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The problem of localization, that is, of a robot finding its position on a map, is an important task
for autonomous mobile robots. It has applications in numerous areas of robotics ranging from aerial
photography to autonomous vehicle exploration. In this paper we present a new strategy LPS (Localize-
by-Placement-Separation) for a robot to find its position on a map, where the map is represented as a
geometric tree of bounded degree. Our strategy exploits to a high degree the self-similarities that may
occur in the environment. We use the framework of competitive analysis to analyze the performance of
our strategy. In particular, we show that the distance traveled by the robot is at mostO(

√
n) times longer

than the shortest possible route to localize the robot, wheren is the number of vertices of the tree. This
is a significant improvement over the best known previous bound ofO(n2/3). Moreover, since there is a
lower bound ofÄ(

√
n), our strategy is optimal up to a constant factor. Using the same approach we can

also show that the problem of searching for a target in a geometric tree, where the robot is given a map
of the tree and the location of the target but does not know its own position, can be solved by a strategy
with a competitive ratio ofO(

√
n), which is again optimal up to a constant factor.C© 2001 Elsevier Science
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1. INTRODUCTION

In many tasks of autonomous mobile robots it is assumed that the robot has a map of its environment
and knows its location on the map. However, in some situations the robot may not know in advance where
its correct position on the map is and has to determine it on-line. This is called therobot localization
problem. Usually it is assumed that this problem can be solved by using sensor data and allowing the
robot to move only a small amount. But if the environment consists of many self-similar parts, this
approach may not be sufficient.

Although in robotics this issue has been addressed in numerous contexts, ranging from aerial pho-
tography to autonomous vehicles for the exploration of landscapes [13, 16, 18, 19], a more rigorous
analysis of the problem in a well-defined theoretical framework has only been considered very recently.
Here, the environment of the robot is assumed to be a simple or multiply connected polygonP and the
robot is assumed to have access to its local visibility polygonV , i.e., all the points that are visible from
its position via a range sensing device (for example, a sonar or a ladar). The robot is also assumed to
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have a compass so that it knows its orientation. The first task of the robot is to determine its possible
placements withinP, that is, all p ∈ P such that the visibility polygon ofp equalsV . Guibaset al.
provide a data structure that allows efficient enumeration of all such positions [9].

If more than one placement exists, then the robot has to travel to certain points of the polygon that
allow it to distinguish between the different placements. Of course, it is always possible to find a path
that uniquely identifies the true position of the robot; for instance, if the robot follows the boundary ofP
and the holes ofP, then all interior points are visible at some time to the robot and it can localize easily.
However, the robot should not travel much farther than necessary. In order to measure the performance
of a localization strategy we employ the framework of competitive analysis [17]. IfL(p, P) is the
length of a shortest path to localize a robot “waking” in polygonP at positionp, a strategyS is called
c-competitiveif the length of the path traveled by a robot using strategyS is at mostc timesL(p, P),
for all possible polygonsP and pointsp ∈ P. The valuec is called thecompetitive ratioof S.

There have been two approaches to the localization problem. The first by Dudek, Romanik, and
Whitesides [7] (see also [15]) considers the full complexity of the problem and utilizes a decomposition
of the polygonP into visibility cells such that the same set of vertices ofP is visible from each point
in a cell. This decomposition is used as the underlying structure for a simple strategy where the robot
repeatedly travels to the closest point that eliminates at least one of the possible placements. It is easy
to show that if there arek possible placements, then the strategy isk-competitive (Corollary 4 in [7],
Lemma 7 in [11]). Furthermore, ifk ≤ √n, wheren is the number of vertices of the polygon, then it
can be shown thatk is the best competitive ratio possible [7].

The second approach, proposed by Kleinberg, leaves aside all concerns raised by the visibility struc-
ture of P and abstracts the combinatorial nature of the problem [11]. In this context two types of envi-
ronments are considered: undirected bounded-degree trees embedded in thed-dimensional Euclidean
spaceIEd (called geometric trees) and rectangle packings in the plane. In these environments the robot
has no use of vision other than to know the orientation inIEd of all edges incident to its current location.
The robot is constrained to move on edges and vertices. In the 2-dimensional problem one might think
of the vertices as locations on a map and the edges as routes connecting these locations. For geometric
trees Kleinberg provides a strategy with a competitive ratio ofO(n2/3), wheren is the number of vertices
of degree greater than two, and for rectangle packings a strategy with a competitive ratio ofO(n

√
log logn

logn ),
wheren is the number of rectangles.

Kleinberg also provides a lower bound ofÄ(
√

n) for the localization problem in geometric trees,
which is illustrated by the example in Fig. 1. If the true placements of the robot is at the bottom of
thedth spike to the right of spiket , where

√
n < d ≤ 2

√
n, then a localization strategy has to either

explore all spikes betweent ands or travel to one of the end pointsq1 or q2 of the baseb of the tree. In
each case the total distance traveled by the robot isÄ(n) while the shortest path to localize the robot is
the path froms to t , which is of length at most 3

√
n+ 1.

FIG. 1. A geometric tree for which every on-line localization strategy is no better thanÄ(
√

n)-competitive.
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In this paper we consider only bounded-degree geometric trees as environments, and we present
a new localization strategy LPS (Localize-by-Placement-Separation) that has a competitive ratio of
O(
√

n). The first and last steps of our strategy are essentially the same as in Kleinberg’sO(n2/3)
strategy. However, in the middle steps we explore periodic patterns in the tree to eliminate all but
O(
√

n) possible placements of the robot by traveling no more thanO(
√

n) times the length of a shortest
path to localize the robot. In view of the example in Fig. 1 our strategy is optimal up to a constant factor
and, hence, settles the asymptotic complexity of on-line robot localization in trees, thus solving an open
problem posed by Kleinberg.

Another important problem in robotics is searching for a target in an environment [2–6, 10, 14].
If a map of the environment and the position of the target on the map are given, but the robot’s position
on the map is not given, then Fig. 1 again provides an example of anÄ(

√
n) lower bound for the

competitive ratio of an on-line strategy. We show that our approach can be used to obtain a strategy
that solves the searching problem with a competitive ratio ofO(

√
n), which is optimal up to a constant

factor.
The paper is organized as follows. In the next section we give formal definitions of the main geometric

concepts used in the paper, and we give a list of notations. We then present a very rough outline of our
new strategy in Section 3 and discuss the first step of the strategy. In Section 4 we show how to identify
a critical path in the explored tree that will then be used to guide the further exploration of the robot.
The heart of our strategy is contained in Sections 5 and 6, where we show how to expand the subtree
known to the robot so that most of the possible placements can be efficiently eliminated. Section 7
then shows that the remaining placements can be eliminated in a greedy fashion. In Section 8 we show
how to adapt our strategy to searching for a target in a geometric tree. Finally, in Section 9 we give a
short description of an implementation of our algorithm, and we conclude with some open problems in
Section 10.

2. DEFINITIONS

In this section we define some of the notation that we use in the paper. The environments that we
consider for robot localization are geometric trees.

DEFINITION 2.1. A geometric treeT = (V, E) is a tree embedded into thed-dimensional Euclidean
spaceIEd such that eachv ∈ V is a point inIEd and eache ∈ E is a polygonal path whose end points
lie in V . The paths ofE intersect only at points inV , and they do not induce any cycles.

We assume that the degree ofT is bounded by a constant1. We say a vertex ofT is nondegenerate
if it has a degree greater than two. Thesizeof T , denoted by|T |, is then defined as the number of
nondegenerate vertices ofT .

It is easy to see that in every (geometric) treeT there is a nondegenerate vertexvs such that after the
removal ofvs each of the remaining subtrees has size at most|T | /2. The vertexvs is called thesplit
vertexof T .

As in Kleinberg’s work, we assume that the robot knows its current orientation, is able to measure
the distance that it has traveled, and has no use of vision other than to know the orientation of all edges
incident to its current location. Since the closest nondegenerate vertexv can be reached by performing
a two-way spiral search that travels at most nine times the distance from the robot’s original location
to v [1], we assume that the robot’s initial “wake-up” positionp̂ is located at a nondegenerate vertex
of T . We call the possible wake-up locations of the robotplacements. We denote the set of placements
by P. P is not a static set, the more the robot learns about its environment the fewer vertices can
be placements. In the beginningP equals the set of all vertices whose incident edges have the same
orientation asp̂. It is the robot’s task to determinêp by traveling from its wake-up position inT and
collecting enough information to rule out all other placements.

In order to describe the motion of the robot we assume that the robot has a local coordinate system that
is relative to the robot’s wake-up position; that is, the origin0of the local coordinate system corresponds
to p̂ in the global coordinate system. We use standard vector addition and scalar multiplication to denote
translations and scalings; that is, ifα andβ are reals,v is a vector andS is ad-dimensional set, then
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FIG. 2. PathspT (u, v) is isomorphic tospT (w, x) but not tospT (y, z).

αv+βS= {αv + βs|s ∈ S}. In particular,v+P is the pathP translated byv, i.e., the pathP starting
at nodev.

2.1. Paths

We use the standard definition of the length of a polygonal path (using theL2 norm) for the length
λ(P) of a pathP as the sum of the lengths of its links. We usespT (p,q) to denote the unique simple
(shortest) path from pointp to pointq in the treeT . Thedistancebetweenp andq, denoted bydT (p,q),
is defined as the length ofspT (p,q). Since the robot is often directed to travel along a nonsimple path
in T (for example, when it explores a part ofT using depth-first search), for a nonsimple pathP with
start points and end pointt , we useλ(P) to denote the length traveled by the robot andλsp(P) to denote
the length ofspT (s, t). Theconcatenationof two pathsP1 andP2 is denoted byP1 ∗ P2, where we
assume that the pathP2 is translated such that its start point is the end point ofP1.

We say that pathP1 is isomorphicto pathP2 if some translation ofP1 is equivalent toP2 and all
edges adjacent to any vertex onP1 have the same orientation as the edges adjacent to the corresponding
vertex onP2 (see, for example, Fig. 2). We writeP1 ≡ P2 in this case. We say that pathP1 equalspath
P2 if P1 ≡ P2 andP1 starts and ends at the same points asP2. We writeP1 = P2 in this case.

If P is a directed path andk ≥ 1 is an integer, then thek-repetition ofP, denoted byPk, is the path
formed by concatenating togetherk copies ofP in succession. If 0≤ τ < 1, thenPτ is the subpath
of P beginning at its start point with length equal toτλ(P). If α > 1, k = bαc, andτ = α − k, then
Pα = Pk ∗ Pτ . P−1 denotes the path from the end point ofP to its start point.

Note that even ifP is a simple path,Pα may not be (see Fig. 3). In this casePα induces acomb-tree.
A tree is called a comb-tree if it is a geometric tree and there are simple pathsQ andS such thatQk

is a simple path and the tree is the union ofQk (the baseof the tree) and the setski (t − s) + S, for
1 ≤ i ≤ m, where 0= k1< · · · < km= k are natural numbers ands is the start point andt the end
point ofQ (see Fig. 3). Them paths of the tree isomorphic toS are calledspikes.

2.2. Periodic Paths

If P is a path such thatP ≡ Qα, for α > 1, thenP is called aperiodic pathandQ is called aperiod
ofP. The numberα is called theperiodicity ofP w.r.t.Q. If α is an integer, thenQ is called anintegral
period ofP. If P is a path inT that starts with a vertex andQ is a period ofP, thenQ starts and ends
with a vertex.

FIG. 3. A pathP such thatP3 is not a simple path. The pathP3 is a comb-tree with baseQ3 and spikesS, (t − s) + S,
2(t − s)+ S, and 3(t− s)+ S.
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Note that a periodic path may have several different periods. But we will show below that given a set
of periods{Q1, . . . ,Qm} of a periodic pathP, there is a unique maximal length periodQ ofP that is an
integral period of each periodQi . The periodQ is called thegreatest common period of{Q1, . . . ,Qm}.
Its length is the greatest common divisor of the lengthsλ(Qi ) (if they are scaled appropriately). The
results in this section do not only hold for simple periodic paths, but also for nonsimple periodic paths
such as paths that induce comb-trees.

We start by considering two periods of a periodic path. But the lemma can easily be extended to a set
of paths{Q1, . . . ,Qm}.

LEMMA 2.1. LetQ1 andQ2 be two paths and letQ be an integral period ofQ1 andQ2. If R is the
greatest common period ofQ1 andQ2, thenQ is an integral period ofR.

Proof. We haveQi ≡ Qki ≡ Rl i for some integerski , l i , whereki ≥ l i for i = 1,2. SinceR is the
longest integral period ofQ1 andQ2, l1 andl2 must be relatively prime. Also,R ≡ Q(ki / l i ), and thus
(k1/ l1) = (k2/ l2). Sincel1 andl2 are relatively prime, this equation only holds whenki is a multiple of
l i , and thus (ki / l i ) is an integer, which proves the claim.

Since finding the greatest common period of two periods of a path is analogous to finding the greatest
common divisor of two integers, the proof of the following lemma is similar to Euclid’s algorithm for
finding the greatest common divisor of two integers.

LEMMA 2.2. LetP ⊂ T be a path that starts with a vertex. IfQ1 andQ2 are two periods ofP such
thatP ≡Qα1

1 ≡Qα2
2 , for some numbersα1, α2≥ 2, then there exist two unique nonnegative, relatively

prime integers k1 and k2 and a periodQ of P such thatλ(Q1)/λ(Q2) = k1/k2 andQi ≡ Qki , for
i = 1,2. The pathQ is the greatest common period ofQ1 andQ2.

Proof. As indicated above, the proof follows the same ideas as used in Euclid’s algorithm. SinceP
starts at a vertex and has periodicity greater than 1 w.r.t. bothQ1 andQ2, the pathsQ1 andQ2 start and
end in a vertex. Assume w.l.o.g. thatα2 ≥ α1; i.e.,λ(Q2) ≤ λ(Q1). Then,Q2 is a period ofQ1 since
Q1 ≡ Qα2/α1

2 . Let k be the largest integer such thatkλ(Q2) ≤ λ(Q1). Note that ifkλ(Q2) = λ(Q1) then
Q1 ≡ Qk

2; hence, if we letQ = Q2, k1 = k, andk2 = 1, then we are done.
If kλ(Q2) < λ(Q1), then there is a 0<τ <1 such thatQ1≡Qk

2∗Qτ2. LetQ3=Qτ2.Q3 is isomorphic
to an initial part ofQ2 and a final part ofQ1 (see Fig. 4a). In particular,Q3 starts and ends with a vertex.
And sinceτ <1,Q3 contains fewer vertices thanQ2.

We claim thatQ3 is a period ofQ2. It is easy to prove by induction thatQi
3 is the initial part ofQ2

for anyi ≥ 0 such thatλ(Qi
3)≤ λ(Q2). As indicated in Fig. 4b,Q3 is the initial part ofQ2 and thus also

the initial part ofQ1 (because bothQ1 andQ2 are an initial part ofP), so it is repeated right after its
first occurrence; i.e.,Q2

3 is the initial part ofQ2, and so on.
If Q3 is not an integral period ofQ2, then we can repeat the process that we used forQ1 andQ2

withQ2 andQ3 to find a smaller period ofQ3, and we can continue until we eventually find a pathQk

that is an integral period ofQk−1 andQk−2, for somek≥ 2. We know that the process halts because
Qi always contains fewer vertices thanQi−1, for i ≥ 2. SinceQi =Q`i

i+1 ∗Qi+2, for 1≤ i ≤ k− 2 and
some integer̀ i ≥ 1,Qk is also an integral period ofQ1 andQ2.

Since we have found some integral period ofQ1 andQ2, there must also exist a longest integral
periodQ, i.e., the greatest common period. By Lemma 2.1,Q must be a multiple ofQk.

SinceQ is the greatest common period ofQ1 andQ2, Qki
k ≡Qi , i = 1,2, for two nonnegative,

relatively prime integersk1 andk2. Also,λ(Q1)/λ(Q2) = k1λ(Qk)/k2λ(Qk) = k1/k2.

FIG. 4. Q3 is a period ofQ2 andQ1.
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In the proof above, it is actually not difficult to see thatQ=Qk. LetG= gcp(Q1,Q2) be the greatest
common integral period ofQ1 andQ2. Assume thatQi ≡Gki for some integerski , i = 1,2. To show
thatQk=G, we only need to show that the recursive equation gcp(Q1,Q2)= gcp(Q2,Q3) holds. We
first show thatG is an integral period of gcp(Q2,Q3). SinceGk1 ≡ Q1≡ (Gk2)k ∗Q3,Q3≡Gk1−kk2, G
is an integral period ofQ3, and by Lemma 2.1,G is also an integral period of gcp(Q2,Q3). Similarly
we can show that gcp(Q2,Q3) is an integral period ofG, so G= gcp(Q2,Q3) and thereforeQk=G.

Note that in the above lemma,λ(Q) = gcd(λ(Q1), λ(Q2)) if λ(Q1) andλ(Q2) are scaled to be integers.
Observe also that it is necessary forP to contain vertices in order for the lemma to be true. Suppose,
for example, thatP is a straight line segment of length 2π containing no vertices. Then a line segment
Q1 of lengthπ and a line segmentQ2 of length 2 would both be periods ofP, but there is no path that
is an integral period of bothQ1 andQ2. Lemma 2.2 can also be extended to a set of periods of a pathP.

LEMMA 2.3. If P is a periodic path and{Q1, . . . ,Qm} is a set of periods ofP such that the periodicity
of P w.r.t. eachQi is greater than or equal to two, then there exists a unique periodQ of P, called
the greatest common period ofP w.r.t. {Q1, . . . ,Qm}, such that

(i) Q is an integral period ofQi , for all 1≤ i ≤ m, and

(ii) if R is an integral period ofQi , for all 1≤ i ≤ m, thenR is also an integral period ofQ.

Proof. The proof is by induction onm. For m= 1 the claim is trivial. Assume that it is true for all
sets containingm− 1 periods, and let{Q1, . . . ,Qm} be a set ofm periods. By the induction hypothesis
there is a periodQ′ of P with the desired properties w.r.t.{Q1, . . . ,Qm−1}. By Lemma 2.2 there is a
greatest common periodQ ofQm andQ′. SinceQ is the longest integral period ofQ′ andQm, it is also
the longest integral period of allQi , 1≤ i ≤ m, and thus part (ii) holds by Lemma 2.1.

COROLLARY 2.1. If P is a periodic path and{Q1, . . . ,Qm} is the set of all periods ofP such that
the periodicity ofP w.r.t. eachQi is greater than or equal to two, then there exists a unique longest
periodQ j of P such thatQ j is an integral period ofQi , for all 1≤ i ≤ m.

2.3. Notation

The following is a summary of some of the notation we use in the paper. Note that the last four items
are introduced in the next section.

• T—the geometric tree where the robot is located.

• n—the number of nondegenerate vertices ofT .

• spT (u, v)—the unique shortest path betweenu andv in T .

• λ(P); λsp(P)—the length of pathP; the length of the shortest path from the start to the end point
of P.

• p̂—the robot’s wake-up position inT .

• P—the set of possible placements of the robot inT (shrinking during the localization).

• T̂—the geometric treeT in the robot’s local coordinate system (=−p̂+ T).

• 0—the origin ofT̂ (corresponds tôp in T).

• T̂ex—the part ofT̂ explored by the robot in the robot’s local coordinate system.

• T̂ S1
ex —the part ofT̂ explored by the robot in Step 1.

• %—a lower bound on the length of a shortest path to localize the robot found in Step 1.

• U—the set of p-vertices in̂Tex (see Section 4.1).

3. A NEW STRATEGY FOR ROBOT LOCALIZATION

Our localization strategy consists of five main steps. The following pseudo-code gives a rough
impression of how the strategy works. It mainly serves as a guide through the subsequent sections
where each step will be explained in detail.
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Strategy Localize-by-Placement-Separation (LPS)
Input: A geometric treeT = (V, E) with n nondegenerate vertices and a wake-up position of

the robot;
Output: The position of the robot inT ;

Variables: The set of placementsP;
The treeT̂ex that has been explored;

P← set of verticesv ∈ V whose incident edges have the same orientation asp̂;
T̂ex← {0};
Step 1: Perform a spiral search until either|T̂ex| =

√
n or |P| ≤ 2

√
n;

Translate the origin to the split vertex ofT̂ex;
T̂ S1

ex ← T̂ex;
if |P| > 2

√
n then

Step 2:Ptriv ← the set of all sparse placements and placements inducing a comb-tree;
P = P − Ptriv ;
Identify a pathCex in T̂ S1

ex containing all other placements;
Rcr ← {(p, p′) ∈ P × P | p′ ∈ p+ T̂ S1

ex };
if Rcr 6= ∅ then

Step 3: ExtendCex to a periodic pathPex with at least
√

n vertices;
if Rcr 6= ∅ then

Step 4: ExtendPex untilRcr = ∅;
Step 5: Eliminate the remaining placements and the placements inPtriv using a greedy strategy;
endLocalize-by-Placement-Separation

It should be noted that in the above strategy Steps 1 and 5 are essentially the same steps as in the
strategy proposed by Kleinberg [11]. The only exception is that in Kleinberg’s strategy up ton2/3 vertices
are visited by the spiral search in Step 1. After analyzing each step of the strategy we will be able to
prove the following theorem.

THEOREM 3.1. Let T be a geometric tree. StrategyLPSachieves a competitive ratio of O(
√

n) for
localizing a robot in T .

Before we give the detailed description of each step we give a brief overview of the strategy.
Our goal is to use a simple greedy strategy (Step 5 of our strategy, see Section 7). For each pair

of placements there is a shortest distinguishing path. So we could just explore these paths in order of
increasing length until we have identified the wake-up position. Unfortunately, this strategy is only
k-competitive, wherek is the number of placements. So we can only use it if there are at mostO(

√
n)

placements. Otherwise, we must first reduce the number of placements before we can run the greedy
strategy.

Our algorithm runs in five steps. The pseudo-code was given above. Of course, the robot would stop
at any time when it has identified its wake-up position. In the first step of the algorithm, the spiral search
(see Section 3.1), the robot explores its nearby environment by successive depth-first searches, where
the search depth is doubled after each iteration. One could imagine the robot’s wake-up position as the
center of concentric circles. The robot stops this exploration when it has visited at least

√
n different

vertices during the last iteration.
Then the robot moves to the center of the explored tree, thesplit-vertex, and assumes that this was the

wake-up position. This allows us to argue that either there are not many placements left (Corollary 3.1)
or all placements lie on the same periodic path (Lemma 4.3). From the split vertex at most

√
n

2 vertices
in the explored tree can be reached by traveling in any direction. If there are at mostO(

√
n) placements

(for example, if no translation of the explored tree contains another placement, see Corollary 3.1) then
the robot switches to the greedy strategy whose competitive ratio is linear in the number of placements.

Otherwise, after the spiral search the robot restricts its search to one long path, the periodic path (see
Section 4.1), which depends on what it learned in the first step. It turns out that there is one periodic path,
thecritical path, containing most of the placements in the explored tree (see Section 4.2). Eliminating
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these placements in Steps 3 and 4 leaves at mostO(
√

n) placements (Lemma 4.3 and Corollary 3.1) so
that we can continue with the greedy strategy.

In Step 3 (see Section 5) the robot explores branches emanating from the critical path. The path plus
branches is called theperiodic path. The robot stops either if the periodic path has

√
n vertices or if

there are no more critical pairs. A pair of placements (p, p′) is a critical pair if p′ ∈ p+ T̂ex. In that
case the robot continues with the greedy strategy.

In Step 4 (see Section 6) the robot extends the periodic path in the following way. Since the path has
at least

√
n nodes, the periodic tree induced by the 2

√
n-repetition of the periodic path has at least 2n

nodes. Therefore there are points calledmismatcheswhere the periodic tree and the treeT differ locally.
The paths to these mismatches are calledmismatch paths. It turns out that a certain collection of only
logn mismatch paths contains at least one mismatch path for each placement (Corollary 6.1). The robot
explores these paths in order of increasing length until it finds an initial mismatch (see Section 6.1).
After finding this mismatch, the robot tries to find the shortest mismatch path. This is called Mismatch-
Propagation and it is the most complicated part of the strategy. It will be described in Section 6.2. After
the robot has found the path to the nearest mismatch there are no critical pairs left. After this the robot
starts the final greedy strategy (see Section 7).

3.1. Step 1: Spiral Search

In Step 1 of Strategy LPS the robot performs a spiral search [1] as follows. Starting at the origin it
performs successive depth-first searches, each time visiting all points within distanced of the origin
(where initiallyd is the length of the shortest edge ofT) and then doublingd if it has not yet localized
itself. During the search the robot keeps track of the size|T̂ex| of the explored subtreêTex and the set
P of all possible placements of the robot, i.e., the set of allp ∈ T such thatp+ T̂ex⊆ T . It continues
searching until|T̂ex| =√n or |P| ≤ 2

√
n. If |P|> 2

√
n, then the robot continues with Step 2; otherwise,

it skips Steps 2–4 and only executes Step 5 (the greedy strategy).
If d is the current search depth, then the ball of radius% = d/2 around p̂ has been completely

explored. Clearly,% is a lower bound on the distance that the robot needs to travel in order to localize.
The distance traveled during the spiral search is at most 81

√
nd = 161

√
n% = O(

√
n%) since the

maximum degree of each vertex is at most1 [11]. We will show that the remaining steps of the algorithm
can also be implemented such that the distance traveled is at mostO(

√
n%).

After the spiral search the robot moves to the split vertexvs of T̂ex and considers this vertex from
now on to be the origin, that is, all pointsv in the local coordinate system of the robot are translated
to −vs + v. This allows us to argue that either there are not many placements (Corollary 3.1) or all
placements lie on the same periodic path (Lemma 4.3). For simplicity, we also refer to the translated
explored tree aŝTex. Note that the translation increases the maximum distance from the new origin to
the farthest leaf of̂Tex by at mostd, so the maximum distance from the origin to a leaf ofT̂ex is now
2d = 4% (which is also an upper bound on the diameter ofT̂ex). This fact will be used in Lemma 4.5.

LEMMA 3.1. If p + T̂ex contains no placements different from p, for all p ∈ P, then∣∣∣∣∣⋃
p∈P

(p+ T̂ex)

∣∣∣∣∣ ≥ k+ l

2
· |T̂ex|,

where k= |P| and l is the number of connected components of
⋃

p∈P(p+ T̂ex).

Proof. We prove by induction onk: If P′ is a set ofk placements of some treeT0 (where the origin
of T0 is the split vertex ofT0) such thatp+ T0 contains no other placements fromP′ than p, for all
p ∈ P′, then

|TP′ | ≥ k+ l

2
· |T0|,

whereTP′ =
⋃

p∈P′ (p+ T0) andl is the number of connected components ofTP′ .
The claim clearly holds ifk= 1. If k> 1 then let P′ = {p1, . . . , pk}. For i = 1, . . . , k let Ti =⋃
p∈P′−{pi }(p+ T0). Note thatpi 6∈ Ti .
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If there is ani such that (pi + T0)∩ Ti = ∅ thenpi + T0 is one of thel connected components ofTP′

and thus

|TP′ | = |Ti | + |pi + T0| ≥ (k− 1)+ (l − 1)

2
· |T0| + |T0| = k+ l

2
· |T0|.

Otherwise, eachpi + T0 overlaps with at least one otherpj + T0. Any pi + T0 is split intodeg(pi )
many components (subtrees) ifpi is removed. SinceT is acyclic there must be onei such that only one
of thesedeg(pi ) components overlaps withTi . But that component can have size at most|T0| /2. Since
Ti still hasl components we have

|TP′ | ≥ |Ti | + |T0|
2
≥ (k− 1)+ l

2
· |T0| + |T0|

2
= k+ l

2
· |T0|.

COROLLARY 3.1. Assume p+T̂excontains no placements different from p, for all p ∈ P. If |T̂ex| ≥ √n
then|P| ≤ 2

√
n.

Proof. Lemma 3.1 implies

n = |T | ≥ |P|
2
· |T̂ex| ≥

√
n

2
· |P|

and, therefore,|P| ≤ 2
√

n.

This suggests we should try to eliminate placements that are contained inp + T̂ex for some other
placementp. After we have done this we can continue with the greedy strategy.

4. STEP 2: IDENTIFYING A CRITICAL PATH

Let T̂ S1
ex denote the tree that has been explored in Step 1. If after Step 1 there are at least two placements

p1 and p2 with p2 ∈ p1 + T̂ S1
ex , then in Step 2 the robot identifies a critical path ofT̂ S1

ex , and in Steps 3
and 4 it travels along an extension of this path eliminating placements until there are no pairsp1, p2

left with p2 ∈ p1+ T̂ S1
ex . We note that the robot does not need to travel to identify the critical path (but

it must travel to explore it). In Steps 3 and 4 it will travel a distance of at mostO(
√

n%). After Step 4 at
most 2

√
n placements remain and the robot uses the greedy strategy to eliminate all placements but one.

4.1. The Critical Path of a Placement

We say a vertexv ∈ T̂ S1
ex is ap-vertexif there is a placementq such that the nodev + q in T is also

a placement. We denote the set of all p-vertices inT̂ S1
ex by U . We call a placementp sparseif p+ T̂ S1

ex
contains at most three placements (includingp), anddenseotherwise.

If U ′ = {v1, . . . , vk} is a set ofk ≥ 2 vertices ofT thenU ′ induces a periodic pathif there is a path
Q such that, for all 1≤ i ≤ k − 1, eitherspT (vi , vi+1) ≡ Ql i or spT (vi+1, vi ) ≡ Ql i , for some natural
numbersl i .

Kleinberg proved a crucial lemma stating that all placements that are contained inp+ T̂ S1
ex induce

either a simple periodic path or a comb-tree inp+ T̂ S1
ex (and thus also inT) [11]. Note that a simple

periodic path is a degenerate comb-tree.

LEMMA 4.1 [11]. If p is a placement in P then either the set of all placements that are contained in
p+ T̂ S1

ex is equal to{p} or it induces a comb-tree in T .

If the placements inp+ T̂ S1
ex induce a simple periodic path inT then we call it thecritical pathCp

of p. This path corresponds to a pathĈ p = −p+ Cp in T̂ S1
ex .

Let Ptriv be the set of all placements contained in all thep+ T̂ S1
ex , wherep is either a sparse placement

or a placement on the spike of a nondegenerate comb-tree.

LEMMA 4.2. |Ptriv | = O(
√

n).
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FIG. 5. If p and p′ were placements on spikeS of a comb-tree inT̂ S1
ex then the translation of the path fromp to t starting

at p′ and ending int ′ on the next spike would also exist, creating a cycle.

Proof. Analogously to Corollary 3.1 we see that at most 6
√

n placements can be contained in all
the p+ T̂ S1

ex , wherep is a sparse placement.
If p is a placement inducing a nondegenerate comb-tree inT̂ S1

ex then p lies on a spikeS of this
comb-tree. But then no other placement can lie onS (in T̂ S1

ex ); otherwise there would be a cycle
betweenS and the next spike of the comb-tree (see Fig. 5). Thus,p lies at the end of a spike.
Since the origin ofT̂ S1

ex is its split vertex, removingp would cut off at least
√

n
2 vertices fromT̂ S1

ex
which are not p-vertices. Therefore there can be at most 2

√
n placements on spikes of nondegenerate

comb-trees.

We will from now on ignore the placements inPtriv until we reach the greedy strategy. For simplicity,
we also refer to the set of the remaining placements (dense and not on a comb-tree) asP. If this new set
P contains at mostO(

√
n) placements we immediately proceed with the greedy strategy. Otherwise,

we must try to eliminate many placements inP.

4.2. Computing a Unique Critical Path

For sparse placementsp and p′ it can happen that̂C p andĈ p′ do not lie on the same periodic path
(see Fig. 6). But this cannot happen for dense placements.

FIG. 6. The pointsp1, p2, p3, andp4 are sparse placements ofT̂ex in T , and the critical patĥC p1 of p1 does not belong to
the same periodic path as the critical pathĈ p3 of p3.
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FIG. 7. Two dense placementsp1 and p2 induce two different periodic pathŝR1 andR̂2 in T̂ S1
ex . In this case,d′i = di for

i = 1, . . . ,4, b1 = d3, andb2 = d1 = d2, so T̂ S1
ex also contains the two dotted paths. Sinceb1 > d1, placingT̂ S1

ex on p1 would
create a cycle (not to mention that the dotted paths already form a cycle inT̂ S1

ex ).

LEMMA 4.3. If p and p′ are dense placements thenĈ p andĈ p′ are part of the same simple periodic
path inT̂ S1

ex .

Proof. The proof is by contradiction. Letp1 and p2 be two dense placements that induce two
different periodic pathŝR1 andR̂2 in T̂ S1

ex (see Fig. 7). Sincep1+ T̂ S1
ex (andp2+ T̂ S1

ex ) contain at least
four placements we can assume there are two placementsp′1 andp′′1 to the right ofp1 in p1+ T̂ S1

ex and
two placementsp′2 andp′′2 abovep2 in p2+ T̂ S1

ex (we use “right” and “above” referring to Fig. 7, but of
course the picture could also be flipped or rotated).

Let d1 = d(p1, p′1), d2= d(p′1, p′′1), d3= d(p2, p′2), andd4= d(p′2, p′′2). Sincep1 and p′1 are place-
ments, the pathsp1 + R̂2 and p′1 + R̂2 exist in T . Thus, the exploration if started inp1 would have
seen some initial part ofp′1 + R̂2. If the current origin0 was the original wake-up position where we
started the spiral search in Step 1 (i.e., explored the tree up to the same distance in all directions) then
we would have seen a subpath of lengthd2 of R̂2 starting atp′1 (or the full path, ifd3 + d4 < d2).
Unfortunately, we moved the origin to the split vertex ofT̂ex after the spiral search. But wherever the
origin was originally, we must have seen a subpath ofR̂2 starting atp′1 of lengthd′2 = min{d2, d3+ d4}
(either the original origin was to the right of the current origin, then we have seen at least a subpath of
lengthd3+ d4, or else we have seen at least a subpath of lengthd2).

Similarly, placingT̂ S1
ex on p′1 we must also have seen a subpath ofR̂2 of lengthd′1 = min{d1, d3+ d4},

starting atp′′1.
Analogously, letd′3= min{d3, d1+ d2} andd′4= min{d4, d1+ d2}. Let b1= max{d′3, d′4} andb2 =

max{d′1, d′2}. ThenT̂ S1
ex contains a subpath of̂R1 of lengthb1 starting at distance min{d3, d4} from 0

on R̂2 and a subpath of̂R2 of lengthb2 starting at distance min{d1, d2} from 0 on R̂1.
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FIG. 8. The explored treêT S1
ex andDcr . Cex= D4

cr starts ats.

In Fig. 7, these two new subpaths already form a cycle inT̂ S1
ex , which is impossible. But that is

not always the case. However, it must be the case that eitherb1≥ d1 or b2≥ d3. In the former case,
placingT̂ S1

ex on p1 creates a cycle, and in the latter case, placingT̂ S1
ex on p2 creates a cycle. But that is

impossible.

We denote the simple periodic path in̂T S1
ex containing all p-vertices byC. SinceC is periodic and

all p-verticesv ∈U correspond to dense placements, by Corollary 2.1 there is a unique integral period
D of C; i.e., for all v ∈U there is an integerk with eitherspT̂ S1

ex
(0, v) ≡ Dk or spT̂ S1

ex
(v, 0) ≡ Dk. We

assume w.l.o.g. thatD starts at the origin. Letk be the minimum integer such thatλ(Dk) ≥ λ(C). Let
Dcr = Dk where the start point ofDcr is the origin (see Fig. 8). Since the diameter ofT̂ S1

ex is at most 4%
andk ≥ 3, λ(C) ≤ 4% andλ(Dcr ) ≤ 3

2λ(C) ≤ 6%.
We call a pair of placements (p, p′) a critical pair if p′ ∈ p + Dcr . The set of all critical pairs is

denoted byRcr . A vertexv ∈ C in T̂ex is called acritical vertex if there is a critical pair (p, p′) with
p′ − p = v. In the beginning the critical vertices are just the p-vertices. Our aim is to eliminate all
critical vertices because then we can continue with the greedy strategy by Corollary 3.1 and the lemma
below.

LEMMA 4.4. If Rcr = ∅ then(p+ T̂ S1
ex ) contains no placements different from p, for all p ∈ P.

Proof. The proof is by contradiction. Assume thatRcr = ∅ and there are two placementsp andp′

with p′ ∈ p+ T̂ S1
ex . Letv= p′ − p be the p-vertex that corresponds to the pair (p, p′). The pathPv from

the origin tov is thel -repetitionDl of the periodD of C for an integerl . Sinceλ(C) ≥ λ(Dl ), either
p′ ∈ p+Dcr or p∈ p′ +Dcr . Hence, either (p′, p) or (p, p′) is a critical pair—a contradiction.

Since, for a critical pair (p, p′) ∈ Rcr , by definition p′ ∈ p + Dcr , the following observation is
immediate.

Observation4.1. If ( p, p′) ∈ Rcr , thendT (p, p′) ≤ λ(Dcr ).

The robot now explores the pathD2
cr from the origin0 of T̂ S1

ex , returns to0, and then exploresD−2
cr .

Note that this may remove some placements fromP. In particular, if one of the two paths does not exist
all critical pairs will be eliminated and we can proceed with the greedy strategy. We makes= 0+D−2

cr
the new origin0 of T̂ S1

ex and accordingly translate all pointsv in the local coordinate system of the robot
to−s+ v. Note that a critical pair before the translation remains a critical pair after the translation.

We callD4
cr thecritical pathCex of T̂ S1

ex (see Fig. 8). The length ofCex is between 4λ(C) and 6λ(C) ≤
24%. SinceC is contained inT̂ S1

ex , the number of vertices inC—and, thus, inCex—is at mostO(
√

n). We
summarize the properties ofCex in the following lemma.

LEMMA 4.5. The critical pathCex of T̂ S1
ex has length at least4λ(C) and at most24%. It contains at

most O(
√

n) vertices.

The following observation follows directly from the fact thatD4k ≡ D4
cr ≡ Cex and that, for each

p-vertexv, there exists an integerk′ ≤ k such that eitherspT̂ S1
ex

(0, v) ≡ Dk′ or spT̂ S1
ex

(v, 0) ≡ Dk′ .

Observation4.2. If ( p, p′) ∈ Rcr andv = p′ − p, thenspT̂ S1
ex

(0, v) is a period ofCex.
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4.3. The Critical Period

Recall that by Observation 4.2 if (p, p′) ∈ Rcr , then spT̂ S1
ex

(0, p′ − p) is a period ofCex with
dT (p, p′) ≤ λ(Dcr ) ≤ λ(Cex)/4. This gives rise to the following definition.

DEFINITION 4.1. The greatest common period of the set

{spT̂ (0, p′ − p) | (p, p′) ∈ Rcr }

is called thecritical period ofCex w.r.t.Rcr and denoted byDex.

Note that the critical period depends only onRcr . The following simple observation follows directly
from the definition of the critical period.

Observation4.3. dT̂ (0, p′ − p) ≥ λ(Dex), for all (p, p′) ∈ Rcr .

The following observation is based on the properties of periodic paths.

LEMMA 4.6. LetQcr be a subset ofRcr . If Dex is the critical period ofCex w.r.t.Rcr andEex is the
critical period ofCex w.r.t.Qcr , thenDex is an integral period ofEex. That is,there is an integer k≥ 1
such thatEex = Dk

ex.

Proof. SinceQcr ⊆ Rcr ,Dex is an integral period of each pathspT̂ (0, p′ − p) with (p, p′) ∈ Qcr ⊆
Rcr . Thus by Lemma 2.1,Dex is an integral period ofEex, as claimed.

One consequence of Lemma 4.6 is that ifDexchanges, then it at least doubles in length (see Lemma 6.2
and Section 5.2).

5. STEP 3: EXPLORING A PERIODIC PATH

If there are critical pairs of placements left after Step 2 then the robot explores branches emanating
from the critical pathCex in Step 3 until either it has found a nonsimple periodic pathP with at least√

n vertices or there are no more critical pairs. If there are no more critical pairs then there are at most
2
√

n placements left (see Corollary 3.1) and the robot continues with the greedy strategy. Otherwise,
the robot continues with Step 4 (Mismatch-Propagation).

After the robot has identified the critical pathCex in Step 2 of Strategy LPS, it considers the
√

n
vertices ofT̂ S1

ex sorted by increasing distance to the (new) origin0 of T̂ S1
ex . For each vertexv, the robot

tries to visit its “neighbors” which are located at multiples ofDex, that is, at the end points of the path
v +Di

ex, for 1≤ i ≤ 2k. For each 1≤ i ≤ 2k, it either succeeds in traveling to such a point or it finds
the first point at which the path tov +Di

ex differs fromT .
To describe this strategy more precisely, we first define a few terms. Letv be a vertex inT andP

be a path inT . The closest point ofP to v is called theP-baseof v. The pathS from theP-basev′

of v to v is called thespike ofv w.r.t.P. The path that is given by the part ofP from its start point to
v′ concatenated withS ∗ S−1 and the remaining part ofP is called the pathP augmented byv (see
Fig. 9a).

Let v be a vertex inT̂ex andv′ be theCex-base ofv. There is an integerk and a 0≤ τ < 1 depending
on the critical periodDex such thatv′ is the end point ofDk

ex ∗ Dτex. Let Dv be the concatenation of
Dτex with the spike ofv w.r.t. Cex. For an integeri , the last point where the pathDi

ex∗Dv is isomorphic
to a path inT starting atp̂ is called theabsoluteDi

ex-neighborof v and is denoted byv ⊕ Di
ex. See

Fig. 9b for an illustration. TherelativeDi
ex-neighboris the last point where the pathDi

ex ∗ Dk
ex ∗ Dv

is isomorphic to a path inT starting atp̂ and is denoted byv ⊕r Di
ex. Note thati may be negative in

both cases. For relative neighbors we always havev = v ⊕r D0
ex. In the rest of this section we only

refer to absolute neighbors if not mentioned otherwise. Relative neighbors will be used later in
Section 6.2.

From the start point ofCex, the robot explores a nonsimple pathPex in T̂ that shares the periodicity
of Cex w.r.t. Rcr . If the robot discovers irregularities in the exploration process, then it can use the
irregularities to eliminate placements until the explored path is again periodic w.r.t.Rcr .
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FIG. 9. Augmenting the pathP by the pointv: The robot follows the pathP from s to theP-base ofv′, travels tov and
back, and then follows the rest ofP. (b) The absoluteDk

ex-neighbors ofv, for 0≤ k ≤ 3, with v = v ⊕D2
ex. Note thatv ⊕Dex

is not a vertex.

Initially, Pex = Cex. The robot augmentsPex by the vertices inT̂ S1
ex . For each vertexv in T̂ S1

ex , the
robot visits the (absolute)D j

ex-neighborsu j of v for 0≤ j ≤ bλ(Cex)/λ(Dex)c and then updatesP,Rcr ,
andDex before examining the neighbors of the next vertex. It halts when eitherRcr is empty orPex

contains
√

n vertices.
The strategy for extending the critical path to a periodic path containing

√
n vertices can be described

as follows.

Strategy Periodic-Path
Input: T , P, and the explored treêT S1

ex ;
Output: A periodic pathP in T̂ that shares the periodicity ofCex w.r.t.Rcr and contains at least√

n vertices orRcr = ∅;
P0← P;R0← Rcr ; P0← Cex;
letD0 be the greatest common period ofCex w.r.t.R0;
let α0 be the periodicity ofCex w.r.t.D0; k0← bα0c; C0← Dk0

0 ;
let v0 be the first unvisited vertex in̂T S1

ex ;
i ← 0;
while |Pi | < √n andRi 6= ∅ do
/∗ Invariant 1—see below∗/
P̄i ← Pi ;
for j ← 0 to ki − 1 do

visit u j ← vi ⊕D j
i ;

augmentP̄i by u j ;
/∗ Update the variables:∗/
Pi+1← {p ∈ Pi | p+ T̂ S1

ex ⊆ T};
Ri+1← {(p, p′) ∈ Ri | p, p′ ∈ Pi+1};
letDi+1 be the greatest common period ofCi w.r.t.Ri+1;
let αi+1 be the periodicity ofCi w.r.t.Di+1; ki+1← bαi+1c; Ci+1 = Dki+1

i+1;
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Pi+1← the part ofP̄i from the origin to the end point ofCi+1;
let vi+1 be the next unvisited vertex in̂T S1

ex ;
i ← i + 1;

end while
κ ← i ;
P← Pκ ;Rcr ← Rκ ; Cex← Cκ ; Dex← Dκ ; Pex← Pκ ;
endPeriodic-Path

5.1. The Correctness of Strategy Periodic-Path

We now prove the correctness of StrategyPeriodic-Path. In order to do so we make use of the notation
used in the algorithmic description of the strategy without explicitly defining it again. The while-loop
has the following invariant.

INVARIANT 1. ki is the largest integer such thatDki
i is contained inCex.

Proof. The invariant clearly holds fori = 0. So assume that the invariant holds up to iteration
i − 1 ≥ 0. Let k∗i be the largest integerj such thatD j

i is contained inCex. Clearly,k∗i ≥ ki . There is
some integerni ≥ 1 with Dni

i−1 = Di by Lemma 4.6. Hence,Dk∗i
i = Dni k∗i

i−1 ⊆ Cex. Sinceki−1 is the
largest integerj such thatD j

i−1 is contained inCex by the invariant,Dni k∗i
i−1 ⊆ Dki−1

i−1 = Ci−1. Hence,Dk∗i
i

is contained inCi−1 andki ≥ k∗i which proves the claim.

We now argue that StrategyPeriodic-Pathhalts. SinceRi 6= ∅, for 0 ≤ i ≤ κ − 1, the following
result is a direct consequence of Observation 4.3. For 0≤ i ≤ κ − 1,

λ(Di ) ≤ λ(Dcr ). (1)

Sinceλ(Cex) = 4λ(Dcr ), Eq. (1) and Invariant 1 imply that, for all 0≤ i ≤ κ − 1,

3λ(Dcr ) ≤ λ
(
Dki

i

) = λ(Ci ). (2)

By the definition ofCex asD4
cr only the second and third quarter ofCex may intersectT̂ S1

ex . SinceCi

contains the first three quarters ofCex by Inequality (2), theCex-base of vertexvi belongs toCi . Hence,
there is a 0≤ j ≤ ki − 1 such thatvi ⊕D j

i equalsvi and the number of visited vertices increases by at
least one in each iteration of the while-loop. Thus, we have shown the following lemma.

LEMMA 5.1. The number of iterationsκ of the outer while-loop is bounded by
√

n.

At the end of StrategyPeriodic-Path,Cex is set toCκ . Inequality (2) now implies the following result.

LEMMA 5.2. If Rκ 6= ∅, thenλ(Cex) ≥ 3λ(Dcr ) after Strategy Periodic-Path.

We will show that after each iteration of the while-loop the pathPi is periodic w.r.t.Ri . Moreover,
if Qi is the greatest common period ofPi w.r.t.Ri , thenλsp(Qi ) = λ(Di ). We first show the existence of
a greatest common period ofPi w.r.t.Ri . Let (p, p′) be a critical pair inRi with v = p′ − p ∈ Ci and
Pv the part ofPi from its starting point tov.

LEMMA 5.3. There is anα > 1 withPαv = Pi .

Proof. Let Cv be the shortest path from the origin tov. By Observation 4.2 there is anα > 1 such
thatCαv = Ci . SincePv containsCv, Pαv reaches the end point ofCi . We claim thatPαv = Pi . The proof
is by contradiction. Assume thatu is the first point onPi wherePαv andPi differ. SincePv is an initial
part ofPi , u occurs afterv onPi .

Let u′ = u − v. Note thatu′ is reached beforeu by bothPαv andPi . There are two possible cases
whyPαv andPi may differ atu. Eitheru′ is not locally isomorphic tou in Pi , that is, not all edges ofPi

incident tou′ have the same orientations as the edges ofPi incident tou (note that inPαv u′ is clearly
locally isomorphic tou), or there is an edgee′ incident tou′ which is explored atu′ for some distance
but its translate atu is not explored (or vice versa).
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FIG. 10. The pathspT̂ (0,u′) is isomorphic to the pathspT̂ (v, u) in Pi .

We first show thatu′ is locally isomorphic tou. Sincep and p′ are placements,p + spT̂ (0,u′) is
isomorphic top′ +spT̂ (0,u′) in T . Furthermore, sincev corresponds to the location ofp′ if p is mapped
to the origin,p′ + spT̂ (0,u′) is isomorphic tov + spT̂ (0,u′) = spT̂ (v, u) in Pi . Therefore,spT̂ (v, u)
is isomorphic to the explored part ofspT̂ (0,u′) in Pi (see Fig. 10). The pathspT̂ (0,u′) is completely
explored inPi since otherwise the first point onPi wherePαv andPi differ is beforeu. SincespT̂ (v, u)
is clearly isomorphic tospT̂ (0,u′) in Pαv , Pi andPαv are locally isomorphic atu.

Now suppose there is a (partially) explored edgee′ that is incident tou′, but the edgee incident tou
that has the same orientation ase′ is not explored. Lett ′ be the end point of the explored part ofe′ and
1≤ j ≤ i be the first iteration such thatt ′ belongs to the path from the origin to aD-neighbor ofv j .

We show thatt ′+v belongs to the path from the origin to a neighborv j ⊕ Dl
j , for some 1≤ l ≤ kj −1.

Note thatt ′ + v is aCv-neighbor oft ′. Since 1≤ j ≤ i , Observation 4.2 and Lemma 2.3 imply that
there is an integerl with Dl

j = Cv. Thus, sincet ′ is visited in iterationj , all theCv-neighbors oft ′ in
Pi are also visited in iterationj . In particular,t ′ ⊕ Dl

j is visited in iterationj sinceCi ⊆ C j and the
Cex-base oft ′ ⊕Dl

j equals theCex-base ofu which belongs toCi .
Hence, there is an edgee incident tou that is partially explored and isomorphic toe′—a contradiction.

If there is a partially explored edgee incident tou that is not explored atu′ a similar argument applies.
Since we reach a contradiction for either case, the claim follows.

Lemmas 2.3 and 5.3 now lead to the following corollary.

COROLLARY 5.1. A greatest common periodQi of Pi w.r.t. Ri exists and is well defined,for all
0≤ i ≤ κ .

Proof. Let (p, p′)∈Ri , v= p′ − p, Cv be the shortest path from the origin tov, andPv be the part
ofPi from the origin tov. The claim follows from Lemma 2.3 if we can show thatP2

v is contained inPi .
By the definition of a critical pair,Cv is contained inDcr . Inequality (2) now implies thatC2

v is a
subpath ofDki

i .
Let v′ be the end point ofC2

v . v
′ also equals the end point ofP2

v . SincePαv = Pi , for someα > 1,
andPi containsDki

i , P2
v is also contained inPi and the claim now follows by Lemma 2.3.

In the following letQi be the greatest common period ofPi w.r.t.Ri . Next we show that the shortest
pathEi from the start point to the end point ofQi equalsDi .

LEMMA 5.4. If Ei is the shortest path from the start point to the end point ofQi , thenDi = Ei , for
all 0≤ i ≤ κ.

Proof. If ( p, p′) is a critical pair andv = p′ − p, thenEi is an integral period of the shortest path
from the origin tov sinceQi is an integral period ofPv by the definition ofQi . By Lemma 2.3 this
implies that there is aj ≥ 1 with E j

i = Di . Hence, if (p, p′) is a critical pair andv = p′ − p, thenQ j
i

is also an integral period ofPv. SinceQi is a greatest common period w.r.t.{Pv | v = p′ − p where
(p, p′) ∈ Rcr }, j = 1 andEi =Di as claimed.
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Hence, after the while-loop is exited either the pathPκ is periodic w.r.t.Rcr by Corollary 5.1 and
contains at least

√
n vertices orRcr = ∅. Together with the observation that the loop halts, this proves

the correctness of StrategyPeriodic-Path.

5.2. Analysis of StrategyPeriodic-Path

In the following we investigate how far the robot travels during the execution of StrategyPeriodic-
Path. We first investigate how far the robot travels to visitDi -neighbors ofvi that are vertices. Since
the while-loop is exited oncePi contains

√
n vertices, the total number of visited neighbors that are

vertices for iterations 0≤ i < κ − 1 is
√

n. In the last iterationκ − 1 the robot visits at most as
manyDκ−1-neigbors ofvκ−1 as there are vertices inCex. By Lemma 4.5 the number of vertices inCex is
O(
√

n). As the distance to visit aDi -neighbor ofvi is bounded by the diameter ofCex∪ T̂ S1
ex which is

O(%) we have shown the following lemma.

LEMMA 5.5. The distance traveled by the robot to visit allDi -neighbors ofvi that are vertices
summed over all iterations0≤ i ≤ κ − 1 is O(

√
n%).

Not necessarily all of theDi -neighbors ofvi are vertices; in fact, none of them may be a vertex—
except forvi itself. Yet the robot may have to travel a distance of2(%) for each of theDi -neighbors of
vi . But we can show that the total number of nonvertexDi -neighbors ofvi visited by the robot is also
bounded byO(

√
n).

LEMMA 5.6. If f i is the fraction of neighborsvi ⊕ D j
i that are vertices ofT̂, then λsp(Qi+1) ≥

d1/fi e λsp(Qi ), for all 0≤ i ≤ κ − 1.

Proof. By Lemmas 5.4 and 4.6 there exists an integermi such thatQmi
i = Qi+1 andDmi

i = Di+1.
Since, for each 0≤ j ≤ ki −1, there is aDi -neighbor ofvi that is visited by the robot andQi+1 contains
mi Di -neighbors ofvi by Lemma 5.4, the number ofD j

i -neighbors ofvi that are vertices inQi+1 is
exactly fi mi . There is at least one vertex inQi+1 that is isomorphic tovi , sinceQi+1 is a period ofPi+1

andPi+1 containsvi . Therefore,fi mi ≥ 1 ormi ≥ 1/ fi . As mi is an integer we havemi ≥ d1/fi e.
LEMMA 5.7. Summed over all iterations i, the robot visits a total of at most O(

√
n)Di -neighbors of

vi that are not vertices.

Proof. The numberk0 of D0-neighbors visited in the first iteration is at most 12
√

n since T̂ S1
ex

contains
√

n vertices and the length ofCex is at most 12 times the diameter ofT̂ S1
ex . If ki neighbors are

visited in iterationi of which fi ki are vertices, thenλsp(Qi+1) ≥ d1/fi e λsp(Qi ) by Lemma 5.6. Hence,
the number of neighbors visited in iterationi + 1 is at mostki / d1/fi e and the number of nonvertices
visited is at most (1− fi+1)ki / d1/fi e. Note that this is 0 iffi+1 = 1. So leti1, . . . , i k be the iterations
for which fi j < 1. Hence, the total number of visited nonvertices is no more than

k0

k∑
j=1

(1− fi j )∏ j−1
l=1

⌈
1/fi l

⌉ .
Sinced1/fi j e ≥ 2, the above term is bounded by

k0

k∑
j=1

1

2 j−1
< 2k0 ≤ 24

√
n

which proves the claim.

Since the distance of aDi -neighbor ofvi is O(%), we can summarize the situation at the end of
StrategyPeriodic-Pathas follows.

LEMMA 5.8. The robot travels a distance of O(
√

n%) during the execution of StrategyPeriodic-Path,
and after executing it either there are no critical pairs left or it has found a path inT̂ that is periodic
w.r.t.Rcr and contains at least

√
n vertices ofT̂ and at most24

√
n leaves that are not vertices ofT̂ .
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6. STEP 4: EXTENDING THE CRITICAL PATH

If T were infinite then all placements inP could be the wake-up position after Step 3 and the periodic
pathPex could continue to infinity. ButT is finite. Hence, if we concatenate together enough copies
of Pex then there will be many differences—ormismatches—betweenT and the copies ofPex. In the
following we show how to make use of these differences.

6.1. Identifying an Initial Mismatch

Let P∗ex be the periodic path that is formed by concatenating togetherd2√ne copies ofPex. Note
that the diameter ofP∗ex is O(

√
nλ(Dcr )) = O(

√
n%). The treeT̂∗ex induced byP∗ex contains at least 2n

vertices and, hence, there are at leastn vertices wherêT∗ex differs fromT̂ . In the following we show that
the robot can find an initial mismatchq∗ by exploring at most log|P| ≤ logn vertices ofP∗ex. Onceq∗

is found, the robot usesq∗ as a seed mismatch to find mismatches that are closer and closer to0 until
Rcr = ∅.

LEMMA 6.1. There is a vertexv in T̂∗ex such that p+ spT̂∗ex
(0, v) 6⊆ T, for at least one half of the

placements p in P.

Proof. Let W be the set of all pairs (p, v) with p ∈ P andv ∈ T̂∗ex such thatp+ v 6∈ T . For each
p ∈ P, we denote the set of pairs inW with first componentp by Wp. Since|Wp| ≥ |T̂∗ex| − |T |, the
sum over the cardinalities of allWp is given by

|W| =
∑
p∈P

|Wp| ≥
|P|∑
i=1

(|T̂∗ex| − |T |) = |P| (|T̂∗ex| − |T |).

If Wv is the set of pairs with second componentv, then
∑

v∈T̂∗ex
|Wv| = |W| ≥ |P| (|T̂∗ex| − |T |). Hence,

the average size of the|T̂∗ex| setsWv is at least

|P| (|T̂∗ex| − |T |)
|T̂∗ex|

= |P|
(

1− |T ||T̂∗ex|

)
≥ |P|

2
.

Therefore, there is at least one vertexv ∈ T̂∗ex with |Wv| ≥ |P| /2.

If we apply Lemma 6.1 repeatedly and remove each time the set of placementsp from P for which
a vertexv in T̂∗ex is found such thatp+ spT̂∗ex

(0, v) 6⊆ T , then we obtain the following corollary.

COROLLARY 6.1. There exists a set V0 of dlog |P|e vertices inT̂∗ex such that,for each p∈ P, there is
a vertexv ∈ V0 such that p+ spT̂∗ex

(0, v) 6⊆ T .

Note that the vertices of Corollary 6.1 can be computed givenT and T̂∗ex without any additional
exploration by the robot.

In the following letC∗ex be the path formed by concatenating 2d√ne copies ofCex. We sort the vertices
in V0 according to their distance of theirC∗ex-bases to the origin. The robot travels alongC∗ex visiting the
vertices inV0 in sequence until the first vertexv∗ ∈ T̂ex is identified for whichspT̂ (0, v∗) 6⊆ T̂ .

Note that the distance of each vertexv ∈V0 to C∗ex is at most 4%; hence, the robot travels a distance
of at mostλ(C∗ex) + 2 logn 4% = O(

√
n%) in order to identifyv∗. Let q∗ be the last common point of

spT̂∗ex
(0, v∗) andT̂ . The pointq∗ is the initial mismatch the robot is looking for.

6.2. Strategy Mismatch-Propagation

Once we have identified the mismatchq∗, it is our aim to find the closest mismatch toPex. Before
we describe how to do so we need one more definition. Recall thatDex is the critical period ofCex. We
say a pointq′ in T̂ isDex-isomorphicto a pointq in T̂ if there is an integerj such thatq′ = q ⊕r D j

ex

andq′ is the end point of the pathq +D j
ex.4

4 Here we make use of the definition of relative neighbor.
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FIG. 11. Sinceri = vi ⊕r C−1
i isDex-isomorphic tov∗, all Di -neighbors ofri betweenri andqi are explored. This yields

the new pointqi+1 and at least doubles the length of the greatest common periodDi
ex of Ci w.r.t.Ri .

The robot now returns to the origin and on its way it visits points that are notDex-isomorphic to
v∗, with q∗ being the first such point. It does so by looking at theCex-neighbors ofv∗ that are closer
to the origin. More precisely, the robot computes a sequence of pointsqi ∈ T̂ andvi ∈ T̂∗ex, wherevi is
Dex-isomorphic tov∗ andqi is not. To computevi+1 andqi+1, givenvi andqi , the robot first visits the
point ri = vi ⊕r C−1

ex .
There are two cases. Ifri is notDex-isomorphic tov∗ (like q∗), then the robot has found a mis-

match that is closer toPex, setsqi+1 = ri , vi+1 to the end point of the pathvi + C−1
ex , and conti-

nues.
Otherwise,ri is Dex-isomorphic tov∗. The robot now explores all theDex-neighbors ofri between

r i andqi . This is exactly analogous to one iteration of StrategyPeriodic-Path. After the exploration of
theDex-neighbors the robot recomputes the critical pairsRcr . Sinceri isDex-isomorphic tov∗ but qi

is not, the greatest common periodDex of Cex w.r.t.Rcr changes; this implies that some pairs inRcr

are eliminated. Among the exploredDex-neighbors ofv∗ betweenri andqi we chooseqi+1 to be the
closest one to the origin that is notDex-isomorphic tov∗. We are done ifRcr = ∅.

The strategy of the robot can now be described as follows. Figure 11 illustrates the algorithm.

Strategy Mismatch-Propagation
Input: The treeT , the set of placementsP, the periodic pathsPex, Cex, and the pointsq∗ andv∗;
Output: A set of placementsP such thatRcr = ∅;
1. P0← P;R0← Rcr ; q0← q∗; v0← v∗;
2. letD0 be the greatest common period ofCex w.r.t.R0;
3. letα0 be the periodicity ofCexw.r.t.D0; k0← bα0c; C0← Dk0

0 ;
4. i ← 0;
5. whileRi 6= ∅ do

/∗ Invariant 2—see below∗/
6. visit ri ← vi ⊕r C−1

i ;
7. if ri isDex-isomorphic tovi (andv∗)
8. then for j ← 1 to ki − 1 do visit ri ⊕r D j

i ;
9. let j ∗ be the smallest index such thatri ⊕r D j ∗

i is not isomorphic tori ;
10. qi+1← ri ⊕r D j ∗

i ;
11. vi+1← the end point of the pathri +D j ∗

i ;
12. else qi+1← ri ;
13. vi+1← the end point of the pathvi + C−1

ex ;
/∗ Update the variables:∗/

14. Pi+1← {p ∈ Pi | p+ T̂ex⊆ T};
15. Ri+1← {(p, p′) ∈ Ri | p, p′ ∈ Pi+1};
16. letDi+1 be the greatest common period ofCi w.r.t.Ri+1;
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17. letαi+1 be the periodicity ofCi w.r.t.Di+1; ki+1← bαi+1c; Ci+1← Dki+1
i+1;

18. i ← i + 1;
end while

19. P← Pi ;
endMismatch-Propagation

6.3. The Correctness of Strategy Mismatch-Propagation

We only have to show that the algorithm halts. In order to do so we make use of a potential function
8 and show that8 is bounded from below and reduced by a constant amount in each iteration of the
outer while-loop.

As in Section 5.1 we see that the following invariant holds for the while-loop of StrategyMismatch-
Propagation.

INVARIANT 2. ki is the largest integer such thatDki
i is contained inCex.

The invariant again implies Inequality (2) which we state again for completeness. For all iterationsi
except the last one

3λ(Dcr ) ≤ λ
(
Dki

i

) = λ(Ci ). (2)

Let di be the distance of theC∗ex-baseq∗i of qi to the origin; that is,di = dT̂ (0,q∗i ). The potential8i

in iterationi is given by

8i = di − λ(Di )

λ(D0)
λcr ,

whereλcr = λ(Dcr ). We first show that8i is reduced in each iteration by at leastλcr .

LEMMA 6.2. For all iterations i,

8i −8i+1 ≥ λcr .

Proof. Consider iterationi of the outer loop. Ifri is notDex-isomorphic tovi , thenqi+1 = ri and
q∗i+1 is a distance ofλ(Ci ) closer to the origin thanq∗i . Hence,8i −8i+1 ≥ di −di+1 = λ(Ci ) ≥ 3λ(Dcr )
and8i is reduced by at leastλcr in this case.

Now assume thatri is Dex-isomorphic tovi . Let mi be the integer such thatDmi+1
i contains the

C∗ex-base ofri , umi the end point ofDmi
i , andUi+1 the set of p-verticesv that are given byv = p′ − p

with (p, p′) ∈ Ri+1. Furthermore, letPi+1 be the path starting atumi to the end point ofDmi+ki
i

augmented by theDi -neighbors ofri .
If the vertexv is inumi +Ui+1, then the partPv ofPi+1 fromumi tov is a period ofPi+1 by Lemma 5.3.

Sinceλsp(Pv ) ≤ λcr andλ(Ci ) ≥ 3λcr , we obtain that the period ofPi+1 w.r.t. Pv is at least two as in
the proof of Corollary 5.1; hence, a greatest common periodQi+1 of Pi+1 w.r.t.Ri+1 exists and is well
defined. As in Section 5.1 it can be seen thatDi+1 is the shortest path from the start point ofQi+1 to
the end point ofQi+1.

As qi+1 is the closestDi -neighbor ofri that is notDex-isomorphic tovi andQi+1 is a period of the
pathPi+1, Qi+1 contains bothri andqi+1. Moreover, since theC∗ex-bases ofri andqi+1 are separated
at least byDi , λsp(Qi+1) > λ(Di ). Hence, by Lemmas 4.6 and 5.4 there is an integerk > 1 such that
Di+1 = Dk

i . Therefore,λ(Di )/λ(D0)− λ(Di+1)/λ(D0) = (k− 1)λ(Di+1)/λ(D0) and8i is reduced by
at least (k− 1)λcr ≥ λcr .

Note that8i is at mostλ(C∗ex) = O(
√

nλcr ) in the beginning. We show that there is a lower bound for
8i , that is, thatdi is bounded from below andλ(Di )/λ(D0) is bounded from above. The latter is easy
to see sinceDi is at most as long asCex and the periodicity ofCex w.r.t.D0 is bounded by the number of
vertices inCex which is O(

√
n). In the next lemma we show thatdi is nonnegative which implies that

8i is bounded from below byÄ(−√nλcr ).

LEMMA 6.3. For all iterations i, di ≥ 0.
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Proof. Note that by definitionλ(Ci ) ≤ λ(Cex). Hence, the robot cannot skip over the periodic path
Pex in one iteration. So assume that there is an iterationl such thatrl belongs toPex; otherwise,di

clearly remains positive. We show that in this caseRl+1 = ∅ andl is the last iteration of the while-loop
by Observation 4.1.

Sincerl belongs toPex, it isDex-isomorphic tov∗ (sincePex is periodic w.r.t.Dex andv∗ belongs to
P∗ex). Let Pl be the path followed by the robot in iterationl . SinceDex is an integral period ofDl by
Lemma 4.6, allDl -neighbors ofrl that are visited in iterationl and belong toPex areDex-isomorphic to
v∗. Hence,ql+1 occurs after the end ofPex.

Now assume thatRl+1 6= ∅ and let (p, p′) ∈ Rl+1. By the definition ofDl there is ak ≥ 1 such that
Dk

l = spT̂ (0, v) wherev = p′ − p.
Sinceql+1 = rl ⊕r D j ∗

l , all verticesrl ⊕r D j
l with 0 ≤ j < j ∗ areDex-isomorphic tov∗. Sinceql+1

does not belong toPex butv belongs toCex⊆ Pex, j ∗ > k.
Let r ∗ = rl ⊕r D j ∗−k

l . r ∗ is Dex-isomorphic tov∗. Consider the shortest pathspT̂ (0,r ∗) from the
origin to r ∗. Sincep′ is a placement, the pathp′ + spT̂ (0,r ∗) belongs toT . Moreover, sincep is a
placement andv belongs toCex, the path

(p+ spT̂ (0, v)) ∗ (p′ + spT̂ (0,r ∗)) = p+ (spT̂ (0, v) ∗ spT̂ (0,r ∗)) = p+ spT̂ (0, v+ r ∗)

is contained inT and its end point isDex-isomorphic tov∗. But, thenv+ r ∗ 6= ql+1 is theD j ∗
l -neighbor

of rl , a contradiction.

Lemmas 6.3 and 6.2 together with the upper bound on80 of O(
√

nλcr ) imply that StrategyMismatch-
Propagationhalts. More precisely, we have the following result.

COROLLARY 6.2. The number of iterations of the outer loop is bounded by O(
√

n).

6.4. Analysis of Strategy Mismatch-Propagation

Now we consider the distance traveled by the robot. We divide the distance the robot travels into four
parts.

1. The distanceδ1 that the robot travels alongC∗ex from q∗ toward the origin,

2. the distanceδ2 that the robot travels to visit theCi -neighbors in Step 6,

3. the distanceδ3 that the robot travels onC∗ex in Step 8, and, finally,

4. the distanceδ4 that the robot travels to visit theDi -neighbors in Step 8.

The distanceδ1 is bounded byO(
√

n%)+ δ3 since the robot always travels toward the origin except in
Step 8 in which it travels towardq∗. Since the length ofC∗ex is bounded byO(

√
n%) and each time the

robot travels onC∗ex towardq∗ in Step 8, it travels at most the same amount toward the origin again, the
bound onδ1 follows.

Since the number of iterations of the outer loop of StrategyMismatch-Propagationis bounded by
O(
√

n) by Corollary 6.2 and the robot visits exactly oneCi -neighbor at a distance of at most 4% toC∗ex in
each iteration, the distanceδ2 is bounded byO(

√
n%). For the same reason the distanceδ3 is bounded

by O(
√

n%) since in each iteration the robot travels at most a distance of 2λ(Ci ) = O(%) towardq∗.
Finally, we bound the distanceδ4. Assume that in iterationi r i isDex-isomorphic tovi in Step 7. As

we observed in the proof of Lemma 6.2, this implies thatDi+1 = Dk
i for some integerk > 1; that is,

the length of the critical period at least doubles, and, therefore, the periodicity ofCi w.r.t. Di+1 is at
most half of the periodicity ofCi−1 w.r.t.Di . SinceCex contains at mostO(

√
n) vertices, the periodicity

of Cex w.r.t.D0 (=Dex) is at mostO(
√

n) and the robot executes the steps of the if-statement in Step 7
at mostO(log

√
n) times. As above, eachDi -neighbor has a distance of at most 4% to C∗ex and, hence,

we only need to estimate the number ofDi -neighbors that are visited. Let the iterations in which the
if-statement in Step 7 is true bei0, i1, . . . , im andki j be the number ofDi j -neighbors that are visited in
this iteration. We observed above thatDi j+1 is at least twice as long asDi j . Hence,ki j+1 ≤ ki j /2, for
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0≤ j ≤ m− 1. Therefore, the total number ofDi -neighbors that are visited is bounded by

m∑
i=0

ki j ≤
m∑

j=0

ki0

(
1

2

) j

≤ 2ki0 ≤ O(
√

n)

sinceki0 = O(
√

n) as we observed before. Hence,δ4 = O(
√

n%).
This completes the analysis of StrategyMismatch-Propagationand shows that the robot travels at

mostO(
√

n%) during its execution. SinceRcr = ∅ at the end of Step 4,p+ T̂ S1
ex contains no placements

different from p by Lemma 4.4. We know therefore by Corollary 3.1 that|P| ≤ 2
√

n, so we can
continue with Step 5, the greedy strategy.

7. STEP 5: GREEDY ELIMINATION

We enter this step if the set of placementsP (now again including the placementsPtriv that we had
excluded in Section 4.1) has size|P| =O(

√
n). In order to eliminate the remaining placements the robot

visits the closest pointq such that at least one placement is eliminated. SincedT (0,q) is no more than
the shortest distance to localize the robot, a repeated application of this procedure eventually eliminates
all placements but one with a competitive ratio of at most|P|.

THEOREM7.1 [7, 11]. If |P| =O(
√

n) then the greedy strategy localizes the robot with a competitive
ratio of O(

√
n).

8. SEARCHING FOR A TARGET IN A TREE

As was pointed out in the Introduction, we are also interested in the searching variant of the problem
where a robot has to find a targett marked on the map of the environment, but the robot is not given
its wake-up position. We also apply Strategy LPS, except with a slightly altered Step 5. Note that after
Step 1 if t is not reached, then the distance between the wake-up positions of the robot andt is at
least%. Hence, after Step 4 the robot has traveled a distance ofO(

√
ndT (s, t)) and there arek ≤ 2

√
n

possible placements for the robot and thusk possible locationst1, . . . , tk of t in T̂ . In Step 5 the robot
now repeatedly attempts to visit the closest possible target amongt1, . . . , tk until the true location of
the target is identified. Obviously, the robot travels at most a distance of 2

√
ndT (s, t) in Step 5. This

proves the following theorem.

THEOREM 8.1. Let T be a geometric tree and t be a point in T . There is a strategy that achieves a
competitive ratio of O(

√
n) for a robot to find t given the coordinates of t in T .

9. IMPLEMENTATION

We have also implemented the algorithm, usingC++ andLEDA[12]. The algorithm is embedded in
OnVis, a system for visualization of online algorithms developed at the MPI. As it turns out, a real
robot should not run the algorithm exactly as described in the previous sections but instead it should
use shortcuts at various points [8].

• Before starting each depth-first search in Step 1 the robot computes the explored tree. If there
is no new information in distanced, which means no further placements can be eliminated by exploring
the neighborhood within distanced, the robot leaves out the current distanced and continues with 2d.
If the computed tree has size

√
n and at least

√
n vertices lie in the ball of radiusd, we can finish the

spiral search.

• There may also be directions that provide no new information in the current distance or are
already completely explored. For the robot it is needless to travel these paths.
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• While computing a unique critical path the robot should not follow a pathQ that is a subset of
the explored treêTex.

• In the StrategyPeriodic-Paththe robot can omit vertices that are already known.

• In the greedy elimination step the robot does not need to travel back from the closest pointqi

to the origin, but moves directly to the next pointqi+1 if it could not localize.

• In addition the testing of the explored treeT̂ex on the placements could be done whenever we
extendT̂ex.

10. CONCLUSIONS

We have presented a new localization strategy for an autonomous mobile robot. The environment
of the robot is represented by a geometric tree of constant degree in arbitrary dimensions. We assume
that the robot knows its current orientation and it has no use of vision other than to be able to detect
the orientation of all edges incident to its current location. Our strategy, which solves an open problem
posed by Kleinberg [11], achieves a competitive ratio ofO(

√
n) if the tree containsn nodes of degree

greater than or equal to three. Since there is a geometric tree that provides a lower bound ofÄ(
√

n)
for the competitive ratio of any localization strategy, our strategy is optimal up to a constant factor. We
also show that a slight modification of our strategy solves the problem of searching for a target in a
geometric tree with the same competitive ratio.

Challenges that remain for future work are to transfer the strategies developed for geometric trees to
the more realistic setting of polygons in the plane and to investigate the complexity of the localization
problem in graph structures that allow cycles.
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