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Many biochemical reactions are confined to interfaces, such as membranes or cell walls. Despite
their importance, no canonical rate laws describing the kinetics of surface-active enzymes exist.
Combining the approach chosen by Michaelis and Menten 100 years ago with concepts from surface
chemical physics, we here present an approach to derive generic rate laws of enzymatic processes at
surfaces. We illustrate this by a simple reversible conversion on a surface to stress key differences to
the classical case in solution. The available area function, a concept from surface physics which
enters the rate law, covers different models of adsorption and presents a unifying perspective on
saturation effects and competition between enzymes. A remarkable implication is the direct depen-
dence of the rate of a given enzyme on all other enzymatic species able to bind at the surface. The
generic approach highlights general principles of the kinetics of surface-active enzymes and allows
to build consistent mathematical models of more complex pathways involving reactions at
interfaces.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Cell membranes are ubiquitous in living systems. Collagen, the
most abundant protein in mammals, forms fibers in connective tis-
sues. Carbohydrate polymers like cellulose, chitin and starch are by
far the dominant sources of biomass on earth and fulfill important
structural and energetic functions. These are common examples of
aggregates, macromolecular entities made up by the interaction of
similar elements and defined by an interface towards their, typi-
cally aqueous, environment. Evidently, spatially heterogeneous
systems are the norm rather than an exception in biology.

Yet, surface-active (or interfacial) enzymes have not received
the same attention as their classical counterparts, enzymes acting
on dissolved compounds. This holds true especially for textbooks
and undergraduate curricula. The awareness of surface-active en-
zymes, of their pervasiveness and their characteristic features
seems to be rather low. However, by the very nature of their sub-
strates, lipases, collagenases and amylases cannot be understood
exclusively in those terms applying to classical enzymes. If cata-
lytic activity is confined to an interface, constraints not present
in aqueous solution become important [1]. This entails characteris-
tic protein domains, mechanisms and kinetic properties of surface-
active enzymes.

Probably, the chief reason for the lack of recognition of surface-
active enzymes is the lack of consensus. Although Michaelis and
Menten’s approach [2] cannot be used in every circumstance, it
captured the essence of enzymatic catalysis in solution and, by
advocating initial-rate measurements, provided a blueprint for
experimental design for years to come. A similar breakthrough
for surface-active enzymes is missing. There is no canonical kinetic
description although specific models [3–8] and conceptual treat-
ments [9–11] have been put forward. It is only consequent that
even recent authoritative treatments on enzyme kinetics [12] shy
away from discussing interfacial catalysis or do so only with a fo-
cus on special systems like membrane surfaces [13, Section 7.12].
Marangoni’s textbook [14, Ch. 10] and especially Berg and Jain’s
substantial contribution [1] are notable exceptions. The latter,
unfortunately, had a limited impact on the mainstream, apparently
due to the focus on membrane surfaces and lipases. While the frag-
mentation of disciplines is unavoidable and to a certain degree
necessary, we believe that this was at the expense of developing
a better conceptual understanding of surface-active enzymes.

As a contribution to this understanding, we propose to use gen-
eric rate laws for surface-active enzymes. Generic rate laws are
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useful to analyze characteristic properties for a given class of en-
zymes by deriving a mathematical form that is invariant towards
certain mechanistic details. At the same time a generic rate law
suggests the appropriate modification of a mathematical term in
the rate law whenever a concrete situation applies. For example,
Rohwer and Hofmeyr [15] discuss kinetic and thermodynamic con-
tributions to control by means of a generic rate equation.

In addition to in vitro characterization, the development of gen-
eric rate laws is also driven by attempts to model metabolic sys-
tems consistently if detailed mechanistic information is missing
or judged unnecessary [16–19]. Again, it is commonly acknowl-
edged that Michaelis–Menten-like rate laws alone are insufficient
to understand regulatory properties of enzymes and pathways.
Still, in recognition of Occam’s razor we are thankful having at least
a simple foundation onto which we can build, layer by layer, more
complexity as needed. Interfaces, in particular, force us to recog-
nize this additional complexity.

Many metabolic models evade a mechanistically correct
description of interfacial processes by treating aggregated sub-
strates as external (i.e. source or sink) or applying classical rate
laws to describe their turnover [20,21]. Both strategies become
insufficient if interfacial reactions are crucial to understand regula-
tory features. An impressive example emerged recently in plant
biology. Leaves of flowering plants store starch during the day to
provide sink organs with carbon during the night. This turnover
appears to be precisely controlled at different levels [22,23] but
intriguingly the insoluble nature of starch and enzymes acting at
its interface turn out to be crucial. Mutant plants lacking a native
starch interface or functional surface-active enzymes show less
capabilities to grow under stress and changing environments, con-
ditions which a sessile organism hardly can avoid.

2. Methods

Interfacial catalysis spans reaction spaces where different con-
centration measures apply. We propose some notational conven-
tions to reduce the burden of bookkeeping. Interfacial species are
typically denoted by an asterisk [1], a convention we will abide by.
Furthermore, it is convenient to distinguish between cis- (⁄X) and
trans-elements (U⁄) akin to the terminology used in gene regulation.
A cis-element denotes a species that is either a genuine component
of the substrate surface or originates from it. On the contrary, trans-
elements are diffusible species usually residing in the aqueous
phase. The notation for interfacial complexes is straightforward:
cis–cis complexes (⁄X+⁄Y ? ⁄XY), trans–trans complexes (U⁄ + V⁄
? UV⁄) and cis–trans complexes (U⁄ + ⁄X ? U⁄X). Square brackets
([�]) and angle brackets (h�i) denote concentrations per unit volume
and per unit surface area, respectively.

A biochemical rate law is a single equation describing the rate
of an enzymatically catalyzed reaction. Since these reactions are
made up of several chemical steps (association, dissociation, catal-
ysis) representing the mechanism of the enzyme, a rate law implies
certain approximations. These approximations allow to reduce the
set of ordinary differential equations (ODEs), describing the
dynamics of the complete system, to a single ODE for product for-
mation which is usually assumed to be the rate-limiting step. Two
well-known assumptions are the rapid-equilibrium (RE) approxi-
mation, that was used by Michaelis and Menten [2], and the (stan-
dard) quasi-steady state (sQSS) approximation due to Briggs and
Haldane [24]. The validity of these and other approximations from
a mathematical viewpoint has been studied extensively elsewhere
[25].

Here, we will apply Cha’s method [26] assuming a partial equi-
librium mechanism. We apply the RE approximation for enzyme
adsorption, assuming this process to be close to equilibrium at
the time scale of catalytic turnover. The sQSS approximation is
then applied to the resulting reaction scheme to derive the steady
state rate equation. This hybrid approach allows to formulate the
rate law for surface-active enzymes in terms of the so-called
adsorption isotherm. This well-known concept from surface science
is used to quantify the partitioning of an adsorbate (here enzyme)
between two phases (here aqueous solution and substrate surface)
at equilibrium for a given temperature, hence isotherm. Adsorption
isotherms, unlike equilibrium constants, define the mass action ra-
tio at equilibrium not by a single number but by some, in general
implicit, equation [E⁄]eq/[E]eq = f([E⁄]eq) (eq denotes equilibrium
concentrations). The confinement to equilibria may appear to be
a severe restriction. Still, the observed diversity of adsorption iso-
therms [27–29] allows to cover a wide range of adsorption mech-
anisms and to study their effects on the rate of catalysis. Also, the
RE approximation usually leads to simpler rate laws and is often
advocated as a first approach [12,30]. It should be noted that the
equilibrium assumption only relates to binding and dissociation
processes and does not preclude lateral diffusion of the enzyme.
Similarly, the RE approximation in the original Michaelis–Menten
approach does not preclude the enzyme, the substrate or the com-
plex to move in solution.

3. Results and discussion

To illustrate our generic approach, we assume a simple revers-
ible uni–uni mechanism at the interface (Fig. 1). Upon adsorption
of the enzyme E at the interface of the aggregated substrate (area
A), the trans-species E⁄ binds the cis-reactant ⁄S in a bimolecular
reaction to form the cis–trans complex E⁄S. The catalytic step
immediately follows and releases the cis-product ⁄P and E⁄. The
enzyme can either desorb or engage in another catalytic cycle.
The two-step process of adsorption followed by finding the reac-
tion partner at the interface assumes that either the enzyme, or
the reactant or both can perform lateral movements.

Before we embark on the derivation of the rate law for surface-
active enzymes, we will consider adsorption as an isolated process
which is essentially completed and, thus, in equilibrium during the
phase of catalytic turnover. There is some experimental evidence
[31,32] justifying the assumption of such a temporal hierarchy
and several studies of interfacial enzyme kinetics used adsorption
isotherms [5,33,34], albeit without applying Cha’s method.

Following this, we will derive the rate law and study some of its
qualitative properties, most notably the effects of substrate
amount, surface properties and enzyme amount.

3.1. Adsorption equilibrium

Following Langmuir’s seminal work [35], we may think of
adsorption as a bimolecular reaction between the enzyme E and
an empty ‘‘elementary space’’ ⁄ at the surface. We define this space
such that its surface area equals the parking area of the adsorbate.
In this case a simple stoichiometric relation applies, E+⁄ = E⁄, and
we can write the on-rate as

von ¼ k0on½��½E�; ð1Þ

where k0on is a second-order rate constant.
Langmuir’s model assumes that the adsorption sites are inde-

pendent and that adsorbed molecules do not interact, essentially
behaving like a two-dimensional ideal gas. We seek a phenomeno-
logical description that allows a departure from these restrictive
assumptions. To this end, we introduce the so-called available area
function, U, into enzyme kinetics. This concept from surface phys-
ical chemistry [28,36] allows to describe many different adsorption
scenarios. The value of U lies between 0 and 1, and quantifies the



Fig. 1. Left: Kinetic scheme of a simple enzymatic reaction converting a single surface substrate ⁄S into a product ⁄P. Right: Schematic representation of the approximations
applied to derive the rate law. X is the rapid equilibrium segment (rapid binding and dissociation of the enzyme to the surface), QSSA = Quasi-Steady State Assumption.
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unoccupied fraction of the surface area. To motivate this concept
with Langmuir’s model, U can be expressed in terms of the ele-
mentary spaces introduced above. To see this, consider the maxi-
mum surface concentration of elementary spaces n0, a constant
that is characteristic for a particular adsorbate since it describes
the number density in a complete monolayer (dimension NL�2).
The unoccupied fraction of surface area is then actually equal to
the fraction of empty elementary spaces

U ¼ h�i
n0

; ð2Þ

where h⁄i = [⁄]/[A] and [A] is the substrate surface area per unit vol-
ume (dimension L�1). Note, that relation (2) is not a definition of the
available area function but merely holds in terms of Langmuir’s
model. The fraction of the surface covered by the bound enzyme
E⁄ is

h ¼ hE�i
n0

; h 2 ½0;1�; ð3Þ

known as the fractional surface coverage (coverage for short). If we
consider adsorption as an isolated process, E⁄ is the only species
contributing to surface coverage and Langmuir’s model entails the
conservation relation

1 ¼ hþU: ð4Þ

However, the relation between available area function and coverage
can be much more complicated, in particular nonlinear, if we aban-
don some of the basic assumptions in Langmuir’s model. The virtue
then of using the available area function is that it can be used as a
proxy for a whole class of different mechanisms by writing it gen-
erally as

U ¼ 1� f ðhÞ ð5Þ

for monolayer adsorption. For reasons of symmetry one may call
f(h) the excluded area function [see also [37]]. We only demand that
this function fulfills f(h = 0) = 0 and f(h) 6 1 for any admissible
h 2 [0,1]. In the derivation of the enzymatic rate laws below, these
equations have to be generalized to reflect that also other species, in
particular interfacial enzyme-substrate complexes E⁄S, contribute
to the coverage.

In the following we will use the on-rate in the general form

von ¼ konU½A�½E�; ð6Þ

where [⁄] = h⁄i[A] has been replaced using Eq. (2) and kon ¼ k0onn0

(dimension LT�1) is the new rate coefficient of adsorption, related
to the activation energy of adsorption as defined by Ramsden
[36]. Finally, to derive the equilibrium condition, we have to specify
a desorption rate. Assuming a simple decay of adsorbed species we
set

voff ¼ koff ½E��: ð7Þ
Now let kA = kon/koff, then the equilibrium condition von = voff leads
to the following equation, which defines the adsorption isotherm
implicitly,

½E��eq

½E�eq
¼ kA½A�Ueq; ð8Þ

or, in terms of coverage,

heq

½E�eq
¼ KUeq; ð9Þ

where K = kA/n0 (dimension N�1L3) is the affinity or Langmuir
adsorption constant. This general equilibrium relation, whether in
the form of Eq. (8) or Eq. (9), is central to our discussion of the prop-
erties of surface-active enzymes. As indicated above, specifying a
particular isotherm amounts to choosing an appropriate function
U(h).

3.2. Modeling different adsorption isotherms

3.2.1. Single-enzyme case
Before we continue with the derivation of the interfacial rate

law, it is interesting to compare the effects of different adsorption
models. We will here focus on the comparison of the intuitive
Langmuir model with the more realistic random sequential
adsorption (RSA) model [28,38], for which both the available area
function and the corresponding isotherms are shown in Fig. 2,
respectively. For instance, the classical Langmuir adsorption iso-
therm can be derived in explicit form by setting U = 1 � h in Eq.
(9), the solid line in Fig. 2, leading to

heq ¼
K½E�eq

1þ K½E�eq
¼ eeq

1þ eeq
; ð10Þ

where eeq = K[E]eq is the scaled (dimensionless) equilibrium concen-
tration of enzyme in solution. As shown in the inset of Fig. 2, the
Langmuir (‘‘LNG’’) isotherm is a hyperbolic relation akin to the clas-
sical Michaelis–Menten rate law, albeit with different meanings of
the variables. The characteristic constant K�1 is now the equilib-
rium concentration of free enzyme in solution when half of the sur-
face is covered (h = 1/2).

In RSA, the surface is treated as a continuum and there are no
well-defined elementary spaces. As a consequence, novel effects
like ‘‘jamming’’ (i.e. U � 0 for h < 1) appear. That is, although there
is enough space in total, the distribution of adsorbates is such that
no incoming particle finds a gap that is big enough on the surface.
In one-dimensional RSA this is suggestively called the car-parking
problem. Even for this rather intuitive model, in two dimensions
no closed expression for the function U(h) exists. However, the sat-
uration limit h1 � 0.547 at which U(h1) = 0 can be calculated [28]
and a good and simple polynomial approximation for U has been
derived [39]. This approximation, along with the corresponding
isotherm, is shown in Fig. 2 (dashed curve). The phenomenon of



Fig. 2. Available area function and adsorption isotherm. The main figure shows the
available area functions for Langmuir’s model (‘‘LNG’’) and random sequential
adsorption (‘‘RSA’’). The inset shows the corresponding adsorption isotherms that
apply at equilibrium in terms of coverage h = [E⁄]/(n0[A]) and enzyme in solution
e = K[E].

Fig. 3. Fraction of adsorbed enzyme as a function of total enzyme amount and
surface area. Enzyme concentration and surface area are expressed in dimension-
less units, e0 = [E0]kA/n0 and a = [A]kA, respectively. Dashed lines represent results
for RSA, solid lines for Langmuir’s model.
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jamming, which is reflected by a saturation limit of much lower
than h = 1, leads to a stronger reduction of the available area when
compared to the Langmuir model. To illustrate the consequences,
we depict in Fig. 3 the fraction of adsorbed enzyme as a function
of total enzyme amount and surface area. It can be seen that for
the RSA model (dashed lines), the fraction of adsorbed enzyme is
consistently lower when compared to Langmuir’s model (solid
lines), while the difference for a given amount of enzyme depends
on the surface area. Not surprisingly, a smaller substrate surface
area sequesters less enzyme in both models. However, it is worth
noting the differences in the shape. For high surface area (a P 5)
the adsorbed fraction in RSA is more sensitive to total enzyme
amount than in LNG. For smaller surface areas (a 6 1) both adsorp-
tion models behave more and more similar, especially for higher
enzyme concentrations (e0 P 1), and become insensitive to en-
zyme amount for very small surface areas (a = 0.1).

3.2.2. Multi-enzyme systems – competitive and multi-site adsorption
Heterogeneous reactions in biological systems commonly in-

volve many enzymes that are active at one and the same interface.
Starch is a classical example, where dikinases and phosphatases
modify the interface and enable different amylases to efficiently
degrade it. Thus, we have to consider enzymes competing for the
same adsorption sites, so-called competitive adsorption. On the
other hand, direct competition may be less severe if the enzymes
adsorb at different sites on the substrate, so-called multi-site
adsorption. Again, starch provides an excellent example. The inter-
actions between amylopectin side-chains generally lead to a rigid,
crystal-like interface but transition to a more dynamic, liquid-like
interface can be triggered by surface-active enzymes by disrupting
hydrogen bonds [40]. It is conceivable that enzymes have signifi-
cantly different affinities for these physically different targets or
‘‘patches’’ [36] at the interface. Both solvation forces [36], in aque-
ous systems usually established by hydrogen bonding, and electro-
static interactions [41,42] can differ considerably between enzyme
and substrate surface.

We want to demonstrate here that the available area function is
a suitable concept for understanding these effects. However, for
the sake of clarity we focus exclusively on the Langmuirian case.
For RSA, available area functions have been derived for binary mix-
tures [28,39] and other cases [43]. In many of the more compli-
cated cases Monte Carlo simulations are the only way to get
reliable approximations of U.

The available area function for a system with competitive
adsorption reads

U ¼ 1�
X
i2E

hi; ð11Þ

where E denotes an index set to enumerate the different species, for
example E = {1,2,3}. This leads, by applying Eq. (9) for each species,
to the following family of adsorption isotherms,

heq;j ¼
Kj½E�eq;j

1þ
X

i

Ki½E�eq;i

; j 2 E: ð12Þ

This well-known result shows that increasing the concentration of
any of the enzymes i – j, causing a higher heq,i and [E]eq,i, leads to
a decrease in heq,j for all j – i, that is to a displacement at the inter-
face. The effect on the available area function depends on the rela-
tive magnitudes of the affinity parameters Ki that govern how some
change D e0,i translates into a change Dheq ¼

P
i2EDheq;i. A moderate

increase in a high-affinity enzyme can have the same effect as a
higher increase in a low-affinity enzyme. The coupling between
competitive enzymes, represented by the available area function,
Eq. (11), will be further discussed below in relation with the rate
law for surface-active enzymes.

The case of multi-site adsorption for a single enzyme reflects a
scenario in which one enzyme binds with different affinities to dif-
ferent regions (patches) on the surface. Strictly speaking, this is not
a multi-enzyme system, but there is more than one trans-species
present at the surface. Now the rate of adsorption at a site k does
not simply depend on the total concentration of empty elementary
spaces [⁄] but on the elementary spaces of type k, denoted [⁄k],
respectively. If we derive, in analogy to Section 3.1, the implicit
adsorption isotherm, we arrive at

½E��eq;k

½E�eq
¼ kA;kak½A�Ueq;k; k 2 S; ð13Þ
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where S is the index set enumerating the different surface types and
ak = Ak/A is the surface fraction made up of type k sites. We further
assume that the surface types do not overlap. This impliesP

k2Sak ¼ 1 and we have, for each type, an independent available
area function

Uk ¼ 1� hk; k 2 S: ð14Þ

If n0 is assumed site-independent we can again divide Eq. (13) by
n0[A] to obtain the implicit isotherm

heq;k

½E�eq
¼ KkakUeq;k; k 2 S: ð15Þ

Replacing Uk leads to the multi-site Langmuir adsorption
isotherm

heq ¼
X
k2S

heq;k ¼
X
k2S

ak
Kk½E�eq

1þ Kk½E�eq
: ð16Þ

Note, that this reduces to the single-site isotherm if ak = 1 for any k.
Moreover, ak is equal to the maximum coverage possible at site k.

3.2.3. Practical aspects
It is clear from Eq. (9) and Fig. 2 that the shape of the adsorption

isotherm is determined by the available area function alone, the
parameter K only entering as a scaling factor. However, in practical
terms it is difficult to infer the adsorption behavior of an enzyme
using this equation because the coverage h cannot be measured di-
rectly. If the adsorption process can be observed in isolation, for
example for an enzyme with inactivated or truncated catalytic do-
main but active binding/adsorption domain, the total enzyme con-
centration is [E0] = [E]eq + [E⁄]eq. Measuring the free enzyme E at
equilibrium after applying different amounts, E0, gives the equilib-
rium amount of bound enzyme E⁄. Then, the ratio on the left-hand
side in Eq. (8) can be plotted against [E⁄]eq to reveal the shape of
the available area function. As shown in the main panel in Fig. 2,
a linear dependence is a strong indicator of Langmuir-type adsorp-
tion, while a convex curve could suggest, for example, the random
sequential adsorption (RSA) model. Moreover, exploiting that Ueq(-
h = 0) = 1, this plot also allows to estimate kA by extrapolation if [A]
is known, which should be the case in a properly designed
experiment.

One should keep in mind, however, that one and the same iso-
therm can result from different mechanisms. This limits our ability
to infer mechanisms from isotherms but at the same time allows
an empirical approach by proposing several basic shapes that rep-
resent typically observed cases, an approach taken by Giles [27,29].
Purely empirical approaches, however, are in danger of introducing
inconsistencies by proposing isotherms that are thermodynami-
cally impossible [29]. We believe, therefore, that using the avail-
able area function, which has a firm interpretation in terms of
statistical mechanics, helps in safeguarding against such
inconsistencies.

As regards studying enzyme adsorption in isolation one may
point to the example of carbohydrate-binding modules (CBMs)
[44], noncatalytic domains of carbohydrate-active enzymes, that
have been cloned and purified to study their adsorption properties
on cellulose and starch [45–48].

3.3. Rate law for surface-active enzymes

According to our assumption of adsorption equilibrium and the
reaction pathway depicted in Fig. 1, the adsorbate species E and E⁄
form the rapid-equilibrium segment X whose concentration is gi-
ven by

½X� ¼ ½E�eq þ ½E��eq: ð17Þ
Following Cha [26], we proceed by defining a reference species and
writing down the corresponding fractional concentration factors for
the mechanism. Taking the free enzyme E as reference, these factors
read

fE ¼
½E�eq

½X� ¼
1

1þ ½E��eq
½E�eq

; ð18Þ

and

fE� ¼
½E��eq

½X� ¼
½E��eq
½E�eq

1þ ½E��eq
½E�eq

: ð19Þ

After applying the RE approximation, the sQSS assumption is
applied to the enzyme intermediate(s) in the resulting partial equi-
librium reaction scheme,

X þ �S�
k1 fE�

k�1

E�S ð20Þ
E�S�
k2

k�2fE�
X þ �P: ð21Þ

As in Cha’s approach, apparent (or composite) rate constants appear
in this scheme whenever the elementary reaction depends on the
concentration of X. Since these reactions take place at the interface,
E is not used, thus fE does not appear in the condensed scheme.
Apart from the composite rate constants and the interfacial species,
reminding us to use surface concentrations, we see that this scheme
is formally identical to the general reversible Michaelis–Menten
mechanism. Thus, instead of calculating the solution (see Appendix
A) or applying the King–Altman [49] method to it, we can immedi-
ately write down the net steady-state rate

v ¼ d½�P�=dt ð22Þ

by analogy. Here, this is done in terms of specificity constants (kS,
kP) and Michaelis constants (KmS, KmP), leading to

v ¼ fE�½E0�ðkSh�Si � kPh�PiÞ
1þ fE�

h�Si
KmS
þ h�PiKmP

� � ; ð23Þ

where [E0] is the total concentration of enzyme per unit volume and
the specificity and Michaelis constants are defined in the usual way
[12] (see Eqs. (A.12) and (A.13)).

It is apt to point out already here two limiting cases depending on
the value of fE⁄. If no enzyme is adsorbed at the surface (fE⁄ = 0) we,
trivially, have v = 0. If all of the enzyme in the rapid-equilibrium seg-
ment is present in the form E⁄ (i.e. fE⁄ = 1), the rate law reads

v ¼ ½E0�ðkSh�Si � kPh�PiÞ
1þ h�SiKmS

þ h�PiKmP

; ð24Þ

which resembles the classical case with the difference of having
surface concentrations for the reactants.

The more interesting behavior, of course, lies between these
physical extremes. To investigate this regime further and formu-
late a genuine interfacial rate law, we can exploit the implicit
adsorption isotherm derived above. Note, that with Eq. (8) the frac-
tional concentration factor, Eq. (19), can be written as

fE� ¼
kA½A�Ueq

1þ kA½A�Ueq
; ð25Þ

leading to

v ¼ kA½A�Ueq½E0�ðkSh�Si � kPh�PiÞ
1þ kA½A�Ueq 1þ h�SiKmS

þ h�PiKmP

� � : ð26Þ

This interfacial rate law can be interpreted by considering that the
free area, [Afree] = [A]Ueq, serves as the first ‘‘substrate’’ of the en-
zyme, to which it has to bind before exerting any catalytic activity



Fig. 4. Effect of enzyme amount on rate laws. The scaled specific rate is shown in
dependence of total enzyme, given as e0 = [E0]K for the surface-active enzyme (blue,
with Langmuir isotherm) and e0 = [E0]Km for two cases (substrate and enzyme
excess, respectively) where enzymes act in solution (black). The initial substrate
concentration is set to s0 = 1, that is h⁄S0 i = KmS (blue) and [S0] = Km (black),
respectively. The surface area parameter a = kA[A] is varied.

Fig. 5. Effect of specific surface area on apparent Michaelis constant in standard
assays. Blue curves show the specific rate in terms of [M], see Eq. (29). For
completeness, the effect of [E0] is also illustrated.
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on the surface, much in analogy to a bisubstrate ordered mecha-
nism of an enzyme working in solution [50].

A key difference to enzymes in solution is the appearance of the
available area function U in this generic surface-active rate law,
which implies a nonlinear dependence of both the denominator
and numerator on the total enzyme concentration. Whereas in
the classical case (with substrate excess) the rate scales propor-
tionally with the enzyme concentration for any fixed substrate
concentration, this is no longer the case for surface-active
enzymes. Only for the limiting case of irreversible adsorption
(kA ?1) fE⁄ = 1), sometimes referred to as the scooting mode
of surface-active enzymes [1], the rate law in Eq. (26) becomes
equal to Eq. (24), thus proportional to enzyme concentration and
insensitive to free surface area.

The decreasing effect of increasing enzyme amount on the rate
of surface-active enzymes, mediated through U, is best illustrated
by comparing the dependence of the specific activity on total en-
zyme amount as shown in Fig. 4. Here, we define the specific activ-
ity in dimensionless form as v/[E0]kcat,+ with kcat,+ = k2 and use
dimensionless versions of the parameters (see figure caption).
Characteristically, the specific activity in the Michaelis–Menten
case, which assumes substrate excess, is insensitive to [E0]
(s0� e0, black). For comparison, the black hyperbola shows the
specific activity of the classical mechanism in solution if the en-
zyme is in excess (e0� s0), as advocated by McLaren and Packer
[9] for colloidal substrates in suspension. However, for comparable
parameter combinations this hyperbolic dependence on enzyme
concentration does not resemble those found with a true adsorp-
tion model (blue curves), where we find different shapes depend-
ing on the surface areas a (for simplicity, we show the one-way
initial rate with Langmuirian adsorption, see Appendix B). For
increasing surface area the shape of the function appears to switch
from convex to concave, approaching the insensitivity of the clas-
sical Michaelis–Menten case. In Appendix B the suggested equality
is proven for a ?1.

In general, the available area function depends not only on the
concentration of the enzyme under consideration, because all
other enzyme species able to bind to the surface further reduce
the available area for this enzyme. Thus, U becomes a function of
all surface-binding species,

U ¼ Uðhi; i 2 EÞ: ð27Þ

For the special case of Langmuir’s model, this function has the sim-
ple form of Eq. (11). It now becomes apparent that the available
area function U plays an important role in defining the interaction
and competition between several agents on one surface by imple-
menting a monolayer model with hard-sphere exclusion at the sur-
face. This phenomenon is fundamentally different from the case in
solution. There, enzymes may also compete for various substrates,
however, the overall effect is a result of the reaction network in
which the enzymes interact, but the form of the rate equation is
the same, regardless whether or not competing enzymes are
present.

3.4. Effect of substrate properties

We now proceed to investigate direct practical consequences of
the derived rate law Eq. (26). Often, when kinetic properties of sur-
face-active enzymes are investigated, the experiments are carried
out in analogy to initial rate assays for enzymes in solution
[51,52]: The activity is monitored for different amounts of sub-
strate, e.g. the activity of b-amylase is measured for varying
amounts of starch, measured by mass. If other information is
unavailable, this may lead to difficulties in interpreting the results,
because it is actually the surface of the applied substance which
serves as substrate. Surface and mass are related by

½A� ¼ as½M�; ð28Þ

where [M] is the mass concentration (mass per volume, unit ML�3),
and as is the specific surface area (unit L2M�1), which depends on
the geometry and size distribution (polydispersity) of the substrate.
Distributing a given amount of mass to smaller but more particles
leads to a larger as. A general equation for as of polydisperse spher-
oids is applied to starch granules by Tatsumi et al. [53] and Levine
et al. [54] present an approach to map a combination of more com-
plicated shapes to a distribution of spheres that preserve total area
and volume.

Since the mass is easy to control experimentally, it is useful to
express the rate law in terms of [M],
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v ¼ kAasUeq½M�½E0�ðkSh�Si � kPh�PiÞ
1þ kAasUeq½M� 1þ h�SiKmS

þ h�PiKmP

� � ¼
Vapp

M
½M�

Kapp
mM

1þ ½M�
Kapp

mM

; ð29Þ

with the apparent Michaelis constant

Kapp
mM ¼

1

kAasUeq 1þ h�SiKmS
þ h�PiKmP

� � ð30Þ

and apparent limiting rate

Vapp
M ¼ ½E0� �

kSh�Si � kPh�Pi
1þ h�SiKmS

þ h�PiKmP

: ð31Þ

Fig. 5 illustrates the dependence of the apparent Michaelis con-
stant Kapp

mM on the key parameters specific surface area as and total
enzyme concentration [E0]. The fact that the specific surface area,
as, enters the expression for the apparent Michaelis constant, Eq.
(30), in the denominator shows that for smaller particles (higher
as) a lower Kapp

mM-value is observed than for larger particles and vice
versa. This understanding is critical to avoid misinterpretations of
enzymatic assays and to ensure reproducibility by having the
parameter as under proper control [53,55]. In general, one may
say that assays with surface-active enzymes have more degrees
of freedom such that concentration alone does not suffice to de-
scribe the reaction rate.

What makes the situation even more difficult is that the appar-
ent Michaelis constant does also depend on the total amount of en-
zyme. Because the available area function U([E0]) is monotonously
decreasing for increasing enzyme concentration, the Kapp

mM-value ap-
pears larger if more enzyme is applied in the assay, as illustrated in
Fig. 5.

4. Concluding remarks

Notably, interfacial reactions have been studied for a long time
in chemistry, because it has been recognized already in the 19th
century that the surface of certain substances considerably en-
hances the speed of chemical reactions [56] and application of sur-
face coverage to derive rate laws has a long tradition [57].
However, the situation for these technologically important pro-
cesses is fundamentally different to biochemical processes on sur-
faces. In chemistry it is the surface itself which acts as a catalyst, to
which the reacting species must adsorb. In contrast, in the bio-
chemical processes we are interested in here, the catalysts are
the adsorbates and the substrate surface is the adsorbent. So here,
the enzymes must first adsorb before they mediate a chemical
transformation of the surface.

A surface-active enzyme can only attack immediately accessible
parts of the substrate confined to the interface. Although these
reactants may be part of a larger molecule, like chain ends of amy-
lopectin in the case of starch, it targets these sites as individual
chemical species. Both, the characteristics of the interface and
the interfacial reactants complicate the proper choice of observ-
ables to unambiguously characterize reaction rates [1]. Artificial
model substrates with well-defined interfacial properties are argu-
ably a very convenient choice to characterize surface-active en-
zymes. For instance, the use of chips with self-assembled
monolayers [8,31,32,58,59] and lipid monolayers [60] allow con-
trol over the surface number density of the substrate h⁄Si. Coupled
with techniques like surface-plasmon resonance spectroscopy they
allow for real-time monitoring of adsorption and catalysis. In cases
where we want to describe activity on the native substrate we are
often confined to indirect measurements of h⁄Si, like electron
microscopy to measure the size of a unit cell in crystalline sub-
strates [see e.g. [61], for starch].
In a typical mean-field approach to enzyme kinetics in dilute
solution it is usually sufficient to consider the concentration of
substrates and products as the sole variables. In contrast, suspen-
sions of aggregated substrates possess additional degrees of free-
dom: the large particles may have different sizes (polydispersity)
and shape (polymorphism) and pores may be present. All these as-
pects affect the surface area of the substrate, a key factor for
adsorption and activity of surface-active enzymes. Failure to take
into account these complications, for example in enzyme assays,
can lead to non-reproducible results, simply because one or several
sources of variation are not under proper control or unknown.

So far, no treatment has been developed to theoretically de-
scribe the rate of surface-active enzymes in terms of general
adsorption isotherms. Here, we overcome this limitation by pre-
senting a generic rate law for surface-active enzymes and thus pro-
vide a theoretical framework in which this important class of
processes can be studied and incorporated into mathematical
models of more complex pathways. Our formalism generalizes pre-
vious approaches, which usually focused only on specific examples,
such as phospholipases [5,50]. The generalization makes use of the
available area function, a concept originally developed for surface
physical chemistry. Its use provides flexibility with respect to dif-
ferent adsorption models, because the choice of adsorption model
is reflected by its functional form, i.e. by how the available area de-
pends on the covered fraction of the surface. Although only for the
simplest case of Langmuir’s model analytic expressions for the iso-
therm exist, the ability to easily adapt rate laws of surface-active
enzymes to more realistic scenarios like random sequential
adsorption (RSA) seems particularly beneficial.

The approach we have employed here exemplarily to derive the
rate law for a reversible uni-uni reaction on a surface can easily be
generalized to other surface-active enzymatic mechanisms. Once
the relevant rate laws for the enzymes of interest have been estab-
lished, they can be used for the formulation of mathematical mod-
els of arbitrarily complex pathways, much as current ODE-based
models of metabolic networks are generated from Michaelis–Men-
ten and related rate laws. However, the key difference to the clas-
sical case in solution is the presence of the available area function
in the rate laws, which in turn depends on all enzymes adsorbing
to a particular surface and thus represents an important coupling
term which does not exist in solution. When applying our ap-
proach for the dynamic description of a pathway involving several
competing enzymes, it is therefore critical that the available area
function correctly reflects the competition of enzymes adsorbing
at the surface. Finally, with our concept presented here, it is now
possible to develop a sound description of processes involving
reactions in both phases simultaneously. This will be of particular
importance for a correct simulation of fundamental processes such
as starch or cell-wall synthesis and degradation.
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Appendix A. Calculating the steady-state solution

The derivation of the rate law is completely analogous to the
classical case. However, for the surface rate v⁄, there is a slight
modification to Cha’s partial equilibrium schemes. The reaction



Ö. Kartal, O. Ebenhöh / FEBS Letters 587 (2013) 2882–2890 2889
rates at the interface depend on surface concentrations, hence [X]
has to be weighted by

�f E� ¼
fE�

½A� ðA:1Þ

instead of fE⁄. This amounts to using hE�i ¼ �f E�½X� instead of [E⁄] =
fE⁄[X] in the algebraic equations to derive the rate law.

The surface rate law is defined by the net rate through the rate-
limiting product formation at steady state,

v� ¼ dh�Pi
dt
¼ k2hE � Siss � k�2

�f E�½X�ssh�Pi; ðA:2Þ

an equation with two unknowns. We eliminate [X]ss by using the
general conservation relation

½E0� ¼ ½X� þ ½E � S� ) ½X� ¼ ½E0� � ½A�hE � Si; ðA:3Þ

leading to

v� ¼ k2hE � Siss � k�2
�f E� ½E0� � ½A�hE � Sissð Þh�Pi; ðA:4Þ

¼ hE � Sissðk2 þ k�2
�f E�½A�h�PiÞ � k�2

�f E�½E0�h�Pi ðA:5Þ
¼ hE � Sissðk2 þ k�2fE�h�PiÞ � k�2

�f E�½E0�h�Pi: ðA:6Þ

To eliminate the second unknown, hE⁄Siss, the sQSSA is applied to
the cis–trans complex E⁄S, that is

0 � k1
�f E�½X�h�Si � ðk�1 þ k2ÞhE � Siss þ k�2

�f E�½X�h�Pi: ðA:7Þ

With Eq. (A.3) this leads to

hE � Siss ¼
�f E�½E0�ðk1h�Si þ k�2h�PiÞ

ðk�1 þ k2Þ þ k1fE�h�Si þ k�2fE�h�Pi
: ðA:8Þ

Note, that we have the usual dimensionless fractional concentration
factors in the denominator. Replacing this into the rate law defini-
tion in the form (A.6) gives, after some terms cancel out,

v� ¼
�f E�½E0�ðk2k1h�Si � k�1k�2h�PiÞ
ðk�1 þ k2Þ þ fE�ðk1h�Si þ k�2h�PiÞ

: ðA:9Þ

Usually, however, we are interested in the turnover rate in the
whole reactor volume,

v ¼ d½�P�
dt

ðA:10Þ

¼ ½A�dh�Pi
dt
þ h�Pid½A�

dt
: ðA:11Þ

Thus, if the surface area does not change, or the second term is sig-
nificantly smaller than the first one, it is valid to simply multiply v⁄

by [A] to obtain v. Given the following definitions for the empirical
parameters,

kS ¼
k1k2

k�1 þ k2
; KmS ¼

k�1 þ k2

k1
ðA:12Þ

for the forward reaction and

kP ¼
k�1k�2

k�1 þ k2
; KmP ¼

k�1 þ k2

k�2
ðA:13Þ

for the backward reaction, this leads to the rate law in Eq. (23).

Appendix B. Calculating the specific activity as a function of
total enzyme concentration

In Fig. 4 we use the initial rate and assume h⁄Pi � 0 for Eq. (26).
Using the dimensionless quantities s0 = h⁄S0 i/KmS and a = kA[A],
and kcat,+ for the forward rate constant we can write the scaled spe-
cific forward rate as
v 0 ¼ v
kcat;þ½E0�

¼ aUeqs0

1þ aUeq þ aUeqs0
: ðB:1Þ

To evaluate how the right-hand side depends on the enzyme con-
centration, U has to be known explicitly. To this aim we have to
solve the following system of nonlinear algebraic equations:

0 ¼ Ue� hE; ðadsorption equilibrium; see Eq:ð8ÞÞ
0 ¼ 1� f ðhE; hESÞ �U; ðmonolayer conservationÞ
0 ¼ e0 � e� aðhE þ hESÞ; ðenzyme conservationÞ
0 ¼ hEs0 � hES: ðQSSAÞ

In line with the dimensionless rate law (B.1) we use additional
dimensionless quantities, defined by {e,e0} = {[E]eqK,[E0]K}. We omit
the subscripts here for legibility, however, note that the system is
solved for equilibrium (U, e, hE) and steady state (hES) variables.
The excluded area function f has to be chosen according to the
adsorption model. With Langmuir’s model we have the simple lin-
ear relation

f ðhE; hESÞ ¼ hE þ hES

and the system can be solved by any computer algebra system for
U(a,s0,e0) to obtain the solution for Eq. (B.1) by substitution. Here,
Sage [62] was used for the symbolic calculations underlying
Fig. 4. The result is a complicated expression, which for s0 = 1 re-
duces to

Ueq ¼
2 aþ 2 e0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 a2 � 8 ae0 þ 4 e2

0 þ 4 aþ 4 e0 þ 1
q

þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 a2 � 8 ae0 þ 4 e2

0 þ 4 aþ 4 e0 þ 1
q

� 1
� �

a� 2 a2 þ 2 ae0

� � :

ðB:2Þ

However, in the general case one can show that lima?1Ueq = 1,
hence

lim
a!1

v 0 ¼ lim
a!1

Ueqs0
1
a þUeq þUeqs0

¼ s0

1þ s0
; ðB:3Þ

which is the dimensionless form of the Michaelis–Menten rate law
divided by the limiting rate V = kcat[E0].
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