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TO THE EDITOR
Dowling-Degos disease (DDD (MIM
179850, MIM 615327)) is an autosomal
dominant form of a reticulate pigmentary
disorder. Affected individuals develop a
progressive and disfiguring post-pubertal
reticulate hyperpigmentation and small
hyperkeratotic dark-brown papules,
which mainly affect the flexures, great
skin folds, trunk, face, and extremities.
We previously identified loss-of-func-
tion mutations in keratin 5 (KRT5)
(Betz et al., 2006) in fewer than half of
our DDD patients, and just recently we
described mutations in POGLUT1,

which explain about one-third of our
DDD cases (Basmanav et al., 2014).
POGLUT1 encodes protein O-glucosyl-
transferase 1 and is part of the Notch
signaling pathway. Li et al. (2013)
recently reported mutations in POFUT1
(MIM 607491), encoding O-fucosyl-
transferase 1, also involved in the
Notch pathway, in two Chinese fami-
lies with DDD. Here, we report on the
clinical and molecular findings in eight
patients/families with DDD of different
ethnicities.

After excluding KRT5 and POGLUT1
mutations, we screened a total of 24

DDD patients for mutations in POFUT1
by Sanger sequencing. Ethical approval
was obtained from the ethics committee
of the Medical Faculty of the University
of Düsseldorf; the participants provided
written informed consent prior to blood
sampling. Patient consent was received
for publishing identifying informa-
tion and photographs. The study was
conducted in concordance with the
Declaration of Helsinki Principles.

In sporadic cases from Germany
(n¼ 1), Poland (n¼1), and India
(n¼ 1) and familial cases from Denmark
(n¼ 1) and Germany (n¼1), we identi-
fied five different mutations, designa-
ted c.86G4A (p.Trp29*), c.718C4T
(p.Arg240Cys), c.785T4C (p.Met262Thr),
c.1067C4T (p.Ser356Phe), and
c.1096C4T (p.Arg366Trp) (Figure 1a,Accepted article preview online 17 September 2014; published online 23 October 2014

Abbreviations: DDD, Dowling-Degos disease; KRT5, keratin 5; POFUT1, protein O-fucosyltransferase 1;
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Supplementary Table S1, S2 online). We
also had performed exome sequencing
in two affected individuals of a Yemeni
family with seven members suspected to
be affected by DDD (pipeline described
in Basmanav et al., 2014). Analysis of
the data identified a stop mutation
(c.397C4T; p.Arg133*) in POFUT1 in
both individuals (Figure 1a,
Supplementary Table S1, S2 online).
By Sanger sequencing of DNA from
other family members, we confirmed
that the mutation segregates with the
disease phenotype. Subsequently, we
identified the same mutation in two
further, apparently unrelated, Yemeni
families, also segregating in an autoso-
mal dominant manner. Upon careful
analysis of the phenotypes associated
with each mutation (summarized in
Supplementary Table S1 online), we
noted a particular overlap in clinical
symptoms. The mutation p.Trp29* was
identified in the Indian sporadic patient
who was clinically evaluated for hyper-
pigmented skin lesions, which were first
noticed around 26 years of age. The skin
lesions gradually spread from the face to
the trunk and extremities with come-
dones in the inframammary folds and
axillae (Figure 1b). Of interest, there
were some hyperpigmented macules
and pits on the palm and palmar aspect
of fingers (pinpoint-like depressions)

(Figure 1b). Histopathological examina-
tion was consistent with DDD.

Another nonsense mutation
p.Arg133* was found in patients of the
three Yemeni families with all together
18 affected individuals, ranging from 18
to 50 years of age (Lestringant et al.,
1997). A female patient examined in
more detail had brownish, slightly
depressed macules and papules on her
face, which appeared at about 12–15
years of age. Brown macules were also
present on the dorsa of her hands and
fingers, feet and toes, on the flexor
aspect of her wrists, in her axillae, as
well as in her palmar creases starting
with skin colored pinpoint-like depres-
sions. Other lesions included breaks in
dermatoglyphics, facial and palmar pits,
and numerous leukodermic macules on
the outer aspects of both forearms. Her
older brother presented with similar
lesions but macules and papules were
more profuse and darker, also involving
the great folds, genitals, and waist
(Figure 1c). Leukoderma was also
present on his shins. Examination
of 16 further Yemeni patients revealed
identical findings. We hypothesize that
there is an age-related development
of cutaneous lesions. Initially, brown
macules occur around puberty, fol-
lowed by papules, in sun-exposed
acral skin regions and/or in those

exposed to physical stimuli like rubb-
ing and later developed proximally.
Leukoderma manifests at about 22–25
years of age.

The mutation p.Arg240Cys was
observed in a German female patient
who presented with hyperkeratotic red-
dish-brown papules on the upper and
lower legs, as well as the flexural sites of
the lower arms, which appeared at the
age of 51 years. The patient reported
that her father had similar symptoms,
which manifested at the age of 31 years.
Another missense mutation, p.Met262Thr,
was observed in a female Danish patient
who had developed skin lesions since
early puberty. In adulthood, she pre-
sented with reticulate dusky hyperpig-
mentation on her dorsal hands and feet,
elbows, neck, and intertrigines, includ-
ing, axillae, submammary region, and
inguinal folds (Figure 1e). She also had
melasma-like hyperpigmentation of her
face and subtle pits around her mouth.
Of particular note were multiple pits
and interrupted dermatoglyphics in her
palms (Figure 1e). A skin biopsy (neck)
showed changes compatible with reti-
culate acropigmentation of Kitamura
(RAK) as a continuum of DDD. The
patient’s affected mother showed similar
mottled hyperpigmentation as well as
perioral and palmar pits, but the skin
lesions had fainted substantially over the

c.86G>A (p.Trp29*) c.397C>T (p.Arg133*) c.718C>T (p.Arg240Cys)

POFUT1

c.785T>C (p.Met262Thr) c.1096C>T (p.Arg366Trp)

c.1067C>T (p.Ser356Phe)

Figure 1. POFUT1 mutations and clinical appearance of the patients. (a) All mutations are marked by arrowheads on the exon structure of POFUT1. (b) Indian

patient with hyperpigmented lesions on the face, axillae, and palmar aspect of fingers with pits. (c) Hyperpigmented lesions on the genitals of the Yemeni patient.

(d) Hyperpigmented papules on the trunk of the Polish patient. (e) Multiple pits and interrupted dermatoglyphics in the palms; and hyperpigmentation on the

axillae, neck, and elbows of the Danish patient.
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years and were hardly visible, particu-
larly in winter time. Her 22-year-old
daughter had multiple ephelides but no
reticular or mottled dyspigmentation.
The daughter and a younger brother of
the patient carried the same mutation.
As disease onset is late, they are expected
to develop DDD too. One unaffected
brother of the index patient did not carry
the mutation.

In a male sporadic Polish patient
carrying mutation p.Ser356Phe we
observed reddish-brown papules and
leukoderma on the trunk (Figure 1d),
armpits, inguinal/genital region, as well
as pits and interrupted dermatoglyphics
in the palms. Age of onset was at 48
years, accompanied by itching and
pain. In a sporadic male German patient
we detected the mutation p.Arg366Trp.
Clinically, he showed hyperpigmented
papules on the trunk, which manifested
at the age of 40 years.

The pathogenicity of the two non-
sense mutations p.Trp29* and p.Arg133*
identified here is beyond question as
they lead to premature termination
codons, which are either associated
with nonsense-mediated mRNA degra-
dation or formation of a largely non-
functional truncated protein. All of the
four missense mutations affect highly
conserved amino-acid residues, and
each one is predicted to be damaging
by SIFT (http://sift.jcvi.org/) and Poly-
Phen-2 (http://genetics.bwh.harvard.
edu/pph2/) tools with maximal damage
scores (Supplementary Table S2). We
further assessed the effects of the mis-
sense mutations by homology protein
modeling (Basmanav et al., 2014).
POFUT1 consists of 388 amino acids
(Wang et al., 2001). After cleavage of
the signal peptide, the mature protein
comprises amino-acid residues 27–388
and folds into two major domains. At
the interface, residues from the N-term-
inal and the C-terminal domains form a
deep substrate-binding pocket, in which
the substrate, guanidine 50-diphosphate-
b-L-fucose (GDP-fucose), is mainly
bound via the GDP moiety (Supple-
mentary Figure S1a). The diphosphoe-
ster group of GDP forms hydrogen
bonds to the side chains of residues
Asn46, Arg240, Ser356, and Ser357.
As a consequence, mutation Arg240Cys
presumably results in a largely reduced

affinity toward GDP-fucose and a con-
comitant decrease in enzymatic activity
of POFUT1, whereas mutation of
Ser356Phe abolishes the formation of
an important hydrogen bond of GDP-
fucose, most likely resulting in destabi-
lization of the protein (Supplementary
Figure S1c). Even more drastic is the
effect of the bulky side chain of Phe that
blocks the binding cavity and hampers
GDP-fucose binding (Supplementary
Figure S1c online).

The fucose moiety is oriented by
hydrogen bonds formed between two
hydroxyl groups of the fucose with the
side chain of Asn43 in POFUT1.
Furthermore, there are van der Waals
interactions of the fucose with side
chains of hydrophobic residues like
phenylalanine in Caenorhabditis ele-
gans POFUT1 that is replaced by a
methionine residue (Met262) in human
POFUT1. Mutation Met262Thr presum-
ably results in destabilization of fucose
binding and reduces the catalytic activ-
ity of POFUT1 (Supplementary Figure
S1b). The central b-sheet of the C-term-
inal domain of POFUT1 comprises five
strands. The last strand, formed by resi-
dues 373–376, directly follows helix 18
of the C-terminal domain. A narrow turn
is required to place the strand five
correctly and complete the b-sheet. This
turn is stabilized by the side chain of
R366. The guanidinium group forms
several hydrogen bonds to residues of
strand b12 and b13, stabilizing the turn,
as well as the b-sheet. Mutation of
Arg366Trp most likely leads to destabi-
lization of the C-terminal domain.
Especially, strands b12 and b13 are
affected and might destabilize the
entire central b-sheet of the C-terminal
domain (Supplementary Figure S1d
online).

In summary, we identified six patho-
genic POFUT1 mutations in DDD
patients of different ethnic origin. Two
of these are protein truncating muta-
tions, similar to those reported by Li
et al. (2013), and four lead to amino-
acid substitutions, thereby extending
the mutation spectrum of POFUT1. Of
interest, we observed the involvement of
the acral regions with hyperpigmen-
tation, palmar pits, and interrupted
dermatoglyphics as distinct clinical
features in patients with POFUT1

mutations, which differentiates them
from DDD patients with mutations in
KRT5 and POGLUT1 and illustrates a
phenotypic overlap with RAK (Griffiths,
1976). The previous observation of cases
with a certain clinical overlap between
DDD and RAK already caused a
controversy as to DDD and RAK either
reflecting a single disease entity with
variable phenotypic expression or two
distinct diseases (Cox and Long, 1991;
Lestringant et al., 1997; Thami et al.,
1998; Shen et al., 2011; Tang et al.,
2012; Kono et al., 2013). Our current
and previous findings (Basmanav et al.,
2014) suggest that a gene–phenotype
correlation exists in the diverse reticulate
hyperpigmentation disease spectrum,
which should be further delineated
on the basis of clinicial examination
and genetic analysis of more affected
individuals.
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TO THE EDITOR
Acne inversa (AI; also known as hidra-
denitis suppurativa; OMIM 142690) is a
chronic recurrent follicular occlusion
disorder. About 30–40% of patients with
AI exhibit a highly penetrant, autosomal
dominant mode of inheritance (Alikhan
et al., 2009). In many cases, AI patients
harbor heterozygous mutations in genes
encoding components of the g-secretase
complex, composed of presenilin (PS1
and 2), nicastrin (NCT), anterior pharynx
defective 1 (APH-1), and presenilin
enhancer 2 (PEN-2) (Wang et al.,
2010; Jurisch-Yaksi et al., 2013). PS is
the catalytic center of g-secretase that
promotes intramembranous proteolysis
of a number of membrane proteins,
including the amyloid precursor
protein (APP) and Notch 1–4, signaling
receptors essential for cell lineage
determination, cell proliferation and
survival. Activation of Notch signaling
occurs upon binding to the Delta/
Serrate/Lag-2 family of ligands on the

cell surface, leading to exposure of a
sequence near the transmembrane
domain that is a substrate of a metallo-
protease, ADAM 10. This ‘‘shedding’’
event generates the membrane-
tethered Notch extracellular truncation
(NEXT) that is then subject to intra-
membranous processing by g-secretase,
to generate the Notch intra-
cellular domain (NICD). NICD translo-
cates to the nucleus to form a complex
with a transcription factor, C-promoter
binding factor-1 (CBF-1), that binds
to CBF1-specific cognate DNA
sequences to regulate gene expression
(Fortini, 2009).

To date, 24 AI-specific mutations
have been identified in genes encoding
g-secretase components, and 19 of
these are in NCSTN, encoding nicastrin
(Supplementary Table S1 online). Most
mutations in NCSTN cause frameshift
and premature translation termination
as well as nonsense-mediated mRNA
decay, leading to significantly reduced

levels of NCT, findings which have led
to the proposal that AI is caused by
genetic haploinsufficiency because of
reduced g-secretase-mediated process-
ing of Notch and signaling in the skin
(Pink et al., 2013). Interestingly, four
missense mutations, V75I, D185N,
P211R, and Q216P, have been identi-
fied in the large ectodomain of NCT
(Li et al., 2011; Pink et al., 2012;
Zhang et al., 2013). These missense
mutations could potentially disrupt the
structure of this region and result in failed
assembly of the g-secretase complex,
leading to impaired activity. To test this
notion, we examined the activity of these
NCT variants in mediating Notch
processing and signaling.

We first coexpressed cDNAs encod-
ing the NCT missense variants together
with a constitutively activated mem-
brane-bound Notch 1 derivative (mNDE;
Schroeter et al., 1998) that is similar to
NEXT, in NCSTN-deficient (NCSTN� /� )
fibroblasts. mNDE is not subject to
intramembranous processing in the
absence of NCT (Figure 1a, lane 1),
but coexpression of wild-type NCT
rescues the generation of NICDAccepted article preview online 11 September 2014; published online 23 October 2014

Abbreviation: AI, acne inversa

X Zhang and SS Sisodia
NCSTN Missense Mutations of Acne Inversa

618 Journal of Investigative Dermatology (2015), Volume 135


	Pathogenicity Of Pofut1 In Dowling-degos Disease: Additional Mutations And Clinical Overlap With Reticulate Acropigmentation Of Kitamura����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
	To The Editor�������������������������������������������������������
	References����������������������������������������������




