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Emergence of a STAT3 mutated NK clone in LGL leukemia
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a b s t r a c t

Large granular lymphocyte (LGL) leukemia is a chronic clonal lymphoproliferative disorder. Here, a T-LGL
leukemia patient developed NK-LGL leukemia with residual leukemic T-LGL. TCRVβ usage and CDR3
sequence drifts were observed with disease progression. A STAT3 S614R mutation was identified in NK
but not T-cells in the mixed leukemic stage. Multiple, non-dominant T-cell clones with distinct STAT3
mutations were present throughout. Our results suggest that T and NK-LGL leukemia may share common
pathogenesis mechanisms and that STAT3 mutation alone is insufficient to bring about clonal expansion.
Mutational and immunological monitoring may provide diagnostic and therapeutic significance in LGL
leukemia.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Common clinical manifestations of large granular lympho-
cyte leukemia (LGL leukemia) include cytopenias, recurrent
infections, splenomegaly, and autoimmune disorders [1,2].
Diagnosis can be difficult, and is usually based on clinical
presentation, persistent peripheral LGL lymphocytosis, and
morphologic/immunophenotypic analysis [2]. For T-LGL leuke-
mia, a T-cell receptor (TCR) gene rearrangement study is
performed to confirm the presence of the monoclonal T-cell
population. Determining the clonality of NK-LGL cells is chal-
lenging. An abnormal killer-cell Ig-like inhibitory receptor
(KIR) expression pattern has been reported in some of the
NK-LGL leukemia patients, although this is not routinely
employed [3].

Chronic exposure to antigen or virus has been postulated to
be the initial trigger in LGL leukemia pathogenesis [4,5]. Recent
studies demonstrated that JAK/STAT pathway deregulation
may promote clonal expansion of the activated LGL population
[6,7]. To further understand LGL leukemia pathogenesis, we
identified a patient with a distinct clinical course. The CDR3
sequences, TCRVβ profiles, STAT3 mutation profile and the
underlying signaling pathway were examined throughout the
disease.

2. Materials and methods

The Institutional Review Board of Hershey Medical Center,
Pennsylvania State University approved this study. The patient's
peripheral blood mononuclear cells were collected between 2002
and 2013. For TCR deep sequencing, the TCR CDR3β regions were
amplified and sequenced by Adaptive Biotechnologies Corp (Seat-
tle, WA) using the ImmunoSEQ assay on cDNAs [8]. Data was
analyzed using the ImmunoSEQ analyzer toolset [9]. Real-time
quantitative PCR (qRT-PCR) was employed to examine the TCRVβ
profile, using primers and methods described previously [10],
except that SybrGreen (Life Technologies) was used and target
specificity was confirmed within the IMGT primer database [11].
Deep sequencing results for one clone were validated using PCR-
based CDR3 sequencing with primers designed from the IMGT
primer database (TBV9, 50-CAC TCT GAA CTA AAC CTG A-30; CB1A,
50-GGG TGT GGG AGA TCC TG(C)-30). Conventional Sanger STAT3
mutation testing was carried out as previously described by
Koskela et al. [7]. Primer pairs were designed to cover exons 20–
21 encoding the STAT3 Src Homology 2 (SH2) domain [6,7].
Droplet digital PCR (ddPCR) assays were designed to detect
individual mutations D661Y, Y640F and S614R. Assays were
designed to the following context sequences: D661Y GGATATTGG-
TAGCAT(A/C)CATGATCTTATAGCC, Y640F AGCTGCTGCTTTGTG(A/T)
ATGGTTCCACGGACT, and S614R GACGCCTCCTTCTTT(T/G)CTGC
TTTCACTGAAT. Assays were performed in duplicate on the
QX200 droplet reader and generator (Bio-Rad, Hercules, CA).
Western immunoblotting utilized antibodies to STAT3 (#9139),
pY705-STAT3 (#9131), MCL-1 (#5453) and GAPDH (#2118) (Cell
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Signaling, Danvers MA). Intensities of the protein bands were
determined using ImageJ software [12].

3. Results and discussion

3.1. Case summary

A 77-year-old male presented in 2002 with mild macrocytic
anemia and splenomegaly. Based on the peripheral blood mor-
phology, bone marrow biopsy, flow cytometry and positive TCR
gene rearrangement assay, CD3þ/CD8þ T-LGL leukemia was
diagnosed. The patient remained asymptomatic for the next nine
years. He did not require any therapy other than routine follow-up,
which showed stable blood counts (Table 1A). In 2011, his follow-
up CBC revealed worsening anemia and moderate neutropenia
with increased lymphocytosis. Repeated flow cytometry showed a
marked increase in the CD3�/CD16þ/CD56� population that
represents the NK-cell phenotype, with a smaller CD3þ/CD8þ
T-cell population. These results suggested that his leukemia had
evolved to NK-predominant disease with a residual of previous T-
LGL leukemia (Table 1A). Despite the progression of his leukemia,
he has remained asymptomatic and clinically stable to date, and
no treatment has been required. He has been monitored every
three months with CBCs showing stable cytopenias.

3.2. TCRVβ profiling and clonal CDR3 sequences throughout disease
evolvement

Antigen exposure has been postulated as the initial stimulus for
CTL expansion in T-LGL leukemia pathogenesis [4]. We employed
qRT-PCR to study the dynamic change of TCRVβ profile using
primers designed to amplify each of the human TCRVβ genes
(HBV) [10]. As shown in Table 1A, shortly after his initial diagnosis
there was a predominant expression in the TCRVβ9 region with
smaller expansions in the TCRVβ3 and TCRVβ21 regions. TCRVβ3
and TCRVβ21 usages persisted and later became predominant,
while TCRVβ9 expression was lost, revealing a drift in TCRVβ usage
that correlated with the T-LGL to NK-LGL phenotypic switch.

CDR3 is a hypervariable region on the TCR that is critical for
antigen recognition and clonal T-cell expansion. Sequencing of this
region in T-LGL leukemia was recently enabled by utilizing deep
sequencing technology [13]. Three CDR3 sequences were detected
at very high frequencies in the diagnostic T-LGL leukemia sample
of 2003 (Table 1B). All three clones persisted throughout the
disease; however, the clone represented by the CDR3 sequence
CASSTGDNQPQHF, which had the highest copy number initially,
was significantly decreased to an extremely low copy number
when the NK-LGL clone emerged. Meanwhile, the other two clones
became more dominant as the disease evolved, similar to oligo-
clonal TCRVβ distribution depicted in Table 1A. The CDR3

sequences identified in this case appeared to be unique compared
to the sequences reported in other T-LGL leukemia studies [13,14].

Clonal drift was previously reported in one third of T-LGL
leukemia cases, although it is not strongly associated with clinical
features [15]. The worsening of cytopenias, such as this patient's
anemia at later dates, implies an important role of clonal drift in
disease evolvement. Such drift may precede changes in the disease
course. Therefore, long-term immunophenotypic monitoring may
provide clinical relevance and guide medical management.

3.3. STAT3 mutation in NK-LGL leukemia during disease progression

It has been reported that 40–70% of T-LGL and 30% of NK-LGL
leukemia patients carry activating STAT3 mutations [6,7]. To
investigate whether a deregulated STAT3 pathway was associated
with the patient's disease progression, we searched for mutations
in the STAT3 SH2 domain before and after the T-LGL to NK-LGL
phenotype switch. A STAT3 S614R mutation was identified by
Sanger sequencing later in the illness in the NK-cells, but not the T-
cells (Fig. 1A, data not shown for early stage). An elevated
phosphorylated STAT3 level and an increase in its transcriptional
target MCL-1 were observed in the mutant samples (Fig. 1B),
consistent with enhanced transcriptional activity of the mutant
protein.

In order to determine if the S614R-mutated clone had been
present all along, we tested unsorted genomic DNA samples from
2003 and 2011 for S614R and for two common mutations Y640F
and D661Y by ddPCR. Both samples contained approximately
35,000 copies of the STAT3 locus, yielding approximately 9000
positive droplets for the wild-type allele. All reported positive
droplet and percentage counts for mutations (Fig. 1C) exceeded
the 1–2 positive droplets found in similar amounts of normal DNA
by at least 10-fold (not shown). S614R mutations were not
detected in the earlier sample (no copies mutated in a background
of roughly 35,000 wild-type copies). Small but non-negligible
amounts of D661Y and Y640F mutations suggested the presence
of 8.52% and 0.68% clones, respectively, assuming heterozygous
mutation. These contracted to roughly 0.1% (1:500 cells) in the
follow-up sample, shadowing the decrease in the T cell

Table 1A
Representative CBC and flow cytometry results, and TCRVβ clonality profile throughout the disease course.

CBC Flow cytometry TCRVß Usage

WBC ANC Lymph CD3 CD8 CD16 CD3� /CD16þ Vß3 Vß9 Vß21

103/mcL 103/mcL 103/mcL (%) # (%) # (%) # (%) # (%) (%) (%)

2003 8.4 2.9 4.5 88 3.9 68 3.0 23 1 ND ND 8.8 48.7 4.9
2004 7.1 2.1 3.5 ND ND ND ND ND ND ND ND 10.7 27.7 7.2
2011 9.0 0.9 6.9 33 3.0 23 2.1 68 6.1 67 6.0 29.4 4.0 14.8
2012 7.0 0.9 6.1 27 2.1 18 1.4 74 5.8 74 5.8 20.9 2.9 18.5

For TCRVβ profile, qRT-PCR was performed on cDNA synthesized from RNA extracted at different time points (as indicated) during the disease course. Percentage (%)
reflecting single family expression by the sum of all measured Vβ-families is shown here. ND: Not done.

Table 1B
The most frequent CDR3 sequences detected by deep sequencing and number of
unique sequences/total productive reads (%) in different disease stages.

CDR3
sequences

Immunodominant clonotypes

Vß3:
CASSQWYTQYF
(%)

Vß9:
CASSTGDNQPQHF
(%)

Vß21:
CARSSDRASYEQYF
(%)

2003 16.2 17.5 7.8
2012 33.0 0.5 15.8

The sequence of CASSTGDNQPQHF was validated by PCR-based sequencing.
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compartment. In contrast, S614R dominated in the follow-up
specimen with a mutation rate of 33.3% and a clone size of roughly
67%, which is identical to the CD3�/CD16þ population reported
in Table 1A. Therefore, this patient developed a dominant NK-LGL
clone harboring the S614R mutation, while a population of cells
with a strongly-activating Y640F mutation remained a minority
clone. This clearly suggests that the capacity of particular STAT3
mutations to drive clonal dominance cannot be predicted a priori,
rather it is likely to be dependent upon the genetic context of
these mutations such as co-existent activating mutations or loss of
suppressive checkpoint mechanisms.

STAT3 S614R was previously described exclusively in T-LGL
leukemia [6]. Our findings here not only complement the known
mutational mechanism for NK-LGL leukemogenesis, but also
suggest that T and NK-LGL leukemia can result from the same
underlying pathological process, with mutations in STAT3 able to
support the expansion of either cell type.

In 2009, the World Health Organization recognized a provi-
sional category of chronic lymphoproliferative disorder of NK cells
to distinguish it from T-cell LGL leukemia as well as aggressive
NK-LGL leukemia [16]. The clinical and molecular data presented

here suggests that this distinction amongst the chronic LGL
diseases may need to be reconsidered.
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Fig. 1. STAT3 S614R mutation identified in NK-cells during later disease course. (A) PBMCs from a single sample (collected 7/10/2012) were subjected to negative selection in
order to isolate purified T-cell and NK-cell populations. RNAs extracted from T-cell (left panel) and NK-cell (right panel), respectively, were used for RT-PCR to obtain cDNAs
for STAT3 sequencing. Sequencing chromatograms are shown here. Arrows indicate a C-A point mutation (S614R) that is only seen in the NK cell population. (B) Left panel:
Western blot analysis performed on cell lysates prepared from total PBMCs obtained throughout the disease course. Labels indicate dominant phenotype at the time of
sample collection on the indicated dates. Right panel: Histogram of normalized P-STAT3 Y705 intensity. Band intensity was measured using ImageJ and P-STAT3 Y705 signal
was normalized against total STAT3 level. Phosphorylation of STAT3 Y705 and levels of the STAT3 target MCL-1 increased as the disease progressed. (C) Mutation percentage
of PBMC DNA from sample collected in 2003 (left) versus 2011 (right) as determined by ddPCR. Bracketed numbers are the number of positive droplets for that mutation in
the assay.
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