD

3
2
0+u(t) + rCD

1
2
0+u(t) = h(t) sin u + g(t), t ∈ (0, 1],

u(0) = u(1), u(ξ) = η, ξ ∈ (0, 1),

where r > 0 and h, g ∈ C[0, 1] with maxt∈[0,1] |h(t)| <
√

πr
4(1−e−r )

.

Let f (t, u) = h(t) sin u + g(t), t ∈ [0, 1]. Then it is easy to see that the condition (H1) holds. Therefore, the boundary
value problem (1.1)–(1.2) has a unique solution by Theorem 3.1.

Example 3.2. Consider the following boundary value problem
CD

3
2
0+u(t) + rCD

1
2
0+u(t) = h(t)

u
1 + |u|

+ g(t), t ∈ (0, 1],

u(0) = u(1), u(ξ) = η, ξ ∈ (0, 1),

where r > 0 and h, g ∈ C[0, 1] with maxt∈[0,1] |h(t)| <
√

πr
4(1−e−r )

.

Let f (t, u) = h(t) u
1+|u| + g(t), t ∈ [0, 1]. Then it is easy to see that the hypothesis (H2) is satisfied, and so the boundary

value problem (1.1)–(1.2) has a solution by Theorem 3.2.

References

[1] W.G. Glockle, T.F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics, Biophys. J. 68 (1995) 46–53.
[2] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
[3] F. Metzler, W. Schick, H.G. Kilian, T.F. Nonnenmacher, Relaxation in filled polymers: a fractional calculus approach, J. Chem. Phys. 103 (1995)

7180–7186.
[4] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[5] I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal. 5 (2002) 367–386.
[6] A.A. Kilbas, Hari M. Srivastava, Juan J. Trujillo, North-Holland Mathematics Studies, in: Theory and Applications of Fractional Differential Equations,

vol. 204, Elsevier Science, B.V, Amsterdam, 2006.
[7] V. Lakshmikantham, S. Leela, J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.
[8] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivaes Theory and Applications, Gordon and Breach Science Publisher, 1993.
[9] R.P Agarwal, M. Benchohra, S. Hamani, A survey on existence result for boundary value problems of nonlinear fractional differential equations and

inclusions, Acta Appl. Math. 109 (2010) 973–1033.
[10] V. Lakshmikanthama, A.S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett. 21

(2008) 828–834.
[11] V. Lakshmikanthama, Theory of fractional functional differential equations, Nonlinear Anal. 69 (2008) 3337–3343.
[12] Ravi P. Agarwal, Donal O’Regan, Svatoslav Stanek, Positive solutions for Dirichlet problems of singular nonlinear fractional, differential equations,

J. Math. Anal. Appl. 371 (2010) 57–68.
[13] F.A. McRae, Monotone iterative technique and existence results for fractional differential equtions, Nonlinear Anal. 71 (2009) 6093–6096.
[14] M. Benchohra, S. Hamani, S.K. Ntouyas, Boundary value problems for differential equational with fractional order and nonlocal condtions, Nonlinear

Anal. 71 (2009) 2391–2396.
[15] R.P. Agarwal, Yong Zhou, Yunyun He, Existence of fractional neutral functional differential equations, Comput. Math. Appl. 59 (2010) 1095–1100.
[16] Bashir Ahmad, Juan J. Nieto, Existence results for a coupled systemof nonlinear fractional differential equationswith three-point boundary conditions,

Comput. Math. Appl. 58 (2009) 1838–1843.
[17] Shuqin Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differential Equations, 2006,

(36), 1–12.
[18] Mujeeb ur Rehman, Rahmat Ali Khan, Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential

equations, Appl. Math. Lett. (2010) 1038–1044.
[19] Krishnan Balachandran, Juan J. Trujillo, The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces, Nonlinear

Anal. 72 (2010) 4587–4593.
[20] M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Existence results for fractional order functional differential equationswith infinite delay, J. Math.

Anal. Appl. 338 (2) (2008) 1340–1350.
[21] Dumitru Baleanu, Octavian G. Mustafa, On the global existence of solutions to a class of fractional differential equations, Comput. Math. Appl. 59

(2010) 1835–1841.
[22] Moustafa El-Shahed, Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order, Comput. Math. Appl. 59 (2010)

3438–3443.


	Existence results for boundary value problems of nonlinear fractional differential equations
	Introduction
	Preliminaries
	Main results
	References


