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The problem of localization, that is, of a robot finding its position on a map, is an important task
for autonomous mobile robots. It has applications in numerous areas of robotics ranging from aerial
photography to autonomous vehicle exploration. In this paper we present a new strategy LPS (Localize-
by-Placement-Separation) for a robot to find its position on a map, where the map is represented as a
geometric tree of bounded degree. Our strategy exploits to a high degree the self-similarities that may
occur in the environment. We use the framework of competitive analysis to analyze the performance of
our strategy. In particular, we show that the distance traveled by the robot is abifags) times longer
than the shortest possible route to localize the robot, winer¢éhe number of vertices of the tree. This
is a significant improvement over the best known previous bou@{0#/3). Moreover, since there is a
lower bound of2(,/n), our strategy is optimal up to a constant factor. Using the same approach we can
also show that the problem of searching for a target in a geometric tree, where the robot is given a map
of the tree and the location of the target but does not know its own position, can be solved by a strategy
with a competitive ratio o©(/n), which is again optimal up to a constant factore 2001 Elsevier Science
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1. INTRODUCTION

In many tasks of autonomous mobile robots it is assumed that the robot has a map of its envirc
and knows its location on the map. However, in some situations the robot may not know in advance
its correct position on the map is and has to determine it on-line. This is calledkibtlocalization
problem. Usually it is assumed that this problem can be solved by using sensor data and allowi
robot to move only a small amount. But if the environment consists of many self-similar parts
approach may not be sufficient.

Although in robotics this issue has been addressed in numerous contexts, ranging from aeri
tography to autonomous vehicles for the exploration of landscapes [13, 16, 18, 19], a more ric
analysis of the problem in a well-defined theoretical framework has only been considered very re«
Here, the environment of the robot is assumed to be a simple or multiply connected pBlygahthe
robot is assumed to have access to its local visibility polygone., all the points that are visible from
its position via a range sensing device (for example, a sonar or a ladar). The robot is also assu
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have a compass so that it knows its orientation. The first task of the robot is to determine its pc
placements withirP, that is, allp € P such that the visibility polygon op equalsV. Guibaset al.
provide a data structure that allows efficient enumeration of all such positions [9].

If more than one placement exists, then the robot has to travel to certain points of the polygo
allow it to distinguish between the different placements. Of course, it is always possible to find &
that uniquely identifies the true position of the robot; for instance, if the robot follows the boundary
and the holes oP, then all interior points are visible at some time to the robot and it can localize ea
However, the robot should not travel much farther than necessary. In order to measure the perfor
of a localization strategy we employ the framework of competitive analysis [1T](jif P) is the
length of a shortest path to localize a robot “waking” in polyd®dat positionp, a strategySis called
c-competitivef the length of the path traveled by a robot using strat8gy at mostc timesL(p, P),
for all possible polygon® and pointsp € P. The valuec is called thecompetitive raticof S.

There have been two approaches to the localization problem. The first by Dudek, Romanil
Whitesides [7] (see also [15]) considers the full complexity of the problem and utilizes a decompo:
of the polygonP into visibility cells such that the same set of verticedois visible from each point
in a cell. This decomposition is used as the underlying structure for a simple strategy where the
repeatedly travels to the closest point that eliminates at least one of the possible placements. It
to show that if there ark possible placements, then the strategg-ompetitive (Corollary 4 in [7],
Lemma 7 in [11]). Furthermore, K < /n, wheren is the number of vertices of the polygon, then
can be shown that is the best competitive ratio possible [7].

The second approach, proposed by Kleinberg, leaves aside all concerns raised by the visibility
ture of P and abstracts the combinatorial nature of the problem [11]. In this context two types of
ronments are considered: undirected bounded-degree trees embedded-dirttemsional Euclidean
spacelE? (called geometric trees) and rectangle packings in the plane. In these environments the
has no use of vision other than to know the orientatiok fhof all edges incident to its current location
The robot is constrained to move on edges and vertices. In the 2-dimensional problem one migh
of the vertices as locations on a map and the edges as routes connecting these locations. For g
trees Kleinberg provides a strategy with a competitive ratio @f%/3), wheren is the number of vertices
of degree greater than two, and for rectangle packings a strategy with a competitive W),
wheren is the number of rectangles.

Kleinberg also provides a lower bound @f./n) for the localization problem in geometric trees
which is illustrated by the example in Fig. 1. If the true placenseof the robot is at the bottom of
the dth spike to the right of spike, where/n < d < 2,/n, then a localization strategy has to eithe
explore all spikes betwedrands or travel to one of the end pointg or g, of the base of the tree. In
each case the total distance traveled by the rob@tig while the shortest path to localize the robot i
the path frons to t, which is of length at most3n + 1.
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FIG. 1. A geometric tree for which every on-line localization strategy is no better @{a/m)-competitive.



226 FLEISCHER ET AL.

In this paper we consider only bounded-degree geometric trees as environments, and we
a new localization strategy LPS (Localize-by-Placement-Separation) that has a competitive r
O(/N). The first and last steps of our strategy are essentially the same as in KleinBéng’s)
strategy. However, in the middle steps we explore periodic patterns in the tree to eliminate &
O(4/n) possible placements of the robot by traveling no more tB&yn) times the length of a shortes
path to localize the robot. In view of the example in Fig. 1 our strategy is optimal up to a constant f
and, hence, settles the asymptotic complexity of on-line robot localization in trees, thus solving ar
problem posed by Kleinberg.

Another important problem in robotics is searching for a target in an environment [2-6, 10,
If a map of the environment and the position of the target on the map are given, but the robot'’s pc
on the map is not given, then Fig. 1 again provides an example 6f(a/m) lower bound for the
competitive ratio of an on-line strategy. We show that our approach can be used to obtain a st
that solves the searching problem with a competitive rati® @§/n), which is optimal up to a constant
factor.

The paper is organized as follows. In the next section we give formal definitions of the main geor
concepts used in the paper, and we give a list of notations. We then present a very rough outline
new strategy in Section 3 and discuss the first step of the strategy. In Section 4 we show how to ic
a critical path in the explored tree that will then be used to guide the further exploration of the r
The heart of our strategy is contained in Sections 5 and 6, where we show how to expand the ¢
known to the robot so that most of the possible placements can be efficiently eliminated. Sec
then shows that the remaining placements can be eliminated in a greedy fashion. In Section 8 w
how to adapt our strategy to searching for a target in a geometric tree. Finally, in Section 9 we |
short description of an implementation of our algorithm, and we conclude with some open proble
Section 10.

2. DEFINITIONS

In this section we define some of the notation that we use in the paper. The environments tt
consider for robot localization are geometric trees.

Derinimion 2.1, A geometric tred = (V, E) is a tree embedded into tidedimensional Euclidean
spacelE® such that each € V is a point inlE® and eacte € E is a polygonal path whose end point
lie in V. The paths oE intersect only at points i, and they do not induce any cycles.

We assume that the degreeTofs bounded by a constatt. We say a vertex of is nondegenerate
if it has a degree greater than two. Téigeof T, denoted by|T|, is then defined as the number c
nondegenerate vertices ©f

It is easy to see that in every (geometric) tiethere is a nondegenerate verigysuch that after the
removal ofvs each of the remaining subtrees has size at HI0st2. The vertexvs is called thesplit
vertexof T.

As in Kleinberg’s work, we assume that the robot knows its current orientation, is able to me
the distance that it has traveled, and has no use of vision other than to know the orientation of all
incident to its current location. Since the closest nondegenerate vettexbe reached by performing
a two-way spiral search that travels at most nine times the distance from the robot'’s original loc
to v [1], we assume that the robot’s initial “wake-up” positifiris located at a nondegenerate verte
of T. We call the possible wake-up locations of the rogblacements. We denote the set of placemel
by P. P is not a static set, the more the robot learns about its environment the fewer vertice
be placements. In the beginnifyequals the set of all vertices whose incident edges have the s
orientation asp. It is the robot’s task to determing by traveling from its wake-up position ifi and
collecting enough information to rule out all other placements.

In order to describe the motion of the robot we assume that the robot has a local coordinate syst
is relative to the robot’s wake-up position; that is, the origof the local coordinate system correspont
to pinthe global coordinate system. We use standard vector addition and scalar multiplication to c
translations and scalings; that ispifand 8 are realsyp is a vector ands is ad-dimensional set, then
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spr(u,v) = spr(w, x) * spr(y, 2)

FIG. 2. Pathspr(u, v) is isomorphic tespy (w, X) but not tospr (y, 2).

av+ BS={av + Bs|s € S}. In particular,y + P is the pathP translated by, i.e., the path starting
at nodev.

2.1. Paths

We use the standard definition of the length of a polygonal path (usingzimerm) for the length
A(P) of a pathP as the sum of the lengths of its links. We g (p, g) to denote the unique simple
(shortest) path from point to pointq in the treeT . Thedistancebetweenp andq, denoted byl (p, q),
is defined as the length ap; (p, g). Since the robot is often directed to travel along a nonsimple p
in T (for example, when it explores a part 6fusing depth-first search), for a nonsimple p&thvith
start points and end point, we use\(P) to denote the length traveled by the robot aggp to denote
the length ofsp; (s, t). The concatenatiorof two pathsP; andP; is denoted byP; * P,, where we
assume that the paf®, is translated such that its start point is the end poir®?of

We say that pattP; is isomorphicto pathP, if some translation ofP; is equivalent toP, and all
edges adjacent to any vertex Bphave the same orientation as the edges adjacent to the correspol
vertex onP; (see, for example, Fig. 2). We wrif®, = P, in this case. We say that pafh equalspath
P, if P, = P, andP; starts and ends at the same point®asWe write?; = P, in this case.

If P is a directed path arkl> 1 is an integer, then the-repetition ofP, denoted byP¥, is the path
formed by concatenating togethercopies ofP in succession. If 6< 7 < 1, thenP® is the subpath
of P beginning at its start point with length equal#®(P). If « > 1,k = |«], andr = « — k, then
P = Pk %P7, P~1 denotes the path from the end pointto its start point.

Note that even if? is a simple pathP* may not be (see Fig. 3). In this caB& induces aomb-tree.
A tree is called a comb-tree if it is a geometric tree and there are simple @adinslS such thatQk
is a simple path and the tree is the union@f (the baseof the tree) and the seks(t — s) + S, for
1 <i < m,where 0= k; < --- <kn=k are natural numbers argis the start point antl the end
point of Q (see Fig. 3). Then paths of the tree isomorphic $are calledspikes.

2.2. Periodic Paths

If Pis a path such tha® = Q“, fora > 1, thenP is called aperiodic pathandQ is called gperiod
of P. The numbet is called theperiodicity of P w.r.t. Q. If « is an integer, the is called arintegral
period of P. If P is a path inT that starts with a vertex ar@ is a period ofP, thenQ starts and ends
with a vertex.

i

P P9

FIG. 3. A pathP such thatP? is not a simple path. The paf®® is a comb-tree with bas@® and spikesS, (t — s) + S,
2(t—s)+S,and 3(t—s) + S.
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Note that a periodic path may have several different periods. But we will show below that given
of periods{Qy, ..., Qn} of a periodic patlP, there is a unique maximal length peri@dbf P thatis an
integral period of each periog;. The periodQ is called thegreatest common period 604, ..., On}.
Its length is the greatest common divisor of the lengtt@;) (if they are scaled appropriately). The
results in this section do not only hold for simple periodic paths, but also for nonsimple periodic |
such as paths that induce comb-trees.

We start by considering two periods of a periodic path. But the lemma can easily be extended t
of paths{Qy, ..., Om}.

Lemva 2.1. LetQ; and Q, be two paths and le® be an integral period 00, and Q,. If R is the
greatest common period @f; and Q,, thenQ is an integral period ofR.

Proof. We haveQ; = Q% = R for some integerk;, I;, wherek; > |; fori = 1,2. SinceR is the
longest integral period of; and Q,, |; andl, must be relatively prime. AlsdR = Q&/1) and thus
(k1/11) = (ka2/12). Sincel; andl, are relatively prime, this equation only holds whetis a multiple of
li, and thus (K/I;) is an integer, which proves the claimm

Since finding the greatest common period of two periods of a path is analogous to finding the g
common divisor of two integers, the proof of the following lemma is similar to Euclid’s algorithm
finding the greatest common divisor of two integers.

Lemma 2.2. LetP C T be a path that starts with a vertex.df; and 9O, are two periods of® such
that P = Q7' = 93°, for some numbers;, , > 2, then there exist two unique nonnegativeatively
prime integers kand k and a periodQ of P such that\(Q1)/A(Q2) = ki/ke, and Q; = QK for
i = 1,2. The pathQ is the greatest common period @f and Q,.

Proof. As indicated above, the proof follows the same ideas as used in Euclid’s algorithm75ir
starts at a vertex and has periodicity greater than 1 w.r.t. @e#ind Q,, the path€d; and 9, start and
end in a vertex. Assume w.l.o.g. that > «y; i.e.,, A(Q2) < A(Q1). Then,Q; is a period ofQ; since
0, = Q%Z/‘“. Letk be the largest integer such that(Q,) < A(Q1). Note that ifkA(Q,) = A(Q1) then
Q= Q‘g; hence, if we lelQ = 9,, k; = k, andk, = 1, then we are done.

If kKA(Q2) < A(Q1), then there is a & © < 1 such thaQ; = Q% * Q5. Let Q3 = Q5. Q3 is isomorphic
to an initial part ofQ, and a final part o, (see Fig. 4a). In particula@s starts and ends with a vertex
And sincer < 1, Q3 contains fewer vertices thad,.

We claim thatQ3 is a period ofQ,. It is easy to prove by induction th@‘3 is the initial part ofQ,
for anyi >0 such thai\(Qig) <X(Q2). Asindicated in Fig. 4bQ3 is the initial part ofQ, and thus also
the initial part of @, (because boti®; and Q, are an initial part ofP), so it is repeated right after its
first occurrence; i.e.Q% is the initial part ofQ,, and so on.

If Q3 is not an integral period o, then we can repeat the process that we use@jfoand Q,
with @, and Q3 to find a smaller period of)3, and we can continue until we eventually find a pgh
that is an integral period afx_; and Qx_», for somek > 2. We know that the process halts becau
Q; always contains fewer vertices th&j_q, fori > 2. SinceQ; = Qiﬂl * Qjio, forl<i<k-2and
some integef; > 1, Ok is also an integral period @&; and Q.

Since we have found some integral period@f and Q,, there must also exist a longest integr
periodQ, i.e., the greatest common period. By Lemma 2Imust be a multiple ofy.

Since Q is the greatest common period ¢f; and Q,, Q';‘ = Q;, i =1, 2, for two nonnegative,
relatively prime integerk; andk;. Also, A(Q1)/A(Q2) = kiA(Qk)/ koA (Qk) = ki/ko. =

Qs
L _|4 _— _I_ _L |4 I‘ . 03
2 Q 2 N
L wll J L i %
1 (a) G (b)

FIG. 4. Qgisa period ofQ, andQ;.
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In the proof above, it is actually not difficult to see tliat= Q. LetG = gcp(Q:, Qo) be the greatest
common integral period of; and Q,. Assume thad; = G4 for some integer&;, i =1, 2. To show
that O = G, we only need to show that the recursive equation @epQ,) = gcp(Q, Qz) holds. We
first show tha is an integral period of gc@lz, Qs). SinceGkt = Q1 = (G*)X x O3, Q3=Gglak g
is an integral period 003, and by Lemma 2.1§ is also an integral period of gc@g, Q3). Similarly
we can show that gcp(£2 Q3) is an integral period off, so G=gcp(D., Q3) and therefored, =G.

Note thatin the above lemm&Q) = gcd(AL (D), A(Q2)) if A(Q1) and)r(Q,) are scaled to be integers
Observe also that it is necessary f@ito contain vertices in order for the lemma to be true. Suppo
for example, thaP is a straight line segment of lengthr Zontaining no vertices. Then a line segmel
Q; of lengths and a line segmer@®, of length 2 would both be periods &f, but there is no path that
is an integral period of bot®; andQ,. Lemma 2.2 can also be extended to a set of periods of dpatl

Lemma 2.3. If PisaperiodicpathandQ, ..., On}isasetof periods oP such that the periodicity
of P w.r.t. eachQ; is greater than or equal to twahen there exists a unique perig@ of P, called
the greatest common period @ w.r.t. {Q;, ..., Qn}, such that

(i) Qisanintegral period ofQ;, forall 1 <i <m, and
(i) if Ris anintegral period oL, forall 1 <i < m, thenR is also an integral period 0.
Proof. The proof is by induction om. For m= 1 the claim is trivial. Assume that it is true for all
sets containingh — 1 periods, and letQy, .. ., Qn} be a set ofm periods. By the induction hypothesis
there is a period?’ of P with the desired properties w.r{tQs, ..., Om_1}. By Lemma 2.2 there is a

greatest common periad of @, andQ’. SinceQ is the longest integral period &’ andQ,, itis also
the longest integral period of al};, 1 < i < m, and thus part (ii) holds by Lemma 2.1m

CoroLLARY 2.1. If P is a periodic path andQ;, ..., Qm} is the set of all periods of? such that
the periodicity of P w.r.t. eachQ; is greater than or equal to twahen there exists a unique longes
period Q; of P such thatQ; is an integral period of;, forall 1 <i <m.

2.3. Notation

The following is a summary of some of the notation we use in the paper. Note that the last four
are introduced in the next section.

e T—the geometric tree where the robot is located.
e n—the number of nondegenerate vertice of
e sp;(u, v)—the unique shortest path betwaeandv in T.

® A(P); rspip—the length of patlP; the length of the shortest path from the start to the end pc
of P.

e p—the robot’s wake-up position if.

e P—the set of possible placements of the roboT ifshrinking during the localization).

e T—the geometric tred& in the robot's local coordinate system (5 T).

e (O—the origin of T (corresponds t@ in T).

e Te—the part ofT explored by the robot in the robot’s local coordinate system.

e TSl _the part ofT explored by the robot in Step 1.

e o—alower bound on the length of a shortest path to localize the robot found in Step 1.
e U—the set of p-vertices ifex (see Section 4.1).

3. ANEW STRATEGY FOR ROBOT LOCALIZATION

Our localization strategy consists of five main steps. The following pseudo-code gives a |
impression of how the strategy works. It mainly serves as a guide through the subsequent s
where each step will be explained in detail.
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Strategy Localize-by-Placement-Separation (LPS)

Input: A geometric tre€l = (V, E) with n nondegenerate vertices and a wake-up position o
the robot;

Output:  The position of the robot ifT;

Variables: The set of placements;
The treeTg, that has been explored;

P < set of vertices € V whose incident edges have the same orientatidi as
Tex < {0}; )
Step 1: Perform a spiral search until eithi€g| = +/nor |P| < 2/n;
Translate the origin to the split vertex Ok,
TS Tex;
if |P| > 24/nthen
Step 2:Pyy < the set of all sparse placements and placements inducing a comb-tree;
P =P — Pyiy; ~
Identify a pathCex in TS containing all other placements;
Re < {(p.P)ePxP|pep+TSh
if Rer # ¢ then
Step 3: Extendc, to a periodic pattPe, with at least,/n vertices;
if Rer # 0 then
Step 4: Exten@Pey until Rer = 7;
Step 5: Eliminate the remaining placements and the placemePRts, insing a greedy strategy;
end Localize-by-Placement-Separation

It should be noted that in the above strategy Steps 1 and 5 are essentially the same steps ¢
strategy proposed by Kleinberg [11]. The only exception is that in Kleinberg’s strategy @S t@rtices
are visited by the spiral search in Step 1. After analyzing each step of the strategy we will be a
prove the following theorem.

Theorem3.1. Let T be a geometric tree. StratefS achieves a competitive ratio of ('n) for
localizing a robot in T.

Before we give the detailed description of each step we give a brief overview of the strategy.

Our goal is to use a simple greedy strategy (Step 5 of our strategy, see Section 7). For ea
of placements there is a shortest distinguishing path. So we could just explore these paths in 0
increasing length until we have identified the wake-up position. Unfortunately, this strategy is
k-competitive, wherd is the number of placements. So we can only use it if there are at@{qQéh)
placements. Otherwise, we must first reduce the number of placements before we can run the
Strategy.

Our algorithm runs in five steps. The pseudo-code was given above. Of course, the robot wou
at any time when it has identified its wake-up position. In the first step of the algorithm, the spiral s
(see Section 3.1), the robot explores its nearby environment by successive depth-first searches
the search depth is doubled after each iteration. One could imagine the robot’s wake-up position
center of concentric circles. The robot stops this exploration when it has visited at/feakfferent
vertices during the last iteration.

Then the robot moves to the center of the explored treespilievertex, and assumes that this was tl
wake-up position. This allows us to argue that either there are not many placements left (Corollal
or all placements lie on the same periodic path (Lemma 4.3). From the split vertex aﬁ}n«mﬁices
in the explored tree can be reached by traveling in any direction. If there are abfiga) placements
(for example, if no translation of the explored tree contains another placement, see Corollary 3.1
the robot switches to the greedy strategy whose competitive ratio is linear in the number of placel

Otherwise, after the spiral search the robot restricts its search to one long path, the periodic pe
Section 4.1), which depends on what it learned in the first step. It turns out that there is one periodi
thecritical path, containing most of the placements in the explored tree (see Section 4.2). Elimin
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these placements in Steps 3 and 4 leaves at @bgh) placements (Lemma 4.3 and Corollary 3.1)
that we can continue with the greedy strategy.

In Step 3 (see Section 5) the robot explores branches emanating from the critical path. The pa
branches is called theeriodic path. The robot stops either if the periodic path Yasvertices or if
there are no more critical pairs. A pair of placemenisy{) is a critical pairif p’ € p + Tex In that
case the robot continues with the greedy strategy.

In Step 4 (see Section 6) the robot extends the periodic path in the following way. Since the pa
at least,/n nodes, the periodic tree induced by thgr2repetition of the periodic path has at least 2
nodes. Therefore there are points cali@dmatcheshere the periodic tree and the treeliffer locally.
The paths to these mismatches are cathésinatch paths. It turns out that a certain collection of or
logn mismatch paths contains at least one mismatch path for each placement (Corollary 6.1). The
explores these paths in order of increasing length until it finds an initial mismatch (see Section
After finding this mismatch, the robot tries to find the shortest mismatch path. This is called Mism
Propagation and it is the most complicated part of the strategy. It will be described in Section 6.2.
the robot has found the path to the nearest mismatch there are no critical pairs left. After this the
starts the final greedy strategy (see Section 7).

3.1. Step 1: Spiral Search

In Step 1 of Strategy LPS the robot performs a spiral search [1] as follows. Starting at the ori
performs successive depth-first searches, each time visiting all points within distafi¢be origin
(where initiallyd is the length of the shortest edgeT™of and then doubling if it has not yet localized

itself. During the search the robot keeps track of the ngg of the explored sybtreféex and the set
P of all possible placements of the robot, i.e., the set opall T such thatp 4+ Tex € T. It continues

searching unti|Ted = J/nor|P|<2/n.If |P| > 2,/n, then the robot continues with Step 2; otherwis
it skips Steps 2—4 and only executes Step 5 (the greedy strategy).

If dis the current search depth, then the ball of ragius: d/2 aroundp has been completely
explored. Clearlyp is a lower bound on the distance that the robot needs to travel in order to loce
The distance traveled during the spiral search is at masy®d = 16A./ng = O(4/np) since the
maximum degree of each vertexis at magt 1]. We will show that the remaining steps of the algorith
can also be implemented such that the distance traveled is alQ5to).

After the spiral search the robot moves to the split vertenf fex and considers this vertex from
now on to be the origin, that is, all pointsin the local coordinate system of the robot are translat
to —vs + v. This allows us to argue that either there are not many placements (Corollary 3.1) «
placements lie on the same periodic path (Lemma 4.3). For simplicity, we also refer to the tran
explored tree a?f'ex. Note that the translation increases the maximum distance from the new orig
the farthest leaf off oy by at mostd, so the maximum distance from the origin to a leaffef is now
2d = 4o (which is also an upper bound on the diameteﬁgj. This fact will be used in Lemma 4.5.

Lemva 3.1. If p+ Tex CONtains No placements different fromfpr all p € P, then

. K+1 -
Up+Tad)| 2 —— e,

peP

where k= |P| and | is the number of connected components f »(p + Tex).

Proof. We prove by induction ok: If P’ is a set ok placements of some tréig (where the origin
of Ty is the split vertex ofTp) such thatp + Tg contains no other placements frd@i than p, for all
p € P, then

k41
[Tp| > — [Tol,

whereTp = Up€ o (P + To) andl is the number of connected componentJ pt
The claim clearly holds ik=1. If k> 1 then letP'={py, ..., p«}. Fori=1,...,kletT; =

Upep,_{m(p + To). Note thatp; ¢ T;.
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If there is an such that f + To) N Tj = ¥ thenp; + Ty is one of thed connected components ©f

and thus
k—1)+(1-1 k+1
[Te | = ITil + i + Tol > #2() | Tol + [To| = — [Tol.

Otherwise, eachp; + To overlaps with at least one other + To. Any pi + To is split intodeg(pi)
many components (subtrees)jifis removed. Sinc@& is acyclic there must be omesuch that only one
of thesedeg(p;) components overlaps with. But that component can have size at madst /2. Since
T; still hasl components we have

ITol _ (k—1)+] [Tol  k+1
Te| > |T; — > T —_— = —
[Ter] > [Ti| + > = > [Tol + > >

| Tol. [
CoroLLARY 3.1. Assume p'fexcontains no placements differentfromfgrall p € P. If|'fex| > /N
then|P| < 2/n.

Proof. Lemma 3.1 implies

and, thereforg,P| < 2/n. =

This suggests we should try to eliminate placements that are contained ifiex for some other
placementp. After we have done this we can continue with the greedy strategy.

4. STEP 2: IDENTIFYING A CRITICAL PATH

Let fg} denote the tree that has been explored in Step 1. If after Step 1 there are atleast two plac
p; and p, with p, € p; + fesxl, then in Step 2 the robot identifies a critical path'fg‘f, and in Steps 3
and 4 it travels along an extension of this path eliminating placements until there are nppgiss
left with p, € p1 + 'feil. We note that the robot does not need to travel to identify the critical path:
it must travel to explore it). In Steps 3 and 4 it will travel a distance of at r@gstne). After Step 4 at

most 2/n placements remain and the robot uses the greedy strategy to eliminate all placements b

4.1. The Critical Path of a Placement

We say a vertex € fg} is ap-vertexif there is a placemerg such that the node+ q in T is also
a placement. We denote the set of all p—verticeﬁj’n by U. We call a placemenp sparsdf p + 'IA'esxl
contains at most three placements (includp)ganddenseotherwise.

If U = {vq, ..., v} isasetok > 2 vertices ofT thenU’ induces a periodic pathi there is a path
Q such that, for all 1< i < k — 1, eithersp; (vi, vi+1) = Q" or spy(vi41, vi) = Q" for some natural
numberd;.

Kleinberg proved a crucial lemma stating that all placements that are contaipe¢ ﬁ_ﬁ} induce
either a simple periodic path or a comb-treepin- 'fesxl (and thus also iT) [11]. Note that a simple
periodic path is a degenerate comb-tree.

Lemma 4.1[11]. If pis aplacementin P then either the set of all placements that are containe
p+ TSt is equal tof p} or it induces a comb-tree in T.

If the placements irp + 'fgl induce a simple periodic path ih then we call it thecritical path Cp,
of p. This path corresponds to a path = —p + Cp in TS

Let Pyiv be the set of all placements contained in all he TSL,
or a placement on the spike of a nondegenerate comb-tree.

Lemma 4.2. |Pyiy| = O(/n).

wherep s either a sparse placemer
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tl

FIG. 5. If p andp’ were placements on spik&of a comb-tree in'fg)% then the translation of the path fromto t starting
at p’ and ending irt’ on the next spike would also exist, creating a cycle.

Proof. Analogously to Corollary 3.1 we see that at mogfréplacements can be contained in a
thep + fg}, wherep is a sparse placement.

If pis a placement inducing a nondegenerate comb-tre‘EeSx}nthen p lies on a spikeS of this
comb-tree. But then no other placement can lie ®fin 'fg(l); otherwise there would be a cycle
betweenS and the next spike of the comb-tree (see Fig. 5). Thudies at the end of a spike.
Since the origin of‘IA'eSXl is its split vertex, removingp would cut off at Ieast“? vertices from'fesx1
which are not p-vertices. Therefore there can be at mgst glacements on spikes of nondegenera
comb-trees. m

We will from now on ignore the placementsBy;, until we reach the greedy strategy. For simplicity
we also refer to the set of the remaining placements (dense and not on a comb-&ek }lais new set
P contains at mosO(,/n) placements we immediately proceed with the greedy strategy. Otherw
we must try to eliminate many placementsin

4.2. Computing a Unique Critical Path

For sparse placemengsand p’ it can happen thaﬁ!p and@p/ do not lie on the same periodic pat!
(see Fig. 6). But this cannot happen for dense placements.

T Teo
épl
P2 Ps3 pe | | 1
a Coa | | Cpa !
b e

FIG. 6. The pointspy, p2, ps, andp, are sparse placements Ty in T, and the critical patﬁp1 of p; does not belong to
the same periodic path as the critical pé) of ps.
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TS
Ra2
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23
b ‘
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o’ "
T
24
ds
2
ds
d; ds
2! 2] ! D2

FIG. 7. Two dense placements; and p, induce two different periodic patW§1 andR; in 'fe In this cased = d; for
i=1,...,4,by = ds, andb, = di = d, SOT&Y also contains the two dotted paths. Sige> dy, placingT! on p; would
create a cycle (not to mention that the dotted paths already form a cyf@)n

Lemma 4.3. If p and g are dense placements thég and@p/ are part of the same simple periodic
path inTSL.

Proof. The proof is by contradiction. Lep; and p, be two dense placements that induce tv
different periodic path®; andR, in TS (see Fig. 7). Sincgy + TS! (and p; + TSY) contain at least
four placements we can assume there are two placerpemsd p! to the right 0fp1 in pp+ TSl and
two placement$; and p;, abovep; in p2+T (we use “right” and “above” referring to Fig. 7 but o
course the picture could also be flipped or rotated)

Letd; = d(p1, py), d2=d(pj, pf), d3=d(p2, py), andds =d(p5, p3). Sincep; and p; are place-
ments, the pathg; + R, and p; + R, exist inT. Thus, the exploration if started ip would have
seen some initial part g} + R,. If the current origind was the original wake-up position where w
started the spiral search in Step 1 (i.e., explored the tree up to the same distance in all direction
we would have seen a subpath of lengthof R, starting atp; (or the full path, ifds + ds < dy).
Unfortunately, we moved the origin to the split vertexTof, after the spiral search. But wherever th
origin was originally, we must have seen a subpatﬁ@t’starting atp; of lengthd; = min{d,, d3 + da}
(either the original origin was to the right of the current origin, then we have seen at least a subp
lengthds + dg, or else we have seen at least a subpath of leaigth

Similarly, placingT S! on p; we must also have seen a subpatRgbf lengthd; = min{d;, d3 + da},
starting atp;.

Analogously, Ietdé_ min{ds, d; + d2} andd, = min{ds, d1 + do}. Let by = max{d;, d;} andb, =
matx{dl ds)}. ThenT contains a subpath dtl of lengthb; starting at dlstance m{dg, ds} from O
onR, and a subpath dk, of lengthb, starting at distance min{dd,} from 0 on R
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FIG.8. The explored tred S} andDgr. Cex = D, starts as.

In Fig. 7, these two new subpaths already form a cyclé'eﬁ*l which is impossible. But that is
not always the case. However, it must be the case that dithed; or b, > ds. In the former case,
pIacmgT on p; creates a cycle, and in the latter case, plad‘ﬁfgon p2 creates a cycle. But that is
|mp055|ble ]

We denote the simple periodic path'fr‘fx1 containing all p-vertices b¢. SinceC is periodic and
all p-verticesv € U correspond to dense placements, by Corollary 2.1 there is a unique integral p
D of C; i.e., for allv e U there is an integek with elthersprm(o v) = DX or spra(v 0) = DX. We
assume w.l.0.g. thd? starts at the origin. Let be the minimum integer such thatD") > A(C). Let
Der = DK where the start point chr is the origin (see Fig. 8). Since the dmmeteﬂ'@jL is at most 4
andk > 3, A(C) < 4o andA(Dy) < A(C) < 6o.

We call a pair of placementg( p’) a critical pair if p’ € p+ D¢. The set of all critical pairs is
denoted byR. A vertexv € C in Teis called acritical vertexif there is a critical pair p, p’) with
p’ — p = v. In the beginning the critical vertices are just the p-vertices. Our aim is to eliminate
critical vertices because then we can continue with the greedy strategy by Corollary 3.1 and the |
below.

Lemva 4.4, If R =W then(p + T 1) contains no placements different fromfpr all p € P.

Proof. The proof is by contradiction. Assume that, = ¢ and there are two placemergsand p’
with p' e p+ fesxl. Letv = p’' — p be the p-vertex that corresponds to the ppirf’). The pathP, from
the origin tov is thel-repetitionD' of the periodD of C for an integet. Sincer(C) > A(D'), either
p e p+ D or pe p + Der. Hence, eitherd, p) or (p, p’) is a critical pair—a contradiction.m

Since, for a critical pair§, p’) € Rer, by definitionp’ € p 4+ D, the following observation is
immediate.

Observatiomd.1. If (p, p') € Rer, thendr(p, p') < A(Dgr).

The robot now explores the pafbg, from the origin0 of Tex, returns td0, and then exploreB_2.
Note that this may remove some placements fidnin particular, if one of the two paths does not exi
all critical pairs will be eliminated and we can proceed with the greedy strategy. Wesnaket D2
the new origir0 of T 1 and accordingly translate all poinisn the local coordinate system of the robc
to —s + v. Note that a critical pair before the translation remains a critical pair after the translatio

We callD;, thecritical path Cey of TSI (see Fig. 8). The length @k is between 4x(and 61(Q <
240. SmceC is contained mTex , the number of vertices i—and, thus, irfex—is at mostO(/n). We
summarize the properties 6fx in the following lemma.

Lemva 4.5. The critical pathCe, of TS! has length at leas#(C) and at mosR4e. It contains at
most Q,/n) vertices.

The following observation follows directly from the fact thafk = Dé‘r = Cex and that, for each

p-vertexv, there exists an integé&f < k such that eithespfes)l((o, v) = DX or spres)l((v, 0) =

Observatiom.2. If (p, p') € Rer andv = p’ — p, thenspfesi(o, v) is a period ofCey.
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4.3. The Critical Period

Recall that by Observation 4.2 ifp(p') € Rer, thensps (0, p' — p) is a period ofCex with
dr(p, P') < AM(Der) < AMCex)/4. This gives rise to the following definition.

Derinimion 4.1, The greatest common period of the set

{sp: (0, p' — P) I (P, P') € Rer}

is called thecritical period of Cex W.I.t. R¢r and denoted bfPey.

Note that the critical period depends only®Bg,. The following simple observation follows directly
from the definition of the critical period.

Observatiod.3. ds(0, p' — p) > A(Dey), for all (p, p’) € Rer-
The following observation is based on the properties of periodic paths.

Levva 4.6. Let Qy be a subset oR,. If Dey is the critical period ofCex W.r.t. R and &gy is the
critical period ofCex W.I.t. Q¢r, thenDgy is an integral period of.x. That is,there is an integer k= 1
such thatfex = DK,

Proof. SinceQ. € Rer, Dexis an integral period of each pagh; (0, p' — p) with (p, p’) € Qer <
Rer- Thus by Lemma 2.1D is an integral period ofex, as claimed. m

One consequence of Lemma 4.6 is th@df changes, then it at least doubles in length (see Lemma
and Section 5.2).

5. STEP 3: EXPLORING A PERIODIC PATH

If there are critical pairs of placements left after Step 2 then the robot explores branches ema
from the critical pattCey in Step 3 until either it has found a nonsimple periodic pattvith at least
/N vertices or there are no more critical pairs. If there are no more critical pairs then there are a
2./n placements left (see Corollary 3.1) and the robot continues with the greedy strategy. Othe
the robot continues with Step 4 (Mismatch-Propagation).

After the robot has identified the critical pafl, in Step 2 of Strategy LPS, it considers th&
vertices ofT 3! sorted by increasing distance to the (new) origiof TSL. For each vertex, the robot
tries to visit its “neighbors” which are located at multiplesiaf, that is, at the end points of the patl
v+ DL, for1<i < 2k Foreach 1< i < 2k, it either succeeds in traveling to such a point or it fin
the first point at which the path to+ D, differs fromT.

To describe this strategy more precisely, we first define a few termsa: heta vertex inT andP
be a path inT. The closest point oP to v is called theP-baseof v. The pathS from the P-basev’
of v to v is called thespike ofv w.r.t. P. The path that is given by the part Bffrom its start point to
v’ concatenated witl * S~ and the remaining part @? is called the patiP augmented by (see
Fig. 9a).

Let v be a vertex infex andv’ be theCex-base ofv. There is an integdrand a 0< t < 1 depending
on the critical periodDe such that’ is the end point oDX, * DL Let D, be the concatenation of
DZ, with the spike ofv w.r.t. Cex. For an integer, the last point where the pat}, * D, is isomorphic
to a path inT starting at is called theabsoluteDL -neighborof v and is denoted by @ D.,. See
Fig. 9b for an illustration. Theelative DL -neighboris the last point where the pam, x DX, * D,
is isomorphic to a path i starting atp and is denoted by @, D.,. Note thati may be negative in
both cases. For relative neighbors we always have v @, DY In the rest of this section we only
refer to absolute neighbors if not mentioned otherwise. Relative neighbors will be used laf
Section 6.2.

From the start point ofe,, the robot explores a nonsimple pa& in T that shares the periodicity
of Cex W.I.t. R¢,. If the robot discovers irregularities in the exploration process, then it can use
irregularities to eliminate placements until the explored path is again periodic/gr.t.
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(b)

FIG. 9. Augmenting the pattP by the pointv: The robot follows the pat® from s to the P-base ofv’, travels tov and
back, and then follows the rest 8. (b) The absolut®X,-neighbors ofv, for 0 < k < 3, withv = v & DZ,. Note that @ Dey
is not a vertex.

Initially, Pex = Cex. The robot augmentBex by the vertices inl L. For each vertex in TSL, the
robot visits the (absoluté)’éfneighbormj of vfor0 < | < |A(Cex)/A(Dey)] and then updateB, R,
and Dey before examining the neighbors of the next vertex. It halts when eRleis empty 0rPe
contains,/n vertices.

The strategy for extending the critical path to a periodic path contaiffimgertices can be describec
as follows.

Strategy Periodic-Path
Input: T, P, and the explored tregS!;
Output: A periodic pathP in T that shares the periodicity 6%, w.r.t. R¢, and contains at least
/N vertices orR¢; = @;

Py < P; Ro < Rer; Po < Cex
let Dy be the greatest common period@f w.r.t. Ro;
let ag be the periodicity 0fex W.r.t. Do; ko < [ao]; Co < DI
let vy be the first unvisited vertex i SL;
i < O;
while |P/| < v/nand R; # ¥ do

/* Invariant 1—see below/

P <~ Pi;

for j < Otoki —1do

visitu; < v & D};
augmentP; by uj;

/* Update the variablgs*/

Pii<{peP|p+T5cTh

Riyr < {(p, P)eRi | p, P € Py}

let D; 1 be the greatest common period®fw.r.t. R 1;

letwj 1 be the periodicity of; w.r.t. Dj1; K11 < lajt1]; Ciy1 = Diﬂ*ll;
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Pi.1 < the part of P; from the origin to the end point df; . ;;
let vi ;1 be the next unvisited vertex RS
i <~i4+1;

end while

K <1

P < Pe; Rer < Ry Cex < Cy; Dex < Dy Pex < P

end Periodic-Path

5.1. The Correctness of Strategy Periodic-Path

We now prove the correctness of Strat&gyiodic-Path. In order to do so we make use of the notati
used in the algorithmic description of the strategy without explicitly defining it again. The while-|
has the following invariant.

INvaRIANT 1. k; is the largest integer such théliK is contained irCey.

Proof. The invariant clearly holds for = 0. So assume that the invariant holds up to iterati
i —1 > 0. Letk’ be the largest integgr such thal‘DJ is contained irCex. Clearly, k™ > ki. There is
some integen; > 1 with D”' ', = D; by Lemma 4.6. Hencd?k' = Dn‘ 1 S Cex Sincek;_; is the
largest integelj such that‘DJ _, Is contained irCey by the mvanantD"'k' - D, ;1 =Ci—1. HenceD'
is contained irCi_1 andk; > k* which proves the claim. m

We now argue that Strate@eriodic-Pathhalts. SinceR; # @, for 0 < i < x — 1, the following
result is a direct consequence of Observation 4.3. ForiO< « — 1,

A(Di) < AM(Dyr). 1)
Sincer(Cex) = 41(D¢r), EQ. (1) and Invariant 1 imply that, forall8 i <« — 1,
31(Der) < A(Df) = A(G). (2

By the definition ofCeyx ast:‘r only the second and third quarter @fx may intersecffg(l. Since(;
contains the first three quarters@j by Inequality (2), the-base of vertex; belongs ta’;. Hence,
thereisa O< j <k — 1 such thav; & Di' equalsy; and the number of visited vertices increases by
least one in each iteration of the while-loop. Thus, we have shown the following lemma.

Lemma 5.1. The number of iterationg of the outer while-loop is bounded RJyn.
At the end of StrategiPeriodic-Path e is set taC, . Inequality (2) now implies the following result.
Lemma 5.2. If R, # 0, theni(Cey) > 3A(Dqr) after Strategy Periodic-Path.

We will show that after each iteration of the while-loop the pRths periodic w.r.t.R;. Moreover,
if Q; is the greatest common periodBf w.r.t. R;, thenispqy = A(D;). We first show the existence of
a greatest common period Bf w.r.t. R;. Let (p, p’) be a critical pair irfR; withv = p’' — p € C; and
P, the part of P; from its starting point ta.

Lemma 5.3. Thereis any > 1with PY = P;.

Proof. LetC, be the shortest path from the originiioBy Observation 4.2 there is an> 1 such
thatC% = C;. SinceP, containsC,, P¢ reaches the end point 6f. We claim thatP? = P;. The proof
is by contradiction. Assume thatis the first point orP; wherePy andP; differ. SinceP, is an initial
part of P;, u occurs aftew onP;.

Letu” = u — v. Note thatu’ is reached befora by both’P; andP;. There are two possible case
why P¢ andP; may differ atu. Eitheru’ is not locally isomorphic ta in 7, that is, not all edges @,
incident tou” have the same orientations as the edge®; oficident tou (note that inPY u’ is clearly
locally isomorphic tau), or there is an edg€ incident tou’ which is explored at’’ for some distance
but its translate at is not explored (or vice versa).
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FIG. 10. The pathsp; (0, u’) is isomorphic to the patsps (v, u) in P;.

We first show that! is locally isomorphic tau. Sincep and p’ are placementsp + sp; (0, u’) is
isomorphic top’ + sp; (0, u’) in T. Furthermore, since corresponds to the location pfif pis mapped
to the origin,p’ 4 sp; (0, U") is isomorphic tov + sp; (0, u’) = spz(v, u) in P;. Thereforesp; (v, u)
is isomorphic to the explored part sp; (0, u’) in P; (see Fig. 10). The pathp; (0, u’) is completely
explored inP; since otherwise the first point 94 whereP_ andP; differ is beforeu. Sincesp; (v, u)
is clearly isomorphic tep; (0, u’) in P, P andPy are locally isomorphic at.

Now suppose there is a (partially) explored edgthat is incident tal’, but the edge incident tou
that has the same orientationeiss not explored. Let’ be the end point of the explored parteéfand
1< j <i be the first iteration such thétbelongs to the path from the origin taaneighbor ofv; .

We show that’ +v belongs to the path from the origin to a neighbpep D', for some 1< 1 <k; —1.
Note thatt’ + v is aC,-neighbor oft’. Since 1< j < i, Observation 4.2 and Lemma 2.3 imply the
there is an integdrwith D'J = C,. Thus, sincd’ is visited in iterationj, all theC,-neighbors ot’ in
P; are also visited in iteration. In particular,t’ ® D' is visited in iterationj sinceC; < C; and the
Cex-base oft’ @ D' equals th&e,-base ofu which belongs ta;.

Hence, therei |s an edgéncident tou that is partially explored and isomorphicge—a contradiction.
If there is a partially explored edgsincident tou that is not explored at’ a similar argument applies.
Since we reach a contradiction for either case, the claim follows.

Lemmas 2.3 and 5.3 now lead to the following corollary.

CoroLLARY 5.1. A greatest common perio@; of P, w.r.t. R; exists and is well definedor all
0<i<«k.

Proof. Let(p, p’) e Ri,v=p — p,C, be the shortest path from the originipandP, be the part
of P; from the origin tov. The claim follows from Lemma 2.3 if we can show tﬁa&is contained irP; .

By the deflnltlon of a critical pair¢, is contained ifD,. Inequality (2) now implies that? is a
subpath ofD :

Letv’' be the end point of2. v’ also equals the end point 2. SinceP* = P, for somex > 1,
andP; contamSD P2 is aIso contained i, and the claim now follows by Lemma 2.3m

In the following letQ; be the greatest common period/afw.r.t. R;. Next we show that the shortes
path& from the start point to the end point ¢f equalsD;.

Lemma 5.4. If & is the shortest path from the start point to the end poinPafthenD; = &, for
alo<i <«.

Proof. If (p, p) is a critical pair and = p’ — p, then& is an integral period of the shortest pat
from the origin tov since Q; is an integral period oP, by the definition ofQ;. By Lemma 2.3 this
implies that there is ¢ > 1 with 5J Di. Hence, if p, p') is a critical pairand = p’ — p, thenQJ
is also an integral period @%,. SinceQ. is a greatest common period w.{R, | v = p' — p where
(p, P) € Rer}, ] = 1and& =D; as claimed. m
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Hence, after the while-loop is exited either the p&this periodic w.r.t.R¢ by Corollary 5.1 and
contains at leasy/n vertices orR, = ¥. Together with the observation that the loop halts, this proy
the correctness of Strate§griodic-Path.

5.2. Analysis of Strategieriodic-Path

In the following we investigate how far the robot travels during the execution of Str&egydic-
Path. We first investigate how far the robot travels to vigitneighbors ofy; that are vertices. Since
the while-loop is exited onc®; contains,/n vertices, the total number of visited neighbors that &
vertices for iterations 0< i < « — 1 is 4/n. In the last iterationc — 1 the robot visits at most as
manyD, _i-neigbors ofv, _; as there are vertices {hy. By Lemma 4.5 the number of verticesdpy is
O(/n). As the distance to visit @; -neighbor ofv; is bounded by the diameter 6§ U TS! which is
O(p) we have shown the following lemma.

Lemma 5.5. The distance traveled by the robot to visit @|-neighbors ofy; that are vertices
summed over all iteratiol@ < i <« — 1is O(,/no).

Not necessarily all of th®;-neighbors ofv; are vertices; in fact, none of them may be a vertex
except fory; itself. Yet the robot may have to travel a distanc&xgp) for each of theD;-neighbors of
vi. But we can show that the total number of nonvexneighbors ofy; visited by the robot is also

bounded byO(/n).

Lemma 5.6. If f; is the fraction of neighbors; ® Dij that are vertices off, then ispq,,) >
[1/1i1 Asp(q), forall 0 <i <« — 1.

Proof. By Lemmas 5.4 and 4.6 there exists an integesuch that)" = Q;; andD™ = Dj 4.
Since, foreach & j < ki —1, there is &;-neighbor ofy; that is visited by the robot ang; .1 contains
m; D;-neighbors ofy; by Lemma 5.4, the number d?i’-neighbors ofv; that are vertices irQ; 1 is
exactly fm;. There is at least one vertex @, ; that is isomorphic te;, sinceQ; 1 is a period ofP; 1
andP;,; containsy;. Therefore,fim; > 1 orm; > 1/f;. Asm; is an integer we havey, > [1/fi]. =

Lemma 5.7. Summed over all iterations the robot visits a total of at most Q/n) D;-neighbors of
v; that are not vertices.

Proof. The numberky of Dy-neighbors visited in the first iteration is at most A2 smceT
contains/n vertices and the length @k is at most 12 times the diameter df?. If k; neighbors are
visited in iterationi of which fik; are vertices, thenaspq,,) > [1/fi1Aspg) by Lemma 5.6. Hence,
the number of neighbors visited in iteratior- 1 is at mosk; / [1/f;] and the number of nonvertice:
visited is at most (- fi 1)ki/ [1/fi1. Note that this is 0 iffi;; = 1. So letiy, ..., ik be the iterations
for which f;, < 1. Hence, the total number of visited nonvertices is no more than

- f
koz _U-h)

[l/f'\—l

Since[1/fi;] > 2, the above term is bounded by
ko1
Z 51 < 2k =24V

which proves the claim. =

Since the distance of ®;-neighbor ofv; is O(p), we can summarize the situation at the end
StrategyPeriodic-Pathas follows.

Lemma 5.8. The robot travels a distance of(Q'ng) during the execution of Strategeriodic-Path,
and after executing it either there are no critical pairs left or it has found a path that is periodic
w.r.t. R¢r and contains at leasy/n vertices oflT and at mos24,/n leaves that are not vertices of.
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6. STEP 4: EXTENDING THE CRITICAL PATH

If T were infinite then all placements could be the wake-up position after Step 3 and the perio
pathPex could continue to infinity. Bull is finite. Hence, if we concatenate together enough cop
of Pex then there will be many differences—mismatches—betweeh and the copies dPe. In the
following we show how to make use of these differences.

6.1. Identifying an Initial Mismatch

Let P, be the periodic path that is formed by concatenating togeigin] copies ofPe. Note
that the diameter P}, is O(v/NA(D¢)) = O(v/No). The treeT . induced byP;, contains at least 2n
vertices and, hence, there are at leagtrtices Wheré'* differs fromT In the following we show that
the robot can find an initial mismatcif by exploring at most logP| < logn vertices ofPg,. Onceq*
is found, the robot uses* as a seed mismatch to find mismatches that are closer and cldsentib
Rer = 9.

LeEmmA 6.1. There is a vertex in T* such that p+ SPy; (O v) € T, for at least one half of the
placements p in P.

Proof. LetW be the set of all pairsp, v) with p € P andv € T wsuch thatp + v ¢ T. For each
p € P, we denote the set of pairs W with first componentp by Wp Since|Wp| > |T .l — |Tl, the
sum over the cardinalities of all/, is given by

[P

W] = Z|Wp|>2(|T — [Tl = [PI(ITa = ITD.

peP

If W, is the set of palrs with second componenﬂhenzvd* (W, | = |W| > |P| (|T — |T|). Hence,
the average size of thé’ .| setsW, is at least

PI(IT&l —IT T P
IPI(IT& ||)=|F,|<1 ||> IPI
ITé Tsd) = 2

Therefore, there is at least one vertex fgx with W, | > |P|/2. =

If we apply Lemma 6.1 repeatedly and remove each time the set of placepnta P for which
a vertexv in T* is found such thap + SPr; (0 v) € T, then we obtain the following corollary.

CoroLLARY 6.1. There exists a seto\of [log |P|] vertices |nT . such thatfor each pe P, there is
a vertexv € Vg such that p+ SPrs (O vV)ZT.

Note that the vertices of Corollary 6.1 can be computed g'Veade without any additional
exploration by the robot.

In the following letCZ, be the path formed by concatenating,Z copies ofCe. We sort the vertices
in Vp according to thelr distance of thelf,-bases to the origin. The robot travels alaffgvisiting the
vertices inVo in sequence until the first vertex € T, is identified for whichsp; (0, v*) £ T.

Note that the distance of each vertex \j to C;, is at most 4¢ hence, the robot travels a distanc
of at mostA(C%) + 2logn4e = O(/ng) in order to identifyv*. Let g* be the last common point of
spféx(o, v*) andT. The pointg* is the initial mismatch the robot is looking for.

6.2. Strategy Mismatch-Propagation

Once we have identified the mismatgh it is our aim to find the closest mismatch/Ry. Before
we describe how to do so we need one more definition. Recalltfas the critical period o€ex. We
say a poiny’ in T is Decisomorphicto a pointq in T if there is an integefj such thaty’ = q @, Dix
andq'’ is the end point of the paiip+ D4

4 Here we make use of the definition of relative neighbor.
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FIG. 11. Sincerj = v & Ci‘l is Dex-isomorphic tov*, all D;j-neighbors o’ri_ betweerr; andq; are explored. This yields
the new point; ;1 and at least doubles the length of the greatest common pBtipdf C; w.r.t. R;.

The robot now returns to the origin and on its way it visits points that areDagtsomorphic to
v*, with g* being the first such point. It does so by looking at thgneighbors ofv* that are closer
to the origin. More precisely, the robot computes a sequence of mpiat§ andv; € fe"x, wherev; is
Dex-isomorphic tov* andg; is not. To compute; 11 andg; 1, givenv; andg;, the robot first visits the
pointr; = v & C.

There are two cases. tf is not Dey-isomorphic tov* (like g*), then the robot has found a mis
match that is closer t@.y, setsgi.1 = ri, viy1 to the end point of the path + Ce‘xl, and conti-
nues.

Otherwiser; is Dex-isomorphic tov*. The robot now explores all thBe,-neighbors of; between
ri andg;. This is exactly analogous to one iteration of StratBgyiodic-Path. After the exploration of
the Dey-neighbors the robot recomputes the critical paigg. Sincer; is Dex-isomorphic tov* but g
is not, the greatest common perid, of Cex W.I.t. R, changes; this implies that some pairsiig,
are eliminated. Among the explordeL-neighbors ofv* betweerr; andg, we choosey; ;1 to be the
closest one to the origin that is nBt-isomorphic tov*. We are done iR, = 0.

The strategy of the robot can now be described as follows. Figure 11 illustrates the algorithm.

Strategy Mismatch-Propagation

Input: The tre€T, the set of placemenfB, the periodic path®ey, Cex, and the points* andv*;
Output: A set of placement® such thatRy = 7;

1. Py« P;Ro <« Rer; Qo < g% vp < v
2. letDg be the greatest common periodd@f w.r.t. Ro;
3. letag be the periodicity 0€e,W.r.t. Dg; ko < ag); Co < DI;
4. | < 0;
5. while Rj # @ do
/* Invariant 2—see below/
6. visitr; < v @ ¢
7. if rj is Dex-isomorphic tov; (andv*)
8. then for j < 1tok — 1dovisitr; @ D/;
9. let j* be the smallest index such thatp, Di'* is not isomorphic ta;;
10. Gy < @& D _
11. vi11 < the end point of the path + D} ;
12. else g1 < ri;
13. vi 11 < the end point of the pathy + CS};

/* Update the variablesk/
14. Pii<{pePR|p+Tx< T}
15. Riv1 < {(p,P)€Ri | p, P € Pl
16. letD;; be the greatest common period®fw.r.t. R;1;
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17. letai 41 be the periodicity o€} W.r.t. Diy1; kist < lais1l; Gy < DI
18. i <~i4+1;

end while
19. P« P;

end Mismatch-Propagation

6.3. The Correctness of Strategy Mismatch-Propagation

We only have to show that the algorithm halts. In order to do so we make use of a potential fur
@ and show thatb is bounded from below and reduced by a constant amount in each iteration ©
outer while-loop.

As in Section 5.1 we see that the following invariant holds for the while-loop of Stratégyatch-
Propagation.

InvariaNT 2. k; is the largest integer such thm-ki is contained irCey.

The invariant again implies Inequality (2) which we state again for completeness. For all iterati
except the last one

3M(Der) < A(DF) = A(C). 2

Letd; be the distance of th& -baseqg* of g; to the origin; that isd; = d+ (0, ). The potentiakb;
in iterationi is given by

whereiq = A(D¢r). We first show thatd; is reduced in each iteration by at least.

Lemma 6.2. For all iterations i,
(bi - q)i+1 > Acr-

Proof. Consider iteration of the outer loop. If; is not Dey-isomorphic tov;, theng; 1 = r; and
g, is adistance of(C;) closer to the origin thag*. Hence ®; — ®;j 1 > di —di1 = A(Ci) > 3A(Der)
and®; is reduced by at leagt, in this case.

Now assume that; is Dex-isomorphic tovi. Let m; be the integer such thzirim‘+1 contains the
C:-base of, uy, the end point o, andU; ,; the set of p-vertices that are given by = p' — p
with (p, p’) € Ri+1. Furthermore, lefP;, be the path starting aiy,, to the end point ofDim“rki
augmented by th®;-neighbors of;.

Ifthe vertexv is inugy, +Ui 41, then the parP, of P4 fromup, tov is aperiod ofP; 11 by Lemma5.3.
Sinceispp) < Aer andi(Ci) = 3ic, we obtain that the period 6%, w.r.t. P, is at least two as in
the proof of Corollary 5.1; hence, a greatest common pegipad of P;1 W.r.t. Rj,; exists and is well
defined. As in Section 5.1 it can be seen that; is the shortest path from the start point@f,, to
the end point o, . ;.

As i1 is the closesD;-neighbor ofr; that is hotDey-isomorphic tov; andQ; 1 is a period of the
pathPi.1, Q41 contains both; andg;;1. Moreover, since th€; -bases of; andq;;1 are separated
at least byD;, Aspq,,) > A(D;). Hence, by Lemmas 4.6 and 5.4 there is an intéger 1 such that
Di+1 = D¥. Therefore A(D;)/A(Do) — AM(Di+1)/M(Do) = (kK — D)A(Di11)/A(Do) and ®; is reduced by
atleast (k— DA > Aer. W

Note that®; is at most.(C%) = O(/Ni¢r) in the beginning. We show that there is a lower bound f
®;, that is, that; is bounded from below ant(D;)/A (Do) is bounded from above. The latter is eas
to see sinc®; is at most as long a&x and the periodicity of . W.r.t. Dg is bounded by the number of
vertices inCex Which is O(4/n). In the next lemma we show thdt is nonnegative which implies that
®; is bounded from below b§2(—+/NA¢).

Lemma 6.3. For all iterations i, d; > 0.
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Proof. Note that by definitior.(C;) < A(Cey). Hence, the robot cannot skip over the periodic pe
Pex In ONe iteration. So assume that there is an iterdtiench that; belongs toPey; otherwise,d;
clearly remains positive. We show that in this c&ge, = ¢ andl is the last iteration of the while-loop
by Observation 4.1.

Sincer; belongs tPgy, it is Dex-isomorphic tov* (sincePey is periodic w.r.t.Dex andv* belongs to
Pzr). Let P be the path followed by the robot in iteratibnSinceDey is an integral period oDy by
Lemma 4.6, allD;-neighbors of| that are visited in iteratiohand belong tdPe, are Dey-isomorphic to
v*. Hence g .1 occurs after the end §%,.

Now assume thaR, . ; # ¥ and let (, p’) € R;41- By the definition ofD, there is & > 1 such that
Dl = sp; (0, v) wherev = p' — p.

Sinceq 1 =1 & D| ,aII verticesr; @ D, with 0 < j < j* areDeyisomorphic tov*. Sinceq .1
does not belong td?ex butv belongs taCex € Pex, j* > k.

Letr* =r & Dl K r+is Dex-isomorphic tov*. Consider the shortest pasip: (0, r*) from the
origin tor*. Sincep’ is a placement, the patp’ + sp; (0, r*) belongs toT. Moreover, sincep is a
placement and belongs tCe,, the path

(p+sp;(0, v)) * (P +spp(0,1r™)) = p+ (Sp (0, v) * Spp (0, 1)) = p+spp(0, v +r7)

is contained il and its end point i®q,-isomorphic tov*. But, thenv +r* £ g 41 IS theD, -neighbor
of r;, a contradiction. m

Lemmas 6.3 and 6.2 together with the upper boungégaf O(,/ni¢; ) imply that Strategyvlismatch-
Propagationhalts. More precisely, we have the following result.

CoroLLARY 6.2. The number of iterations of the outer loop is bounded Ify/0).

6.4. Analysis of Strategy Mismatch-Propagation

Now we consider the distance traveled by the robot. We divide the distance the robot travels int
parts.

The distancé; that the robot travels along, from q* toward the origin,
the distancé, that the robot travels to visit thg-neighbors in Step 6,
the distancés that the robot travels ofi, in Step 8, and, finally,

the distancé, that the robot travels to visit tHB; -neighbors in Step 8.

A owbdpP

The distancé; is bounded byO(,/ng) + 83 since the robot always travels toward the origin except
Step 8 in which it travels towarg*. Since the length of, is bounded byO({/ng) and each time the
robot travels o}, towardg* in Step 8, it travels at most the same amount toward the origin again.
bound ons; follows.

Since the number of iterations of the outer loop of Strateliymatch-Propagations bounded by
O(4/n) by Corollary 6.2 and the robot visits exactly afieneighbor at a distance of at mogt # C, in
each iteration, the distandg is bounded byO(,/ng). For the same reason the distadgés bounded
by O(+/ne) since in each iteration the robot travels at most a distance of Pa(@©(o) towardg*.

Finally, we bound the distan@g. Assume that in iterationr; is Dex-isomorphic tov; in Step 7. As
we observed in the proof of Lemma 6.2, this implies that; = DX for some integek > 1; that is,
the length of the critical period at least doubles, and, therefore, the periodidyvef.t. D;, is at
most half of the periodicity of; _; w.r.t. D;. SinceCex cOntains at mosD(,/n) vertices, the periodicity
of Cex W.I.t. Do (=Dey) is at mostO(4/n) and the robot executes the steps of the if-statement in Ste
at mostO(log ./n) times. As above, each;-neighbor has a distance of at mostt C, and, hence,
we only need to estimate the number@dfneighbors that are visited. Let the iterations in which tl
if-statementin Step 7 istrue bg i1, ..., im andk;; be the number oD;; -neighbors that are visited in
this iteration. We observed above tat, is at least twice as long &3;,. Hencek;,,, < k;, /2, for

lj+1 —
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0 < j < m— 1. Therefore, the total number &% -neighbors that are visited is bounded by

m m i
Sk, < k(%) < 2k, < O(VA)
i—0 =0

sincek;, = O(4/n) as we observed before. Hendg= O(,/ng).

This completes the analysis of Stratddismatch-Propagatiomnd shows that the robot travels &
mostO(4/ng) during its execution. SincR. = @ at the end of Step f+ 'fgl contains no placements
different from p by Lemma 4.4. We know therefore by Corollary 3.1 thAt < 2./n, so we can
continue with Step 5, the greedy strategy.

7. STEP 5: GREEDY ELIMINATION

We enter this step if the set of placemeRtgnow again including the placemer®g;, that we had
excludedin Section 4.1) has si# = O(+/n). In order to eliminate the remaining placements the rok
visits the closest poirg such that at least one placement is eliminated. Sik¢@, q) is no more than
the shortest distance to localize the robot, a repeated application of this procedure eventually elin
all placements but one with a competitive ratio of at @4t

THeOrREM7.1[7,11]. If |P|= O(y/n) then the greedy strategy localizes the robot with a competit
ratio of O(4/n).

8. SEARCHING FOR A TARGET IN A TREE

As was pointed out in the Introduction, we are also interested in the searching variant of the pr
where a robot has to find a targetarked on the map of the environment, but the robot is not giv
its wake-up position. We also apply Strategy LPS, except with a slightly altered Step 5. Note tha
Step 1 ift is not reached, then the distance between the wake-up positibtthe robot and is at
leasto. Hence, after Step 4 the robot has traveled a distan@(¢fndr (s, t)) and there ar& < 2,/n
possible placements for the robot and thysossible locations, . . ., t, of t in T. In Step 5 the robot
now repeatedly attempts to visit the closest possible target atapng , ty until the true location of
the target is identified. Obviously, the robot travels at most a distancg/pi2(s, t) in Step 5. This
proves the following theorem.

THEOREM8.1. Let T be a geometric tree and t be a point in T. There is a strategy that achiev
competitive ratio of @,/n) for a robot to find t given the coordinates of t in T.

9. IMPLEMENTATION

We have also implemented the algorithm, usBwg+ andLEDA[12]. The algorithm is embedded in
OnVis, a system for visualization of online algorithms developed at the MPI. As it turns out, a |
robot should not run the algorithm exactly as described in the previous sections but instead it
use shortcuts at various points [8].

e Before starting each depth-first search in Step 1 the robot computes the explored tree. |
is no new information in distanak which means no further placements can be eliminated by explot
the neighborhood within distanck the robot leaves out the current distadcand continues with@

If the computed tree has sizgn and at least/n vertices lie in the ball of radiud, we can finish the
spiral search.

e There may also be directions that provide no new information in the current distance c
already completely explored. For the robot it is needless to travel these paths.
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¢ While computing a unique critical path the robot should not follow a jgathat is a subset of
the explored tredy.

¢ In the StrategyPeriodic-Paththe robot can omit vertices that are already known.

¢ In the greedy elimination step the robot does not need to travel back from the closesj; pc
to the origin, but moves directly to the next pofi ; if it could not localize.

¢ In addition the testing of the explored trég on the placements could be done whenever \
extendTey.

10. CONCLUSIONS

We have presented a new localization strategy for an autonomous mobile robot. The enviro
of the robot is represented by a geometric tree of constant degree in arbitrary dimensions. We «
that the robot knows its current orientation and it has no use of vision other than to be able to
the orientation of all edges incident to its current location. Our strategy, which solves an open pr
posed by Kleinberg [11], achieves a competitive ratid®gf/n) if the tree containg nodes of degree
greater than or equal to three. Since there is a geometric tree that provides a lower b@{ghpf
for the competitive ratio of any localization strategy, our strategy is optimal up to a constant facto
also show that a slight modification of our strategy solves the problem of searching for a targe
geometric tree with the same competitive ratio.

Challenges that remain for future work are to transfer the strategies developed for geometric t
the more realistic setting of polygons in the plane and to investigate the complexity of the localiz
problem in graph structures that allow cycles.
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