Fuzzy Groups

AZRIEL ROSENFELD

Computer Science Center, University of Maryland, College Park, Md. 20742
Submitted by L. A. Zadeh

1. INTRODUCTION

The concept of a fuzzy set, introduced in [1], was applied in [2] to generalize some of the basic concepts of general topology. The present note constitutes a similar application to the elementary theory of groupoids and groups.

2. FUZZY SUBGROUPOIDS AND IDEALS

Let S be a groupoid, i.e., a set closed under a binary composition (which will be denoted multiplicatively). We recall that a fuzzy set in S is a function p from S into $[0, 1]$.

Definition 2.1. p will be called a fuzzy subgroupoid of S if, for all x, y in S,

$$p(xy) \geq \min(p(x), p(y))$$

It will be called a fuzzy left ideal, if $p(y) \geq p(x)$; a fuzzy right ideal, if $p(xy) \geq p(x)$; and a fuzzy ideal, if it is a fuzzy left and right ideal (or equivalently: if $p(xy) \geq \max(p(x), p(y))$).

Clearly a fuzzy (left, right) ideal is a fuzzy subgroupoid. Note that for any fuzzy subgroupoid in S we have $p(x^n) \geq p(x)$ for all $x \in S$, where x^n is any composite of x's. We also have

Proposition 2.1. For any $\theta \in [0, 1]$, $\{z \mid z \in S, p(z) \geq \theta\}$ is a subgroupoid or (left, right) ideal if p is a fuzzy subgroupoid or fuzzy (left, right) ideal.

Proposition 2.2. Let μ be into $[0, 1]$, so that μ is the characteristic function of a subset $T \subseteq S$. Then μ is a fuzzy subgroupoid or (left, right) ideal if and only if T is a subgroupoid or (left, right) ideal, respectively.
Proof. If μ is into $\{0, 1\}$, then "$\mu(xy) \geq \min(\mu(x), \mu(y))$" is equivalent to "$\mu(x) = \mu(y) = 1$ implies $\mu(xy) = 1$", i.e., to "x, y in T implies xy in T". Similarly, "$\mu(xy) \geq \mu(y)$" is equivalent to "y in T implies xy in T".

From now on we shall denote the characteristic function of T by φ_T.

3. THE LATTICES OF FUZZY SUBGROUPOIDS AND IDEALS

We recall that inclusion of fuzzy sets in S is defined as follows: $\mu \subseteq \nu$ means $\mu(x) \leq \nu(x)$ for all $x \in S$. Clearly the set of all fuzzy sets in S is a complete lattice \mathcal{L} under this ordering. We shall denote the sup and inf in \mathcal{L} by \cup and \cap, respectively. The least and greatest elements of \mathcal{L} are the constant functions 0 and 1. Note that these functions are just φ_S and φ_S, so that they are fuzzy ideals (and in particular, fuzzy subgroupoids).

Proposition 3.1. The \cap of any set of fuzzy subgroupoids is a fuzzy subgroupoid.

Proof.

$$[\cap \mu_i] (xy) = \inf[\mu_i(xy)] \geq \inf[\min(\mu_i(x), \mu_i(y))]$$

$$= \min(\inf \mu_i(x), \inf \mu_i(y)) = \min([\cap \mu_i] (x), [\cap \mu_i] (y)).$$

It follows (e.g., [3, Prop. 16.1]) that the fuzzy subgroupoids of S are also a complete lattice. In this lattice, the inf of a set of fuzzy subgroupoids μ_i is just $\cap \mu_i$, while their sup is the least μ (i.e., the \cap of all μ_i's) which $\supseteq \cup \mu_i$.

More generally, we have

Definition 3.1. The fuzzy subgroupoid (σ) generated by the fuzzy set σ is defined as the least fuzzy subgroupoid which $\supseteq \sigma$.

Proposition 3.2. $(\varphi_T) = \varphi_{(T)}$, where (T) is the subgroupoid generated by T.

Proof. If $\mu \supseteq \varphi_T$ we have $\mu = 1$ for all $x \in T$; but since μ is a fuzzy subgroupoid, this implies $\mu = 1$ for any composite of elements of T, so that $\mu \supseteq \varphi_{(T)}$. Thus $\varphi_{(T)} \subseteq \cap$ of all such μ's; while conversely, $\varphi_{(T)}$ itself is such a μ by Proposition 2.1.

Thus the subgroupoid lattice of S can be regarded as a sublattice of the fuzzy subgroupoid lattice of S.

Proposition 3.3. The \cap or \cup of any set of fuzzy (left, right) ideals is a fuzzy (left, right) ideal.
Proof.

\[
[\cap \mu_i](xy) = \inf[\mu_i(xy)] = \inf[\mu_i(y)] = [\cap \mu_i](y),
\]
and similarly for \(\cup \) and on the right. \\

Thus the fuzzy (left, right) ideals of \(S \) are a complete sublattice of \(L \). The analog of Proposition 3.2 for ideals requires additional assumptions about \(S \). For example, if \(S \) is a semigroup (i.e., its composition is associative) and has a left identity, then the left ideal generated by \(T \subseteq S \) is just \(ST \); in this case it is easily seen that the fuzzy left ideal generated by \(\varphi_T \) is just \(\varphi_{ST} \).

4. Homomorphisms

We recall that if \(\mu \) is a fuzzy set in \(S \), and \(f \) is a function defined on \(S \), then the fuzzy set \(\nu \) in \(f(S) \) defined by

\[
\nu(y) = \sup_{x \in f^{-1}(y)} \mu(x) \quad \text{for all } y \in f(S)
\]

is called the image of \(\mu \) under \(f \). Similarly, if \(\nu \) is a fuzzy set in \(f(S) \), then the fuzzy set \(\mu = f \circ \nu \) in \(S \) (i.e., the fuzzy set defined by \(\mu(x) := \nu(f(x)) \) for all \(x \in S \)) is called the preimage of \(\nu \) under \(f \). Readily, if \(\mu = \varphi_T \), then the image of \(\mu \) under \(f \) is just \(\varphi_{f(T)} \); and if \(\nu = \varphi_W \) (where \(W \subseteq f(S) \)), then the preimage of \(\nu \) under \(f \) is just \(\varphi_{f^{-1}(W)} \).

Proposition 4.1. A homomorphic preimage of a fuzzy subgroupoid or (left, right) ideal is a fuzzy subgroupoid or (left, right) ideal, respectively.

Proof.

\[
\mu(xy) = \nu(f(xy)) = \nu(f(x)f(y)) \geq \min(\nu(f(x), \nu(f(y)))
\]

\[= \min(\mu(x), \mu(y)),\]

and similarly for ideals.

We say that a fuzzy set \(\mu \) in \(S \) has the sup property if, for any subset \(T \subseteq S \), there exists \(t_0 \in T \) such that \(\mu(t_0) = \sup_{t \in T} \mu(t) \). For example, if \(\mu \) can take on only finitely many values (in particular, if it is a characteristic function), it has the sup property.

Proposition 4.2. A homomorphic image of a fuzzy subgroupoid which has the sup property is a fuzzy subgroupoid, and similarly for (left, right) ideals.
Given \(f(x), f(y) \) in \(f(S) \), let \(x_0 \in f^{-1}(f(x)), y_0 \in f^{-1}(f(y)) \) be such that

\[
\mu(x_0) = \sup_{t \in f^{-1}(f(x))} \mu(t), \quad \mu(y_0) = \sup_{t \in f^{-1}(f(y))} \mu(t),
\]

respectively. Then

\[
v(f(x)f(y)) = \sup_{Z \in f^{-1}(f(x)f(y))} \mu(Z) \geq \min(\mu(x_0), \mu(y_0))
\]

and similarly for ideals. \(\Box \)

If \(f \) is any function defined on \(S \), and \(\nu \) is any fuzzy set in \(f(S) \), then the image of the preimage of \(\nu \) under \(f \) is just \(\nu \) itself, since

\[
\sup_{x \in f^{-1}(f(y))} \nu(f(x)) = \nu(y) \quad \text{for all } y \in f(S).
\]

Conversely, if \(\mu \) is any fuzzy set in \(S \), then the preimage of the image of \(\mu \) under \(f \) always \(\supseteq \mu \), since

\[
\sup_{x \in f^{-1}(f(x))} \mu(z) \supseteq \mu(x) \quad \text{for all } x \in S.
\]

We call \(\mu \) \(f \)-invariant if \(f(x) = f(y) \) implies \(\mu(x) = \mu(y) \). Clearly if \(\mu \) is \(f \)-invariant, then the preimage of its image under \(f \) is \(\mu \) itself. It follows (e.g., [3, Theorem 18.4]) that \(f \) is a one-to-one correspondence between the \(f \)-invariant fuzzy sets in \(S \) and the fuzzy sets in \(f(S) \). Similarly [3, Theorem 26.5] for the \(f \)-invariant fuzzy subgroupoids in \(S \) and the fuzzy subgroupoids in \(f(S) \), provided that the former have the sup property.

5. Fuzzy Subgroups

Definition 5.1. If \(S \) is a group, a fuzzy subgroupoid \(\mu \) of \(S \) will be called a fuzzy subgroup of \(S \) if \(\mu(x^{-1}) \supseteq \mu(x) \) for all \(x \in S \).

It is readily verified that

Proposition 5.1. \(\varphi_T \) is a fuzzy subgroup if and only if \(T \) is a subgroup.

Proposition 5.2. The \(\cap \) of any set of fuzzy subgroups is a fuzzy subgroup.
PROPOSITION 5.3. The fuzzy subgroup generated by the characteristic function of a set is just the characteristic function of the subgroup generated by the set.

PROPOSITION 5.4. Let μ be a fuzzy subgroup of S; then $\mu(x^{-1}) = \mu(x)$ and $\mu(x) \leq \mu(e)$ for all $x \in S$, where e is the identity element of S.

Proof. $\mu(x) = \mu((x^{-1})^{-1}) \geq \mu(x^{-1}) \geq \mu(x)$; hence

$$\mu(e) = \mu(xx^{-1}) \geq \min(\mu(x), \mu(x^{-1})) = \mu(x).$$

COROLLARY. $\{x \mid \mu(x) = \mu(e)\}$ is a subgroup.

Proof. Use Proposition 2.1.

We shall denote this subgroup by G_μ.

PROPOSITION 5.5. $\mu(xy^{-1}) = \mu(e)$ implies $\mu(x) = \mu(y)$.

Proof.

$$\mu(x) = \mu((xy^{-1})y) \geq \min(\mu(e), \mu(y)) = \mu(y)$$

$$= \mu((yx^{-1})x) \geq \min(\mu(e), \mu(x)) = \mu(x).$$

COROLLARY. μ is constant on each coset of G_μ.

COROLLARY. If G_μ has finite index, μ has the sup property.

PROPOSITION 5.6. μ is a fuzzy subgroup of S if and only if $\mu(xy^{-1}) \geq \min(\mu(x), \mu(y))$ for all x, y in S.

Proof. If μ is a fuzzy subgroup we have

$$\mu(xy^{-1}) \geq \min(\mu(x), \mu(y^{-1})) = \min(\mu(x), \mu(y)).$$

Conversely, if $\mu(xy^{-1}) \geq \min(\mu(x), \mu(y))$, let $y = x$ to obtain $\mu(e) \geq \mu(x)$ for all $x \in S$; hence

$$\mu(y^{-1}) = \mu(ey^{-1}) \geq \min(\mu(e), \mu(y)) = \mu(y),$$

and it follows that

$$\mu(xy) = \mu(x(y^{-1})^{-1}) \geq \min(\mu(x), \mu(y^{-1})) \geq \min(\mu(x), \mu(y)).$$

PROPOSITION 5.7. A group cannot be the \cup of two proper fuzzy subgroups.
Proof. Let \(\mu, \nu \) be proper fuzzy subgroups of \(S \) such that \(\mu(x) = 1 \) or \(\nu(x) = 1 \) for all \(x \in S \). Let \(u, v \) in \(S \) be such that \(\mu(u) = 1, \nu(v) < 1 \), \(\nu(v) = 1 \), and consider \(uv \). If \(\mu(uv) = 1 \), then since \(\mu(u^{-1}) = 1 \) we would have \(\mu(v) = \mu(u^{-1}(uv)) \geq \min(\mu(u^{-1}), \mu(uv)) = 1 \), contradiction; and a similar contradiction is obtained if \(\nu(uv) = 1 \).

PROPOSITION 5.8. A homomorphic image or preimage of a fuzzy subgroup is a fuzzy subgroup (in the former case, provided the sup property holds).

Proof. For preimages,

\[
\mu(x^{-1}) = \nu(f(x^{-1})) = \nu(f(x)) = \nu(f(x^{-1})) = \mu(x).
\]

For images, given \(f(x) \in f(S) \), let \(x_0 \in f^{-1}(f(x)) \) be such that

\[
\mu(x_0) = \sup_{t \in f^{-1}(f(x))} \mu(t);
\]

then

\[
\nu(f(x)^{-1}) = \sup_{z \in f^{-1}(f(x))} \mu(z) \geq \mu(x_0^{-1}) \geq \mu(x_0) = \nu(f(x)).
\]

PROPOSITION 5.9. The fuzzy (left, right) ideals in a group are just the constant functions.

Proof. Clearly if \(\mu \) is a constant function, it is a fuzzy ideal, since \(\mu(xy) = \mu(x) = \mu(y) \) for all \(x, y \) in \(S \). Conversely, let \(S \) be a group and \(\mu \) a fuzzy left ideal, so that \(\mu(xy) \geq \mu(y) \) for all \(x, y \). Putting \(y = e \) gives \(\mu(x) \geq \mu(e) \) for all \(x \), while putting \(x = y^{-1} \) gives \(\mu(e) \geq \mu(y) \) for all \(y \); thus \(\mu = \mu(e) \) is a constant function.

PROPOSITION 5.10. Let \(G_p \) be the cyclic group of prime order \(p \), and let \(\mu \) be any fuzzy subgroup of \(G_p \); then \(\mu(x) = \mu(1) \leq \mu(0) \) for all \(x \neq 0 \) in \(G_p \), and conversely any such \(\mu \) is a fuzzy subgroup.

Proof. For any such \(\mu, \mu(xy) \geq \min(\mu(x), \mu(y)) \) is immediate since \(00 = 0 \), and \(\mu(x^{-1}) \geq \mu(x) \) is immediate since \(-0 = 0 \). Conversely, for any \(x \neq 0 \) and \(y \neq 0 \) in \(G_p \), \(x \) is a sum of \(y \)'s and \(y \) a sum of \(x \)'s, so that \(\mu(x) \geq \mu(y) \geq \mu(x) \).

REFERENCES