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1. INTRODUCTION 

The diverging detonation displays a strong nonlinear interaction among 
geometry, chemistry, and hydrodynamics. Our analysis of this interaction 
uses a combination of phase plane analysis, bifurcation theory, and 
matched asymptotic expansions. The bifurcation and phase plane struc- 
tures we encounter are highly singular. The stationary manifold of phase 
space changes its dimensions under perturbation while the bifurcation has 
infinite co-dimension. These facts place the problem outside of standard 
theories, and for this reason, an independent bifurcation analysis is 
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required. Because the differential equations have to be studied not only 
locally, in a neighborhood of the phase plane critical points, but also 
globally, matched asymptotic expansions are required. For these expan- 
sions, uniformity with respect to the order w of the chemical reaction is an 
additional difficulty which we address. The uniform expansions require at 
least two terms and contain non-rational exponents as well as logarithms. 

From the point of view of physics, the principle effect of the geometrical 
divergence of the wave front is the decrease of the wave speed due to the 
slowing of the reaction behind the shock. Our central result is a quantita- 
tive theory of this effect. Using curvature dependent theories, the detona- 
tion wave has been studied in various geometries 19, 3, 8, 131. In the rate 
stick experiments the detonation wave propagates along a cylindrical stick 
of explosive. The detonation waves are diverging due to boundary effects, 
and the divergence increases as the diameter of the rate stock is de- 
creased. The resulting decrease in speed of the wave is traditionally called 
the diameter effect. The combination [13] of the curvature dependent 
detonation wave speed analysis with a shock polar analysis at the boundary 
gives a closed system of equations for the wave front in this geometry. The 
analysis of [8], which has as its point the relation of curvature dependent 
detonation wave speed to realistic chemistry, concludes that reaction 
orders w greater than one are important. Further discussion of the rate 
stick problem can be found in [9, pp. 199-229; 31. 

Our central result is a bifurcation analysis and an extension of the wave 
speed analysis of a diverging detonation in two or three dimensions. We 
will derive an asymptotic approximation for the detonation which is valid 
for shock radii that are large with respect to the width of the reaction 
zone. Although this is not a steady state problem, we will show in Section 
2 that to leading order in the shock curvature, the detonation may be 
modeled by a system of autonomous differential equations in space, 
depending on curvature and wave speed as parameters. This model is 
specified by Eqs. (2.10)-(2.11) below, see also [9, pp. 207-2101. Our main 
bifurcation results are stated in Section 3. In order to understand the 
topological structure of the bifurcation, we propose a normal form in 
Section 4. This normal form is solved explicitly. 

The analysis of the model equations begins in Section 5 with the 
solution of a free boundary problem for sonic transition surface, which 
terminates the subsonic region behind the shock. The fluid velocity be- 
comes unbounded along a hypersurface in state space on which the flow 
velocity relative to the shock equals the sound speed. This surface will be 
referred to as the sonic locus. A smooth transition across the sonic locus is 
possible only at a critical point of the model system. We will show that an 
appropriate critical point exists and solves the sonic free boundary prob- 
lem. 



THE SPHERICAL DETONATION 149 

The plane wave sonic critical point is degenerate. In the zero curvature 
limit, the eigenvalues of the critical point vanish and eigenvectors coincide. 
In addition, the entire eigenspace becomes stationary. The plane wave 
sonic critical point is a bifurcation point of infinite codimension. The 
number of topologically distinct fields that can be obtained by a small 
perturbation of the plane wave is infinite. These features of the vector 
field defined by (2.10)-(2.11) can be seen in the normal form of Section 4. 
A partial derivation of the normal form by means of PoincarC normalizing 
transformations is given in Section 5. A one-parameter unfolding of the 
normal form is presented in Section 4 illustrating the effect of curvature 
on the phase portrait. 

For each value of the curvature, the wave speed must be chosen to 
ensure that the solution passes through the sonic critical point. The 
evolution of the detonation is determined by this shooting problem con- 
necting the state at the shock interface to the sonic free boundary. The 
wave speed may be interpreted as a nonlinear eigenvalue, and detonations 
exhibiting this type of behavior are sometimes termed eigenvalue detona- 
tions [93. The shooting problem is solved in Section 7 by an asymptotic 
expansion in the small curvature limit. The singular behavior of the 
solution near the sonic critical point introduces nonuniformities into the 
small curvature expansion which must be resolved by an inner expansion 
in a thin layer near the sonic-free boundary. The inner solution in this 
sonic boundary layer governs the form of the wave speed expansion. We 
find that the expansion depends on details of the chemistry. In particular, 
it depends strongly on the form of the order o in the chemical rate law. 

The leading order terms for the wave speed as given in (7.10) are 

(i) w < 1, D = D,, + D1~ 

(ii) + < w < $, w # 1, D = D,, + D1~ + D,K’/~ 

(iii> 0 = 1, D = D,, + Dg~ + D4~ log K 

(iv) 1 < w, D = D, + D,K’/@. 

The K interval of validity of these expansions is uniform in w at the level 
of formal asymptotics. The terms D1~ and D,K”~ are in resonant 
competition near w = 1, and both are required for the expansion to be 
uniformly valid in w. The linear term D, was calculated by Bdzil and 
Stewart [4] using a temperature independent rate law and the strong shock 
limit. They also computed the matching of the inner with the outer 
solutions for the logarithmic term D4. 

The present work is an extended version of the author’s Ph.D. thesis [8]. 
Portions of these results have been presented in [6, 71. 
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2. DERIVATION OFTHEMODEL 

The equations for a spherically symmetric, transport-free, reactive, 
polytropic gas are 

PI + (PU), + 
PW - 1) = 0 

r 

(pl.& + (pd +p), + pu2(dy - l) = 0 

Et + ME +dL + 
4E +p)(d - 1) = o 

r 

(2.1) 

Here p is the density, u is the radial velocity, and p is the pressure. The 
spatial dimension is d E 2,3 and r is the radial coordinate. The reaction 
progress parameter, which varies from 0 (all reactant) to 1 (all product), 
will be denoted by A. The total energy density is E = pe + pu*/2. The 
reaction rate RCA, T) and specific internal energy e(A, T) are assumed to 
have the form 

R(A,T) = k(1 - A)“g(T), T, I T o 
7 T < T, 

T 
e(A,T) = - + (1 - Ah, 

y-1 

(2.2) 

where y is the polytropic gas constant and q is the heat released per unit 
mass by the complete reaction. Here w > 0 and g is a strictly positive 
dimensionless function of the temperature T = p/p (using units in which 
the ideal gas constant is unity). The rate multiplier k is positive and has 
dimensions of inverse time. The constant T, is the critical temperature 
below which the reaction rate is taken to be identically zero. The role of 
T, is to avoid the famous “cold boundary problem.” Without such a cutoff 
temperature there are no solutions for large times because all of the 
reactant is consumed upstream of the shock. In the case of Arrhenius 
kinetics, g takes the form 

g(T) = exp( --A/T), 

where A > 0 is the activation energy. We will assume that g is differen- 
tiable. 
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We now transform the differential equations (2.1) to a more convenient 
form for the analysis. Denote the radius of the shock by z. Then l/z is the 
mean curvature of the shock, K = (d - 1)/z is the sum of principle 
curvatures, and the wave speed is 

Now define 

and 

x=2-r, 

II=.--u. 

The variable x is just the distance from the shock, oriented inwards. The 
velocity of the flow relative to the shock is v, again oriented towards the 
center of the detonation. With this choice of orientation x will be positive 
behind the shock in the reaction zone. Eliminate the internal energy by 
substituting (2.2) into (2.11, and change variables from r, t, and u to x, K, 

and U, respectively, to obtain 

-K2(d - 1))‘Dp, + Up, + V,p = -K 
P(D - v> 

1 - (d - I)-lKX 

- K2(d - 1)-‘Dv, + vu, + px = -K2(d - 1)-‘DD, 
P 

- K2(d - l)-‘Dp, + VP, + ypv, = q(y - l)pR(A,T) 

YP(D - v> 

-K1-(d-l)-lKX 

- K2(d - l)-‘DA, + vh, = R(h,T). (2.3) 

Denote values ahead of the shock by the subscript a. It will be assumed 
that the ahead state is constant and unreacted (A, = O), and that the flow 
velocity is zero (ua = 0, or v, = 0). The Rankine-Hugoniot jump condi- 
tions are 

pp, = paD = m 

P, - P, 
m = -m 

2 

(K - P2v,)P, = (K - P2vs)P, 

A, = A,, (2.4) 
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where p2 = (y - l)/(y + 1). The s subscript indicates variables evaluated 
immediately behind the shock. 

The Plane Wave Limit 

When K = 0, we obtain the equations for a one-dimensional steady state 
detonation studied by Zeldovich, von Neumann, and Doering (ZND). The 
hydrodynamic equations may be integrated to obtain p, v, and p as 
functions of A. The chemical rate equation then constitutes an ordinary 
differential equation for A as a function of x, 

pv = m ( = const) 

P - P, 
j7Iy = -m 

2 

2P24A = (v, - p2qp, - (I/ - p’v,)p 

dh R 
-=- 
li!x v’ (2.5) 

where V = l/p is the specific volume. The first of Eqs. (2.5) states that the 
mass flux is constant in the shock frame. The second equation defines a 
line of slope -m2 in the p, I/ plane and is referred to as the Rayleigh line. 
The third of Eqs. (2.5) defines a family of Hugoniot curves in the p, V 
plane. The intersections of the Rayleigh line with the A = 0 Hugoniot 
curve determine the possible shock transitions. The solution terminates at 
a point where the Rayleigh line intersects the A = 1 Hugoniot curve. In 
general, there is a one-parameter family of solutions, parameterized by the 
mass flux m, or for a given ambient state ahead of the shock, by the wave 
speed D. Unlike an inert shock, which may propagate at any speed, a 
detonation possesses a minimum wave speed at which the Rayleigh line is 
tangent to the final reaction Hugoniot. This point of tangency is called the 
Chapman-Jouguet point, in honor of the early detonation theorists who 
discovered it and discussed its significance. The solution terminating at 
this point will be denoted by a CJ subscript. For a steady plane wave 
which is not supported by a driving force such as a piston, only the 
Chapman-Jouguet (CJ) solution can be stable. This unique plane solution 
is taken to be the asymptotic limit of the diverging wave. 

The wave speed D,, and final (A = 1) flow velocity vcJ for the plane 
wave may be determined from Eqs. (2.5) and the condition vcI = ccJ, 
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where ccJ is the sound speed at the CJ point. The result is 

LA-, = (y* - l)qci2 + I + ((( 
[ 

y2 - l)qc,2 + 1)2 - l)1’2]1’2c, 

l/2 

+ p2D;, + 2p2q . (2.6) 

The Sonic-free Boundary 

Let w(x, K, D> = (p, v, P, A)T. The system (2.3) then takes the form 

-K2(d - 1))‘Dw, + O(w) . w, = h(w,x,K, D). (2.7) 

The eigenvalues of the quasilinear operator 0 are v and u k c, where 
c = (yp/pV2 is the sound speed. The diverging detonation is weakened 
by rarefactions produced behind the shock front and terminates below the 
sonic point on the weak detonation branch of the final reaction Hugoniot. 
This means that a sonic transition must occur in the reaction zone from 
the subsonic flow behind the shock to the supersonic flow at termination. 
Consequently, the desired solution of (2.7) must possess a sonic transition 
at some point x = w < ~0 when K > 0. At a sonic transition the quasilin- 
ear operator 0 becomes singular. This singularity may be interpreted as a 
turning point of the system. If we attempt to solve for w, in (2.7) near the 
turning point we find that the x derivatives blow up unless certain 
solvability conditions are satisfied. Specifically h + K2(d - l)-lDw, must 
lie in the range of 0. For the plane wave, this reduces to the 
Chapman-Jouguet condition that a sonic transition u = c may occur only 
at the termination of the reaction zone A = 1. If K is small but nonzero, 
the solvability condition requires that h < 1 at a sonic transition. We will 
refer to the problem of determining an admissable sonic transition as the 
sonic free boundary problem. The wave speed D is then determined, at 
least in principle, by a shooting problem connecting the state at the shock 
to the sonic free boundary. The solution beyond the sonic boundary is 
supersonic and has no effect on the detonation wave. We will assume on 
physical grounds that a smooth transonic solution of (2.3) exists for 
sufficiently small curvature, and that the K -+ 0 limit of this solution is an 
undrive plane wave. We will seek an asymptotic approximation to this 
solution which is valid for small K. 

The Model Equations 

Denote by w the width of the subsonic region between the shock and 
the sonic transition. For the plane wave, w may be computed by integrat- 
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ing the rate equation. 

/ 

1 v(h) 

w = 0 (1 - /Qwg(7yA)) dh* 

When w < 1, w is finite, but for realistic reaction rates with w r 1 the 
sonic transition is at infinity. This means that the subsonic region expands 
without bound as K + 0. This will have important consequences for the 
solution of the shooting problem in Section 7. 

We will approximate (2.3) by neglecting terms which we expect to be 
uniformly small in the subsonic region. We need the following two ansatz: 

(i) The width w of the subsonic region is small relative to the radius 
of curvature of the shock, so that KW * 1. 

(ii) The K derivatives are bounded or do not blow up too quickly as 
K --+ 0, so that K(d/d!c) is small and &d/dK> is negligible to leading 
order. 

The first ansatz implies that the lateral divergence of the flow is 
approximately homogeneous in the subsonic region, and allows us to 
approximate (d - 1)/r = ~/(l - (d - W1~x) by the total shock curva- 
ture K. The second ansatz permits us to neglect the time derivatives to 
leading order. We will verify later that the asymptotic approximation is 
consistent with these assumptions. 

Neglecting terms in (2.3), which are uniformly small according to our 
ansatz, produces 

VP, + Uxp = -K&3( D - V) 

vu, + f? = 0 
P 

UP, + YPU, = 4(Y - l)PR(‘bT) - KYP(D - u> 

VA, = R(h,T). w3) 

The approximations leading to (2.8) are easily understood. First, the 
derivatives with respect to K are neglected, so that the system is quasi- 
steady, depending on K (and therefore on time) only as a parameter. This 
says that the detonation wave has been propagating for a long time and 
that all of the initialization transients have had time to die out. Second, 
the lateral divergence factor (d - 1)/r is homogeneous to leading order 
and equal to the shock curvature K throughout the subsonic region [O, WI. 
Note that (2.8) is independent of the dimension d. 

We now take (2.8) as our model for the expanding detonation and turn 
our attention to an analysis of this system. Our first objective will be to 
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simplify the model equations. The steady state energy equation is 

e, + pV, = 0. 

The velocity equation in (2.8) can be written as 

;(u’), + vp, = 0. 

These two equations may then be added to obtain 

(iv” + e + Vp), = 0, 

which integrates to yield Bernoulli’s law: 

+V’+ f? + VP =f(K), 

For a polytropic equation of state this becomes 

1 -v2 1 2 1 + c,’ 
2 

-c 

Y-l 
-Aq=ZD2+- 

y- 1’ (2.9) 

Note that we are able to connect across the shock to the ambient state, 
since Bernoulli’s law may be interpreted as one of the Rankine-Hugoniot 
jump conditions. This fact determines f(~). 

Now eliminate px between the velocity and pressure equations to obtain 

v = 4(Y - l)k(l - VdT) - (D - 4C2K 

x 
c2 - v2 

(2.10) 

By (2.9) c2 is a known function of v and A, therefore the right-hand side 
of (2.10) is also a known function of v and A. This form of the velocity 
equation may be combined with the rate equation 

* 

x 

= kc1 - JvdT) 

V 
(2.11) 

to obtain a self-contained system of two equations for u and A. 
The denominator in the velocity equation (2.10) vanishes at a sonic 

transition, so for a smooth sonic transition to occur, the numerator must 
vanish simultaneously. The sonic transition is just the turning point men- 
tioned previously, and the condition that the numerator vanish is equiva- 
lent to leading order to the solvability condition for w, in (2.7). We may 
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substitute u2 for c2 in (2.9) to obtain the sonic locus 

02 = 
2c,2 

Y+l 
+ p2D2 + 2p’qh. (2.12) 

A solution of (2.10) and (2.11) which crosses the sonic locus will be called 
transonic. We thus seek a transonic solution which satisfies 

q(y - l)k(l - h)“g(T) - KC~(D - u) = 0 (2.13) 

at the sonic transition. A solution (uc, A,) of the system (2.12), (2.13) will 
be referred to as a sonic critical point. Note that when K = 0, Eq. (2.13) 
yields A = 1 at the sonic critical point, retrieving the aforementioned 
result that a steady undriven plane detonation terminates at the CJ point. 

The system (2.10), (2.11) will be easier to analyze if transformed into a 
more conventional form. Define the singular change of variable 

y = / x (c(xy2 - u(x’;u(x’)s(T(x~)) . 

Now change variables from x to y to obtain 

1 
u, = q(y - l)k(l -A)% - K(D - u)w2 

&-‘c2) 

A, = k(1 - A)“(~2 - u2). 

(2.14) 

(2.15) 

Observe that the structure of the phase curves in the (v, A) plane is 
unaltered by this change of independent variable since the transformed 
vector field is proportional to the initial vector field. The integral curves 
have simply been reparameterized to eliminate the singularity in the 
denominator of the velocity equation. The right-hand side of (2.15) is now 
bounded in the region of interest, and the sonic critical point defined by 
(2.12), (2.13) is recognized as a stationary point of the system. 

Several observations about (2.15) can be made immediately. Since the 
first equation is proportional to U, the A axis is a phase curve of the 
system. Likewise, the A = 1 line is a phase curve, since the second 
equation has a factor of (1 - A)". These two phase curves intersect in a 
fixed critical point (0,l). When K = 0, the vector field is proportional to 
(1 - A)“, so that the entire A = 1 line is stationary. The CJ point is thus 
embedded in a manifold of critical points. We will see that the CJ point is 
a bifurcation point for the system, i.e., a point in the phase plane where 
the topology of the phase curves is unstable to small perturbations of the 
vector field. 
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The Shooting Problem 

For a fixed ambient state ahead of the shock, the Rankine-Hugoniot 
jump conditions determine a one parameter family of solutions behind the 
shock, parameterized by the wave speed D. The critical point equations 
(2.12), (2.13) define u, and A, as functions of K and D. The desired 
solution of (2.15) will connect the ambient state (via the jump conditions) 
to a sonic critical point; this shooting problem defines the functional 
relationship between K and D. 

The method of determining the full dynamic solution of (2.15) is now 
clear. We first analyze the system allowing K and D to vary as indepen- 
dent parameters, thus determining the phase plane structure throughout 
some domain in parameter space. We then may recover the leading order 
dynamics by solving the shooting problem. The shooting problem will be 
solved in Section 7 by a matched asymptotic expansion. 

After eliminating c, between (2.6) and (2.12), we obtain 

c2 - #.J2 = -47 - l)(l - A) - G(,z - u;), (2.16) 

where 

Ub = (u& + p2( D2 - D&)y* 

is the flow velocity at the K = 0 sonic bifurcation point. With K and D 
independent, ub is now a function of D and DC-. 

We may obtain a single differential equation for u(A) by dividing the 
first equation in (2.15) by the second to obtain 

(1 - h)“(C2 - u2)$- = q(y - l)(l - A)% 

1 
- K’K(D - v)uc’ 

g(c2/d . 
(2.17) 

This equation clearly shows the (nonlinear) turning point character of the 
sonic locus. Let u = h(A, K, D) be a transonic solution of (2.17), so that 

U,(K, D> = h(A,(K, D), K, D). 

Evaluating h at the shock and using the jump conditions gives an implicit 
solution 

u,(D) = h(O, K, D) (2.18) 

to the wave speed shooting problem. If we set D = - (d - 1>Ke2(dK/dt) 
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in (2.18), we obtain an ordinary differential equation for the curvature 
evolution I. 

When K = 0, we may use (2.16) to write Eq. (2.17) in the form 

( 
l- 

4 - b-41 - A) 
V2 1 

dv + 2w2 
-dA = 0. 

V 

The left-hand side of this equation is the differential of the function 

f(u,h) = u + 
4 - &w2(l - A) + c 

V 

Denoting by (u,, A,) any fixed reference point, we have 

II+ 
ub2 - 2qcL2(l - A) = u 

r 
+ u; - 2w2(l - A,) 

u 
. (2.19) 

0, 

The choice U, = vb, A = 1, yields the separatrix solution 

(u - ub)2 + 2qp2( A - 1) = 0 (2.20) 

for the plane wave. This form of the plane wave solution will be useful 
later on. 

3. STATEMENT OF BIFURCATION RESULTS 

One of the main results of this paper is that the velocity of the 
expanding detonation is equal to the plane wave velocity plus a correction 
which is to lowest order a function of the shock curvature K. One 
consequence of this result is that standard methods of computation of 
detonation waves [12] which use the experimental values of the planar 
detonation velocity can be improved in accuracy by these corrections. 
Moreover, since the correction can be computed from the chemistry, we 
believe that the correction can be predicted from some phenomenological 
equation of state and rate law, at least after the latter have been recali- 
brated to reflect the new requirement that they reproduce both planar 
speeds and leading order curvature corrections. Such a predictive capabil- 
ity would minimize the amount of experimental calibration necessary to 
use this new theory in numerical computations. 

It is important to verify the existence of an appropriate solution to the 
model equations (2.15) which terminates at a sonic free boundary. The 
following theorem is therefore of interest. 
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THEOREM 3.1. Let the reaction rate R(h, T) have the first-order Arrhe- 
nius form 

R( A, T) = k( 1 - h)exp( -A/T) 

and assume that there is a radius z1 such that T, < T whenever 0 < x and 
z1 < z. Then there is a K,, > 0 and a neighborhood (Dmi,,, D,,,,) of D,, 
such that 

(i) The critical point vt, = (v& + u2(D2 - D&))l12, A, = 1 in the 
vector field (2.15) bifurcates into a saddle point as K is increased from zero, 
for all D E (Dmin, D,,,,). 

(ii) For K E (0, K~,), and D E (Dmin, D,,,), the saddle point in i) is 
the unique sonic critical point of (2.15). 

(iii) The location of the saddle point in the phase plane is a C” function 
of K E (0, K,,) and D E (Dmi”, D,,). 

(iv) The restriction of the vector field (3.3) to the stable separatrix of the 
saddle point is continuous, uniformly in D E (Dmin, D,,). 

(v) The unique smooth transonic solution of (2.10), (2.11) is given by 
the stable separatrix of the saddle point. 

This theorem is proven in Section 6. 

4. THE PROPOSED NORMAL FORM 

We propose 

(4.1) 

as a normal form at the sonic bifurcation point for the vector field (2.15) in 
the case of first order Arrhenius reaction kinetics. The shock curvature K 

is the bifurcation parameter. The coefficients v, CX, and 17 are positive. The 
variables D and h^ here denote v and A translated to the transonic critical 
point, which remains fixed at the origin as K is varied. In this section we 
investigate the properties of this proposed normal form. The results here 
will assist in understanding the properties of the transonic critical point, as 
well as lay a foundation for an eventual proof of local topological equiva- 
lence with (2.16) at the critical point. 
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If the first of Eqs. (4.1) is divided by the second, a separable ordinary 
differential equation 

iIdS =- 
ai 

ryK di 

is obtained for the phase curves C(i). The general solution of this 
equation is 

(4.2) 

A 

where (O,, A,) denotes any fixed reference point. 
For K > 0, (4.1) has a unique critical point at (0,0X The eigenvalues and 

corresponding eigenvectors are 

p += +t’(~X?jKc)~‘~, 
1 

v,= 
f ( qK/ay2 * 

Thus the critical point is a saddle. 
The phase plane structure for (4.1) is shown in Fig. 4.1. Note that the 

horizontal line fi = qrc is a phase curve for (4.1), as well as a horizontal 

FIGURE 4.1 
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asymptote for all nearby phase curves. This line corresponds to the h = 1 
line of the original vector field (2.15) (although the location of the A = 1 
line is perturbed slightly from 7~). The region above the A = 77~ line is 
non-physical. 

We may use (4.2) to eliminate D from the h^,, Eq. in (4.1), obtaining 

i, = sgn(D,)v(i - TjK) [$-2ji -ir+vKln(gY 

The solution is 

y = sgn( fi,) / ’ 
L 

(-6.+nxe(~))]-1’2v(s?,K). 
(4.3) 

The Plane Wave Limit 

When K = 0 the vector field (4.1) becomes 

(1).=&( ;ff). (4.4) 

The factor of i in the vector field creates a continuum of critical points on 
the i = 0 axis. This corresponds to the A = 1 stationary manifold that we 
observed in Section 3 for the plane wave. Let v, 2 0. The linear part of 
(4.4) at (AZ v,, 0) is 

There is a double zero eigenvalue at the origin, and only one eigenspace 
(the 0 axis). This is a double zero bifurcation point, about which more will 
be said later. When D = 0, (resp. -CC), there is one zero eigenvalue, with 
the D axis as corresponding eigenspace, and one positive (resp. negative) 
eigenvalue with a corresponding unstable (resp. stable) separatrix solution. 
These are simple zero bifurcation points which vanish for K positive. The 
D axis is the common center manifold for the bifurcation points. 

If the factor of i is removed from the vector field (4.4) the resulting 
modified vector field has the same phase curves as the original field except 
along A = 0. This modified field has no critical points and possesses a 
continuous structurally stable flow. The phase flow of (4.4) thus consists of 
a line of critical points superimposed over a continuous one-parameter 
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family of phase curves. Setting K = 0 in (4.2) yields the phase curve 
equation 

i = -(2cX)-102 - p, (4.5) 

where 

The phase curves are thus a family of parabolas, symmetric about the i 
axis and concave downward. When /3 > 0, the phase curve is a separatrix 
for the critical points at (&O,,O>, where G, = lp1”2. When p < 0, the 
vertex of the parabola lies below the D axis. The p = 0 phase curve is 
tangent to the D axis at the origin. It is this tangency that produces the 
second zero eigenvalue at the origin. The phase plane structure of (4.4) is 
illustrated in Fig. 4.2. 

Equation (4.5) may be combined with the first of equations (4.4) to 
obtain an ordinary differential equation 

D, = 1/2V(D2 - P) 

for O(y). This equation may be integrated and the solution substituted 

FIGURE 4.2 
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back into (4.5) to yield i(y). The results are 

-0, tanh(vB,y/2 + 4+), /? > O,lfi,l < 0, 

-6, coth(v8,y/2 + b,), j3 > 0, ID,1 > 8, 

p=0 

0, tan(vD,y/2 + &), P<O 

i 

h^r cosW+) 2 
i cosh(vD,y/2 + 4,) ’ 

P > 0, I&I < fi, 

L p > 0, ID,1 > DC 
;= c- (4.6) 

A, 

(1 - D,vy/2)2 ’ 
p=o 

A 

\ i 

cos(4-) 

*, cos(vO,y/2 + (f-) ’ I 

2 

P -c 0, 

where 

9,= tanh-‘( --0,/D,), ID,1 < D, 

coth-‘( -u^,/D,), J&I > D, 

f#-= tan-‘($,/fi,). 

We end this section with some observations about the double zero 
bifurcation point at the origin of (4.4). There are two choices of resonant 
terms for A in terms of standard basis vectors. They are 

and 

Choosing the latter, we tid that the only resonant term in (2.15) at K = 0 
are (0, ifi)=, and (0, ,%2)T. Only the second degree term is retained in the 
proposed normal form (4.4). Note that the resonant terms (0, P’)= are 
missing from (4.7) for all IZ. As a consequence of this degeneracy the 
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bifurcation has infinite codimension: the number of distinct topological 
equivalence classes which may be obtained by a small perturbation of the 
plane wave vector field is infinite. This exceptional degeneracy is exhibited 
as the line of critical points. To further emphasize this point, consider the 
perturbed field 

with f(O) = exp(-0-2)sin(O-‘). The perturbation term is smooth and 
smaller than any power of 6. The line of critical points breaks up into an 
infinite sequence of critical points converging on the origin. 

A presentation of the nondegenerate case, in which both second degree 
resonant terms are present, may be found in [lo]. The case of second-order 
degeneracy occurs in models of chemical reactors [14]. 

5. THE SONIC CRITICAL POINT 

In this section we apply the PoincarC transformations described in the 
Appendix to facilitate our study of the phase plane structure of (2.15) in a 
neighborhood of the sonic bifurcation point. We will take RCA, T) to be 
first-order Arrhenius. We will temporarily ignore the functional relation- 
ship between K and D defined by the shooting problem described in 
Section 2, and consider K and D to be independent parameters of the 
system. It will be seen that this is sufficient to determine the topological 
structure of the bifurcation point. 

In order to carry out the transformations in a way which preserves the 
correct dependence on K we employ the standard trick of defining an 
augmented system which consists of (2.15) together with a third equation 
dK/dy = 0. We then expand the augmented system in a Taylor series 
about the origin (0, A, K) = (0, 0,O) and perform the simplifying nonlinear 
transformations as indicated in Section 3, while allowing only transforma- 
tions that leave K invariant. 

In what follows we will use fi to denote a neighborhood of the o;igin in 
the 6, i plane. It will be necessary at several points to restrict (fi, A, K) to 

some cylinder R,, X [O, K,, ] to obtain a desired result. For notational 
simplicity we will let K,, and a,,,, denote the minimum over all such 
restrictions. Let II,, n denote the class of real analytic functions on 
U c R” which are O((w]“) for w E U, where U is any neighborhood of the 
origin. 
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PROPOSITION 5.1. For each 

Pi E n3,*7 i E {1,2j, 

ai E n2,*> i E {L2), 

al,a2,bl > 0, 
Zj=R, J; E {3,...,6), 

&,ER, k E (293,419 

there existpi E 113,2, qi E U2,2, and b, E R, k E (2,3} such that the system 

A A * 

i?, = -a,h - LZ2K - ii,i?/i + ii,Kfi + ii,Kh + i&K2 

+ K&(&i,K) + ii&(&i) 

i, = b,Di + z2Ki + &K2 - &xi2 + Kj2( 0, i, K) + itj2( ;, i) 

K,, = 0 

is smoothly equivalent to the system 

i&= -LZ,i-a2K+KI)1(6,ri,K) +i$(&i) 

i, = b,fii + b2Ki + b,K2 + KP2( ;, i, K) + iq2( 6, i) 

KY = 0 (5.1) 

at the origin. 

If the augmented system is expanded in a Taylor series about the point 

(Vb, A,, ‘Q,) = 6 v& + p2(D& - D2)y2, l,O), 

it has the form of the first system in Proposition 5.1, providing 0 < vb < D. 
When D = D,,, this condition reads 0 < vcJ < D,,. This is satisfied by 
the plane wave equations (2.5). We may extend this result by continuity to 
more general D providing D is restricted to a sufficiently small neighbor- 
hood (Dmin, Dma) Of DcJ. The values of the coefficients ai, bi for our 
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b2 = exp(Ay/vif)(WD - vd[ vb - 4~ - l)]d) 

6, = 
vu - %I 24 

(Y - l)kq ew 0 v; 

xprw - vkJ[vb2 - A( y - l)] + v;(4v, - 30)). 

The coefficients a,, a2, and b, are positive. The coefficients b, and b, 
may be positive, negative, or zero. We point out that the coefficients 
depend analytically on D E U&,, Dmax). The transformations leading to 
(5.1) are analytic, uniformly in D E (Dmin, II,,,,), and thus preserve ana- 
lytic dependence on D. Thus the pi, qi terms must depend analytically on 
D. Proposition 5.1 is obtained by constructing a sequence of nonlinear 
transformations of the vector field that remove qualitatively insignificant 
quadratic terms. These calculations were performed with the aid of 
Macsyma. The calculations are summarized in the Appendix. The third 
equation in (5.1) is no longer needed and will be discarded. 

A phase plane analysis yields the next result. 

PROPOSITION 5.2. If pi = qi = 0 in (5.1), the system possesses the unique 
critical point 

8, = K 
a14 - a2b2 

a24 

At the critical point, the linear part 

0 --a1 

A,(K) = ad% K %b, 
-K 

a1 a2 

(5.2) 
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from (5.1) has eigenvalues and eigenvectors given by 

P*:= 
a,b,K k ((a,b,K)* + 4a~b,K)“* 

2a2 

v*= ;I1 . 
( 1 (5.3) 

It is clear from (5.3) and the signs of the coefficients a2 and b, that the 
critical point in Proposition 5.2 is a saddle for all b, E R, D E 
(Dmin, D,,). The Hartman-Grobman theorem [lo] tells us that all saddle 
points are topologically equivalent. Consequently for each fixed K the 
system (5.0, with pi and qi set to zero, is topologically equivalent to the 
system with b, also set to zero. Although the term controlled by b, is 
resonant and cannot be removed by a polynomial change of variables, a 
more general topological equivalence may indeed remove this term. We 
thus group the b, term with the perturbation terms. 

We next prove the existence of a critical point for the system (5.1) for K 

sufficiently small, which converges smoothly to the origin as K -+ 0, uni- 
formly in D (Proposition 5.3). Thus translation of the critical point of 5.1 
to the origin constitutes a smooth equivalence transformation. We also 
show that the saddle point structure persists under the perturbation. 

PROPOSITION 5.3. Let pi E 113,*, and qi E r12,*. For K,, sufficiently 
small the system (5.1) possesses a critical point 

(Dc(K, D>, ~c(K, 0)) E Cm([O, K,,] X (Dmin, D,,), R*), 

corresponding through first order in K to (5.2). There is a neighborhood R,, 
of the origin and a K,, such that, for 0 < K S K,,, this critical point is 
unique in f12,,, uniformly in D E (Dmin, D,,). 

Proof. The critical points (D,, i,> of (5.1) are defined by setting the 
right-hand sides of (5.1) to zero. By the Implicit Function Theorem, the 
first of these equations defines i, as an analytic function of z?,, D, and K 

in a neighborhood of the point D = i = K = 0, D = DcJ, provided a, # 0. 
It is clear from the definition of a, that it is strictly positive in the region 
of interest. Substituting the expansions 

p1 =&;,i) + K&&i) + ‘** 
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in powers of K into the first equation yields 

which is well defined for amax sufficiently small. Now substitute this result, 
and a similar expansion for p2 into the second critical point equation to 
obtain an implicit equation for fi,(~): 

The solutions K = 0, D, undetermined correspond to the line of critical 
points discussed in the previous section. Dividing by the common factor of 
K, we obtain an equation with the solution DC = 0 at K = 0. This is the 
bifurcation point. Observe that since py(fi, 01, qi(O, 0) = 0(02), the K = 0 
equation has the form 

-0, ( a2h 
- + O(D,) = 0. 

a1 I 

In a sufficiently small neighborhood of the origin, the second factor is 
non-zero and the D, = 0 solution is unique. By the Implicit Function 
Theorem D, is a single-valued smooth function of K in a neighborhood of 
K = 0 providing -u,b,/u, is nonzero. This follows from (5.1). This 
solution is unique in some neighborhood fi2,, of the origin. Solving for 
the leading coefficients in the Taylor series expansion of D,(K) we obtain 
agreement through first order in K to (5.2). This result can be substituted 
back into the expansion for i,<~> to obtain first-order agreement for i, as 
well. This completes the proof. 

PROPOSITION 5.4. Let pi E lI3,2 and qi E I12,2. For K,, suficiently 
small the critical point in Proposition 5.3 b a saddle point. 

Prvof. We showed in the previous proposition that the critical point 
(O,, A,)(K) is P(K) to lowest order. The perturbation terms pi are second 
order in D, A, and K, so when evaluated at the critical point they are 
O(K~). The linear part of the perturbed system at the critical point thus 
has the form 

y = (&(‘d + K2%)) ’ (;) =/i(K) ’ (;), (5.4) 

where B(K) is a smooth matrix function. The critical point is a saddle if 
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and only if the determinant of A(K) is negative. This determinant has the 
form -rca2b, + O(K’), which is negative for K small but positive, proving 
the proposition. 

Denote the critical point of (5.1) by W(K). Then the translation T defined 
by T(w, K) = w + W(K) is a global diffeomorphism mapping the origin onto 
the critical point of (5.1). From Propositions 5.2 and 5.3 we know that T 
depends smoothly on K. If we denote the vector field (5.1) by G(w, K) and 
define the translated field p(w, K) = G(‘T(w, K), K), we have the commuta- 
tion relations 

T( d’;(W) 7 K) = +;(T(w, K>> 

between the translated and untranslated phase flows. We thus have the 
following result. 

THEOREM 5.5. After translation to the unique critical point in R,, 
given by Proposition 5.3, the vector jield (5.1) has the form 

-ai + KP,( fi, A ,̂ K) + A^q,( 6, i) 

0; - ‘T/K; + WKi + KI)2( 6, i, K) + iq2( 6, i) 
9 (5.5) 

where 

u = b,, CY = q/b,, 

rl = a2/a17 w = cxb,/b,, 

4i E n2,23 Pj(W, K) = o( Khd + W”) 

The coefficients LY, V, and 77 are identical to those introduced in 
Section 4. 

Proof. The coefficients are obtained by explicit calculation from the 
critical point derived in Proposition 5.3. The conditions on p1 and p2 
follow from the requirement that the critical point of (5.5) be at the origin 
for all K E [0, K,,]. This proves the theorem. 

6. PROOF OF THEOREM 3.1 

In Section 4 we have identified the phase plane structure of (2.15) in a 
neighborhood of the plane wave sonic bifurcation point. In the present 
section we prove Theorem 3.1. In the course of the proof we will exhibit 
the topological structure of the solutions for small K in the physically 
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reIevant region of the phase plane. Define 

$(u,h,K,D) = q(y - l)k(l -A) - K(D - u)c2exp(.dy/c2), (6.1) 

where c2 is given by (2.16). The vector field (2.15) then becomes 

A, = k(1 - A)(c2 - u”). (6.2) 

As always, we assume that q, c,, k, D, K, and A are positive and that 
y > 1. The function + is analytic providing we avoid a vacuum state 
c2 = 0. The set of possible vacuum states in the U, A plane is determined 
by setting c2 = 0 in Bernoulli’s law (2.9), and will be denoted the vacuum 
locus. The result is 

2qp2(1 - A) = -p2v2 + u;. 

The equation 

2qp2(1 - A) = -u2 + U; 

defining the sonic locus u 2 = c2 is also a parabola. The sonic and vacuum 
loci possess the same vertex (0,l - ui/2qp2) and axis of symmetry (A 
axis). From (2.6) we find that vcJ > 2qp2, consequently 1 - vi/2qp2 < 0 
for D in a sufficiently small neighborhood (Dmin, D,,) of DcJ, so that the 
vertex lies below the u axis. The right intercept with the A = 1 line for the 
sonic locus is z+,. Note that 

D2 - v; = D& - v& + &P’ - D&)- 

From (2.6) we have 

D;, - v& = &(D:J - c,” - (Y - l)q) 

= &(Y(Y - 1)q + (((72 - l)qc,2 + 1)’ - 1)1’2c,2) > 0, 

so that D - vb > 0 for D sufficiently close to DC,. This means that the 
right branch of the sonic locus up to A = 1 lies to the left of the line 
u = D. The vacuum locus is broader than the sonic locus. In fact, from 
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(2.9) we see that c2 > 0 is equivalent to 

This inequality holds in a neighborhood of the rectangle 

X(D) = {(u,h):O I u I D,O I A I 1). 

The function $ is thus analytic on a neighborhood of Z(D), and we will 
now restrict our attention to this compact set. 

The flow velocity u = D of corresponds to a stagnation point u = 0 in 
the original Newtonian frame of reference. The critical point CD, 1) is an 
artifact of the stagnation point that occurs at the center of the spherical 
detonation. 

Our next objective is to identify all of the critical points of (6.2) in X(D). 
This is accomplished by considering the zeros of each of the factors of 
(6.2), and cataloging the relevant common solutions. When K = 0, the 
A = 1 line becomes a manifold of critical points, each possessing at least 
one zero eigenvalue. There are no other critical points at K = 0. As 

pointed out in Section 2, the A axis and the line A = 1 are fixed phase 
curves which meet at a fixed critical point (u, A) = (0, 11, which is the 
unique common zero of the u and 1 - A factors of (6.2). The identity 
+(D, 1, K, 0) = 0 results in a fixed critical point at (D, 1). For K > 0, this 
is the unique common zero of the I) and (1 - A) factors. For positive K, 

the critical point (0,l) is a sink (two negative eigenvalues), and the critical 
point CD, 1) is a source. The factors u and c2 - u2 have no common zeros 
in Z(D). As shown in the previous section, there is a saddle point on the 
sonic locus for positive K, which converges smoothly to the sonic bifurca- 
tion point cub, 1) as K -+ 0. The saddle point is at an intersection of the 
solution of I) = 0 with the sonic locus. We claim that for K sufficiently 
small, these three critical points are the only critical points of (6.2) in 
Z(D). It is clear that any additional critical point must result from another 
common solution of I) = 0 and c2 = u2. At K = 0, the equation 
$(v, A, K, D) = 0 has the unique solution A = 1, independent of u and D. 
More precisely, for each D, E <Dmh, D,,>, and each ur E [O, Oil, we 
have a solution I)(u,, l,O, Or) = 0. Since $ is smooth on X.(D), we may 
apply the Implicit Function Theorem at each of these solutions to show 
the existence of a unique smooth local solution A = f(v, K, D) in a 
neighborhood of (ur,O, Or> satisfying f(ur,O, Or> = 1. We have from 
(6.11, 
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which is strictly nonzero, independent of (and therefore uniformly in) 
ur, Dr. This shows that the solution for K > 0 is a smooth curve, deformed 
slightly from A = 1. This is the unique solution in a neighborhood 

of the A = 1 boundary. Define I& = Z(D) \ B,. We claim that for K 

sufficiently small, no additional branches of $ = 0 are created in X,(D). 
Specifically, we shall show that for every 6 > 0 there is a K, > 0 such 
that I) is non-vanishing on the compact set K(6, K,,) defined by 

Fix 6 > 0. Since A = 1 is the unique solution of I/I = 0 at K = 0, I,!I is 
non-zero on K(6,O)). By the continuity of I), there is a neighborhood IV, 
of K(6,O) such that I) is non-zero on N,. Since K(S, 0) is compact we can 
choose Ns to be bounded. Let 

Because K(S, 0) is compact and N, is open, the infinum is nonzero. Then 
K(& Km, ) c N,, so that I) is non-vanishing on K(6, K,,). 

Differentiating (6.1) implicitly with respect to K we find 

which is negative for u < D and positive for u > D, with a simple zero at 
u = D. Thus the I) = 0 curve enters Z(D) through the u = 0 boundary 
with A < 1, and exits through the critical point u = D, A = 1. Note that 
any two points in C(D) on the I) = 0 curve are connected by that curve in 
8(D). The same is true for two points on the sonic locus. For K sufficiently 
small, the J, = 0 curve must cross the sonic locus at least once. Now the 
slope f, may be bounded in an arbitrarily small neighborhood of zero by 
restricting K. The slope of the sonic locus in C(D) is bounded away from 
zero, since the vertex lies on the negative A axis, so that the slopes of the 
$ = 0 curve and the sonic locus in C(D) are in disjoint intervals, uniformly 
in K and D, for sufficiently small K. Thus the intersection of the two 
curves is unique in F,,(D). This is just an example of the general result that 
transversality of two smooth curves in the plane is stable under perturba- 
tions of the curves. 
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Note that VI) = (0, - q(y - 1)k) + O(K), so that $ > 0 below the 
$ = 0 curve. Now define the sectors Z ff as follows: 

c**= {(I&A) E x(D):+ > o,c* - v* > 0) 

2+-= {(v, A) E C(D): * > 0, c* - v* < o} 

c-+= {(VJ) E IqD):lf5 < o,c* - v* > 0) 

2--= ((z&h) E C(D):J, < o,c* -v* < o}. 

The signs of the components of the vector field (7.2) at some point (v, A) 
(and therefore the quadrant into which the vector points) are determined 
by the sector Z * * containing (u, A), except possibly at a critical point or 
at a boundary. We have seen that the only critical point in the closure 
z++ of z++ is the saddle point at I) = c2 - v* = 0. A phase curve which 
crosses $ = 0 away from a critical point must do so vertically, i.e., 
dA/dv = km. Likewise, a phase curve which crosses the sonic locus at a 
non-critical point must have zero slope. Further, the sign of the slope of a 
phase curve which crosses either the I) = 0 curve or the sonic locus at 
a non-critical point must change, since exactly one of the components of 
(7.2) reverse sign. Our final observation is that a non-critical intersection 
of a phase curve with + = 0 or with the sonic locus in Z(O) is transverse, 
so that the slope of the phase curve changes sign at the intersection. A 
non-transverse intersection with the I) = 0 curve can only occur at a point 
where the curve has a vertical tangent. We have shown that the slope of 
the I) = 0 curve may be bounded in an arbitrarily small neighborhood of 0 
by restricting K,,, so that no non-transverse intersections are possible. 
Likewise, non-transverse intersections with the sonic locus may be ex- 
cluded because the sonic locus is never horizontal in Z(O). These consid- 
erations make possible a classification of the non-critical crossings with the 
$ = 0 curve and with the sonic locus. Denote by (vi, hi) the coordinates of 
a non-critical crossing. The possible crossings of a phase curve with the 
4 = 0 curve are 

Case A <hi A > hi 

Ul uy < 0, A, > 0 u,>O,A,,>O 

bl u,>O,A,>O u,<O,A,,>O 
cl u,>O,A,<O u,<O,A,<O 
dl u,,<O,A,<O uy > O,A\, < 0 
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The possible non-critical intersections with the sonic locus are 

Case IJ < ui ” > u, 

a2 v,>O,h,>O “)’ > 0, A, < 0 
b2 u,>O,A,<O v,>O,A,>O 
c2 v,<O,A,<O vy <0,/i, > 0 
d2 vy < O,A, > 0 v,<O,A,<O 

We will show that the stable separatrix of the saddle point has positive 
slope and intersects the A = 0 boundary of C(D). We will accomplish this 
in two steps. First we show that the stable eigenspace enters the Z++ 
sector at the saddle point, and that the unstable eigenspace does not. 
Then we prove that there are no subsequent intersections of the separatrix 
with the Cc, = 0 curve or with the sonic locus. Since C,, contains no other 
critical points and since the u = 0 boundary of C,, is a phase curve, the 
separatrix must then exit through the A = 0 boundary. 

We claim that for K > 0, exactly one separatrix branch enters each of 
the four sectors. We have shown that the J/ = 0 curve is transverse to the 
sonic locus at the saddle point, so that the sign of the slope of a separatrix 
which crosses both curves transversely is determined by the sector 2 + * 
into which the corresponding eigenvector points. Two such eigenvectors 
which point into the same sector must necessarily have slopes of the same 
sign. It is therefore sufficient to show that the eigenvectors are not tangent 
to the sonic locus or to the curve I,G = 0, and that one of the eigenvectors 
has positive slope, and one has negative. Then one separatrix will cross 
with positive slope from I$ ++ into 2 ---) and the other will cross from C -+ 
into X+- with negative slope. Let KU, A) denote the vector field (6.2), and 
p, V an eigenvalue and corresponding eigenvector at the saddle point, so 
that Df e V = pV. By Proposition 5.3, the slopes of both eigenvectors 
converge continuously to zero as K + 0, so we may assume that VI Z 0. 
Since V is only defined modulo a nonzero factor, we may set VI = 1. 
Eliminating p and solving for V,, we obtain 

f 
v2 = 2,2 - fl,l + ((f2,2 - fl,d2 + 4fl,*f*,l)1’2 

2fl,2 

The two solutions correspond to the two independent eigenvectors. A 
necessary and sufficient condition for V, to have both a positive and a 
negative solution is f 1,2f2, 1 > 0. For (6.2) we have 

f 1.2 = -Uq(y - 1)k + O(K) < 0, 

and 
f 2,l = -(l - h)(y + 1)/2 < 0, 

so this condition is satisfied. For V to be tangent to the sonic locus we 
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must have V * Vf 2 = 0. After eliminating V this becomes f i 2f2, i - f i, if,, 2 
= 0, or det(Df) = 0, which is impossible at a hyperbolic critical point. The 
same result holds if the sonic locus is replaced by the I) = 0 curve, so the 
separatrixes are transverse to both curves. Thus the slopes of the separa- 
trixes near the saddle point are given by the sector C + + into which the 
eigenvector points. This means that for each fixed K > 0 there is a 
neighborhood of the saddle point in which one separatrix branch lies in 
each of the four sectors. 

We next show that the separatrix branch in C,, connects with the 
A = 0 boundary of C(D), with the slope dh/dv = f,/f, of the phase 
curve everywhere positive. We have demonstrated above that the separa- 
trix leaves the saddle point with positive slope. Since v = 0 is a phase 
curve, and since Z ++ contains no other critical points, we need only show 
that the separatrix does not intersect the $ = 0 curve or the sonic locus at 
a non-critical point in C(D). We will assume that there is a non-critical 
intersection of the separatrix with I) = 0, or with the sonic locus, and 
arrive at a contradiction. Proceeding in the negative y direction from the 
saddle point into 2 ,.+, there is a first intersection. Assume that the first 
intersection is with I) = 0. (The argument is identical for the sonic locus.) 
This intersection must have one of the forms al-dl. Since both vY and A,, 
are positive in Z++, we may eliminate cases cl and dl. In case bl the 
phase curve meets the intersection in the positive y direction from C,,. 
Since we must meet the intersection in the negative y direction, we may 
eliminate this case as well, which leaves us with case al. The slope of the 
$ = 0 curve may be bounded in an arbitrarily small neighborhood of 0. 
Since the phase curve A = 4(v) must intersect with infinite slope, we see 
from the definition of case al that there is a neighborhood of the 
intersection in which 4(v) > I)(V) on the Z,, side of the $ = 0 curve. 
However, I) = 0 is the upper boundary of C,,. More precisely, let (vi, A,) 
be a point in the interior of X++. The vertical line v = ur intersects rC, = 0 
at a unique point A, = $(v,), where A, < A,. Since the intersecting phase 
curve is smooth, it is locally approximated by its vertical tangent line, and 
must satisfy c$(u> < $(u) locally. We have our contradiction. 

At this point we will return to a consideration of the vector field (2.10), 
(2.111, with the original independent variable X. As pointed out in Section 
2, this field possesses the same phase curves as the continuous field (2.15). 
In particular, there is a separatrix solution which increases monotonically 
from the v axis to the sonic critical point. Since the sonic critical point is 
unique, all other transonic solutions must cross the sonic locus at a 
non-critical point. At such points the velocity gradient v, is unbounded, 
and the solution is non-smooth. We show now that for fixed K sufficiently 
small, the vector field (2.101, (2.11) is in fact continuous when restricted to 
the separatrix, so that a smooth solution v(x) exists, uniformly in D E 
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In Proposition 5.3 we proved that the sonic critical point (uC, A,) is a 
smooth function of K, and that 1 - A, = O(K), uniformly in D in some 
neighborhood <O,i”, D,,) of D,. We also have the estimate l/lv,l < 
O(K-~/~), uniformly in D, for the reciprocal of the eigenvector slope. The 
limit of the ratio v,/A, = ~,,/h, as one approaches the critical point along 
a separatrix equals l/V,. Since A, is continuous, this means that u, is 
continuous along the separatrix if it is bounded there, since the limits from 
either side must be equal. We have 

lim U, 
(o,h)-&,, A,) 

= $k(l - A,)exp lim VI 

c (u, A)-+(o,, A,) A, 

= ik(l - A,)exp lim VY 
c (0, A)+(u,, A,) q 

I K1’2c( K, D), 

where C(K, D) is bounded, uniformly in K E (0, K~,], and in D E 
(Dmin, D,,,,). Hence U, is bounded along the separatrix and possesses a 
removable discontinuity at the sonic critical point. This completes the 
proof of Theorem 3.1. 

7. SOLUTION OF THE SHOOTING PROBLEM 

The goal of the present section is to obtain the leading order term(s) in 
the asymptotic expansion of (2.17) for small K, and to solve the shooting 
problem for D(K) to leading order. We begin by transforming to dimen- 
sionless variables. Define 

(jG--, 

CCJ 

6(/z) = E, 

e KCCJ 
s = fi, - 6, 

+( 6) = (1 + p2(fi2 - @J))“’ 

f( s, 12) = a2( A, - A) - s2. 
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It is easily verified from (2.5), (2.6) that 5, u E (0,l) and fi > 1. The 
independent and dependent variables s and f are 0 at the sonic free 
boundary. This formulation avoids unnecessary singularities and facilitates 
the expansion. The plane wave (2.20) is now simply 

s2 = C9(1 - A), 

or f(s, 0) = 0. Now define 

2(6 - qc2 

F(s) = (y + l)ig(T)c& 1 ?&’ 

We may express the sonic free boundary equations (2.12), (2.13) as 

a2(1 - A,) = 4’( 6) - 6,” 

(T2(1 - A,)” = !zFo, 

where 

2a 
F. = f,(O) = (? + l)g(c;,y-l). 

Expanding fi, and A, to leading order in 2 and (6 - fiC,> produces 

A, = 1 - a-2a$/0, 

where (y s g2(1-O-‘)F~/Oa 

(7.1) 

We can use (7.1) to verify the validity of the homogeneous curvature 
approximation. As discussed in Section 2, this entails demonstrating that 
the width w of the subsonic region is small relative to the shock radius 
z = K-1 when K is small, or KW + 0 as K -j 0. Write 

vow 
a = $11 kg@',(A)) > " 

vow 

Then 

v(A, k) 
A:% kg(T(A,Z)) 

= a + o(l), 

v(A, k> 
A:[% kg( T( A, r7)) 

= b + o(l). 
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The subsonic width w is defined by integrating the rate equation (2.11). 
For sufficiently small 2 we have 

(a + o(l))W(k) < w < (b + o(l))W(rT), 

We can estimate IV(i) with the use of (7.1) to obtain 

i 

(1 -0)-l W-Cl 
W(k) = - ln( aaV2E) w=l . 

(@ _ l)-l~l-~uY~-l)~~-~-l, ” > 1 1 

We see that w is finite when o < 1. For o = 1, w grows at a logarithmic 
rate as IZ + 0, so that Ew + 0. The fastest rate of growth for w occurs 
when w > 1, in which case I&V = O(Er/@> + 0. This confirms that for all 
w > 0, the flow curvature is nearly homogeneous in the subsonic region, 
and that this approximation becomes exact in the K’ + 0 limit. 

The plane wave solution (2.20) may be combined with the shock condi- 
tion (2.4) to produce the identities 

&= 1 +a, 

l= 
2(1 + fJ)(l - rcr) 

y+1 ’ (7.2) 

The shock conditions are then, to leading order in i and (b - &,), 

where 

f, = --(Y(l - a)/V + 2ap(L3 -I&J, (7.3) 

i 

2(1 + a) 2a 
p= 

Y+l 
-u- 1 (1 + u)2 * 

For the plane wave, S, = u at the shock. The parameter u may be 
interpreted as a measure of the shock strength. When u = 0 we have 
q=Oand D=c c-, and the shock degenerates into a sound wave. For 
strong shocks, the pressure ahead of the shock is negligibly small relative 
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to the shock pressure. Then approximately, c, = 5 = 0. In this case, the 
identities (7.2) give u = l/y, which is also the maximum possible value for 
U. Note that s, < 1 if K’ and (fi - tic,> are sufficiently small. We now 
have 

F(s) = 2(U + s)(l/(y + 1) + /L%) 
1 

dTA4) * 
(7.4) 

Expressing Eq. (2.17) in the dimensionless variables and neglecting terms 
which are both o(i) and c@/~), uniformly in s E [O, s,> produces 

(2 + f + a&o )“$G)= u2(0-1) 2s + - F(S)<. (7.5) ( i) 
We will now solve the shooting problem for the wave speed in two steps. 

First, we will use (7.5) to obtain the leading term in the expansion of 
f(s, Z). The wave speed is then defined by the equation 

with s, and f, given by (7.3). 
As discussed in Section 2, the curvature of the shock affects the solution 

in two principle ways. First, the shock curvature determines the local 
divergence of the flow. Second, the location of the sonic free boundary, 
and thus the boundary values for the wave speed shooting problem, vary 
with the curvature. These two competing effects are evident in (7.5). The 
term on the right-hand side is linear in k. This term comes directly from 
the geometrical source term and represents the flow divergence. The 
terms proportional to C1/w in (7.3) and (7.5) come from the displacement 
of the sonic free boundary and depend intimately on the order of the 
reaction. A regular expansion of (7.5) requires powers of i’/” as well as of 
2. If omega is rational, there exist relatively prime positive integers m and 
IZ such that km/@ = P, and the corresponding terms in the expansion may 
exhibit resonance. At these resonant values of w the regular expansion 
fails. Only the fundamental resonance w = m = IZ = 1 appears at leading 
order in the expansion; this case is of theoretical and practical interest and 
rates a thorough treatment. When w < 1, then k < ill”’ and the leading 
term in the regular expansion is linear in the curvature. When w > 1, a 
I?~/~ term will dominate. When w is close to but not equal to one, the 
I?/, and K’ terms are of comparable magnitude. We will see that the range 
of validity (in Z) of the leading order expansion shrinks to zero as w + 1 
unless both of these competing terms are included. 

The regular expansion exhibits nonuniformities when s* in (7.5) is 
O(fF’ >. An inner expansion will thus be required at the sonic free 
boundary to complete the solution. 



180 JAMES JONES 

The Sonic Boundary Layer 

Define the stretched inner variable s’ = K1/20s. Equation (7.5) be- 
comes, to leading order 

(7.6) 

We seek the leading term(s) in a regular expansion of f which satisfies the 
boundary condition f(0) = 0. In the light of the above discussion only the 
G and 12”~ terms are needed. Inserting f = fik + f2C1/o + h.o.t. into 
(7.6) and expanding yields fi = 0 and 

g((i* + f* + a)” - CT) = 2&T. 

The solution which satisfies the boundary condition is given implicitly by 

f2 = 

1 

a(1 - +I[(1 + d(f* + 3*))1-m - 11, w # 1 

(Y log(1 + a-‘( f* + P)), o = 1. (7*7) 

The inner solution (7.7) must be matched to an appropriate outer 
solution valid at the shock. Expressing the inner solution in the outer 
variable and expanding yields 

f 
= 

i 

a( 1 - w) -‘[(S*cC’)l-wK - P] ) w # 1 
(7.8) 

a log( s*a-$2 - a/z log r7, w = 1. 

Note that a term proportional to ri log ri: appears at the o = 1 resonance. 
This term results from the competition between the K’ and 2”” terms in 
the regular expansion, and must be accommodated in the outer expansion. 

The Wave Speed Calculation 

In the outer (shock) region, (7.5) becomes 

(7.9) 

to leading order. The form of the solution depends on o. A resonant form 
is needed at o = 1 which includes a 2 log i term. Both K’ and I?/” terms 
are required for o close but not equal to one. The two-term expansion 
breaks down at the resonance w = i (Z(S) fails to converge.). For o s i 
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the Z1/, term is of the same order as the neglected Z2 term and may be 
dropped. Several overlapping regions are required to obtain an expansion 
which is valid for all o > 0. We will label these regions (i) o -=+z 1; (ii) 
i < w < $, o # 1; (iii) w = 1; and (iv) 1 K w. The result is 

(9 f-f+, 6 = L&, + LQ 

(ii) f = f,r7 + f2C1/w, ti = 6,. + z&k + D,i”” 

(iii) f-f3i +f4<logri, b = z&J + &I2 + r5,1; log K’ 

(iv) f = f2E1/0, fi = b,, + Ls21P. (7.10) 

The solutions for f consistent with (7.8) are 

f1 = (1 - s)U=-r’[Fo(l - w)-‘s~‘-o) + 21(s)], 

f2 = --a(1 - w))‘(l -3) 

f3 = (1 - s)[alog(s2/a) + 21(s)], 

f4 = -a(1 -s), 

where 

Z(s) = ft yl-o)G( t) dt 
0 

and 

G(s) = 
F(s) - Fo 

s - 

(7.11) 

Note that lim, --t o G(s) = F’(O) is defined, so G(s) is continuous. 
The leading order correction to the wave speed may now be found by 

evaluating f(s) at the shock and using the shock conditions. The result is 

d, = l/2(1 - f+-‘p-‘[F,(l - 0)-r + 2cr~4)Z(cr)], 

h2 = -1/2cMJa-931 - o)-‘(1 - a), 

i& = (1 - a)a-‘P-‘[1/2a(l + log(C+a)) + Z(a)], 

I& = -1/2cyo-9331 -a). (7.12) 

A straightforward application of L’Hopital’s rule reveals that the two- 
term expansion has a removable discontinuity at the o = 1 resonance with 
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and 

The normal form (4.1) provided the first indication of the qualitative 
structure of the sonic boundary layer and the resonance at w = 1. The 
exact solution (4.2) of the normal form is nearly identical to the inner 
solution (7.11, but is not valid at the shock and cannot be used to solve the 
shooting problem. 

For the special case of a reaction rate which is independent of the 
temperature (g(T) = 11, .the integral I(a) may be calculated in closed 
form. The result is 

u3-20 2(1 + ra) + ya 
w = y+l 

[ 3 - 2w 1 2-o. 

The coefficient fii (case (i)) was calculated by Bdzil and Stewart [3] for a 
state independent rate (g = 1) in the strong shock limit (a = y-l). 

APPENDIX 

The method we employ to analyse the sonic bifurcation point is to 
transform the vector field in a neighborhood of the bifurcation point by a 
smooth change of variables to a field which is topologically equivalent but 
simpler in form. The study of these simplified fields (or normal forms) was 
initiated by PoincarC. To find such a field, we will take advantage of the 
analyticity of the vector field by expanding in powers of the deviations 6, i 
from the critical values (u,,, 1). We then seek a diffeomorphism of the 
phase space that preserves the linear part of the vector field while 
eliminating as many nonlinear terms as possible. This procedure is cus- 
tomarily carried out order by order; first quadratic terms are eliminated, 
then cubic terms and so on. In the present case, only the second degree 
terms are required. The normal form possesses the same local topological 
structure as the original field, but is much easier to study. This method 
may also be applied to an unfolding of the bifurcation, so we may speak of 
a normal form for the unfolding. Excellent introductions to the theory 
of normal forms for vector fields are available in Arnold [l] and in 
Guckenheimer and Holmes [lo]. 

Assume that A is the matrix of the linear part of a two-dimensional 
analytic vector field ffwj with a critical point at the origin, so that f has the 
form 

dw 
- =f(w) =A.w+f@‘(w), 
& 
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where f(*) = O(kvl*). For each integer n 2 2, the linear operator A in- 
duces a linear operator L, on the linear space A, n of 2-vectors having 
entries which are homogeneous nth degree polynomials in wi, w2, 

(LA. h)i E i ah’(A * W)j - (A. h)i. 
j=l awj 

(8.1) 

Note that L, . h is just the Lie bracket [h, A * w] of h with A . w. If L, 
were nonsingular, all nth degree terms in the Taylor series for f could be 
eliminated by the nonlinear change of variables W = w + LA1 . h, where h 
denotes the vector of nth degree terms in the series. In general, only those 
nth degree terms of f which lie in the range of L, can be eliminated. 
Those elements of A*,” which do not lie in the range of L, cannot be 
eliminated by a smooth change of variables and are termed resonant. The 
resonant terms of f contain the essential nonlinear contributions to the 
phase plane structure. Applying L, to the standard basis (wiwi, OjT and 
(0, wjwi)‘, j + 1 = n, yields a set of vectors which span the range of L,. A 
basis for the range may be chosen from this set. We need never include 
more than codim(range(L,)) in the set of resonant vectors. This is because 
two resonant vectors which differ only by an element of range(L,) are 
smoothly equivalent (the element of range(L,) may be transformed away). 
Consequently we may identify the set of resonant vectors with the non-zero 
vectors of the quotient space h,,Jrange(L,). Choose any basis for this 
quotient space. These basis vectors are equivalence classes of elements of 
A z,-. Now choose any particular representatives for these equivalence 
classes. These representatives define a maximal set of resonant vectors, 
i.e., f may be smoothly transformed into a vector field with second-degree 
terms consisting of a linear combination of this maximal set of resonant 
vectors. In practice this maximal set is chosen from among the standard 
basis vectors, if possible, in order to produce the maximum simplification 
of the vector field. 

We summarize here the construction of the Poincare transformations 
leading to Eqs. (5.1). The augmented system may be written in the form 

A A n 
fi, = -U,h - U2K - ii,ki + i&K; + ii,Kh + ii,K* 

+ K&(&&K) + ii&(i?,li) 

i, = b&i + z2Ki + b,K* - &,I? + K&( fi, i, K) + iij2( i?, i) 

K,, = 0, (8.2) 

where D = u - vb, i = A - 1, p E IIS,*, and qi E II2 *. For the aug- 
mented system, the coefficients b,, 6,, and & are zero,‘as are the terms 



184 JAMES JONES 

igr and K&, but we will do the more general case. The matrix of the 
linear part of (9.1) is 

We seek smooth transformations of the phase space eliminating second- 
order terms of the vector field while leaving the third variable (here, K) 

invariant. The induced linear operator L, on I& may be computed from 
(3.1) by its action on the standard basis. The results are 

h L, . h h L, . h 

i o2 0 0 1 
i OK 0 0 1 

liK 

( ) 
0 
0 

0 

i I 
$2 
0 

i 

-2qa,i + .,K) 

0 
0 

i 

-K( a$ + U*K) 

0 
0 

0 

0 

0 
0 

a,a2 

-20(a,i + a2KI 

0 
0 

UIDK 

-K( a,i + U,K) 

0 
0 

. 
lZ,hK 

i i 

0 
0 

1 CA 
( 1 0 

0 

2 

0 
0 
0 

K2 

i I 
0 
0 

0 

( I 

;li 

0 

0 

i I 

2 

0 

i I 

,“z 

0 

-i( a,i + U2K) 

0 
0 

0 0 0 
0 

0 

0 
0 
0 

a,Di 

-i( a,i + QK) 
0 
0 

The remaining basis vectors h would be used to construct transformations 
of the bifurcation parameter K, which are forbidden in Proposition 5.1. We 
will eliminate the nonresonant terms of 8.2 one term at a time. The order 
in which the terms are eliminated must be chosen carefully, since a 
transformation eliminating one term may contribute to another. Five steps 
are required: 

Step 1. Eliminate the b4 term using the transformation 
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This transformation contributes to the a3 and b, terms. Specifically 
a3 + a3 + u4 and b, --) b, + a,b,/u,. Higher order terms are also cre- 
ated, so that 8.2 becomes 

A ,. 

6, = -U,h - U2K - U&i + U,Ki? + U,Kh + U6K2 

+ Kp,(&i,K) + iCj1(8,i) 

iy = b,Di + b2Ki + K&($, ti, K) + iq2(b-,i) 

K,, = 0, 

where pi E 113,2 and qi E JJ2,2. Since we will perform several transforma- 
tions, we will hereafter drop the bars on the coefficients and remainders 
and not bother to adopt distinctive notation for the values at each step of 
the transformation. 

Step 2. Eliminate the u3 term using the transformation 

The u4 term is replaced by u4 + u2u3/u1. 
Step 3. Eliminate the u4 term using the transformation 

This transformation contributes to the b, and b, terms, which are re- 
placed by b, + u4 and b, + u2u4/u1, respectively. 

Step 4. Eliminate the us term using the transformation 

Step 5. Eliminate the u6 term using the transformation 

We have arrived at (5.1). 
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