Sufficient Conditions for the Existence of Nonnegative Solutions of a Nonlocal Boundary Value Problem

G. L. KARAKOSTAS AND P. CH. TSAMATOS
Department of Mathematics, University of Ioannina
451 10 Ioannina, Greece
<gkarako>ptsamato>Uioi.gr

(Received January 2001; accepted June 2001)

Abstract—In this paper, we provide sufficient conditions for the existence of nonnegative solutions of a nonlocal boundary value problem for a second-order ordinary differential equation. By applying Krasnoeleskij's fixed-point theorem in a cone, first we prove the existence of solutions of an auxiliary BVP formulated by truncating the response function. Then the Arzela-Ascoli Theorem is used to take C^1 limits of sequences of such solutions. © 2002 Elsevier Science Ltd. All rights reserved.

Keywords—Nonlocal boundary value problems, Nonnegative solutions, Krasnoeleskij's fixed-point theorem.

1. INTRODUCTION

We establish sufficient conditions ensuring that a second-order ordinary differential equation admits a nonnegative solution, whose slope at the end of times depends on its values on the whole time interval. To be more precise, consider the following ordinary differential equation:

$$x''(t) + q(t)f(x(t), x'(t)) = 0, \quad \text{a.a. } t \in [0, 1],$$

associated with the boundary conditions

$$x(0) = 0 \quad (c_1)$$

and

$$x'(1) = \int_0^1 x'(s) dg(s), \quad (c_2)$$

where $f : I \times \mathbb{R}^2 \to \mathbb{R}$, $q, g : I \to [0, \infty)$ are given functions and in (c_2) the integral is meant in the Riemann-Stieljes sense.

Nonlocal boundary value problems of this form were considered in the early 1960s by Bitsadze [1] and later on by Bitsadze and Samarskii [2] and Il'in and Moiseev [3]. This class of problems includes, as special cases, multipoint boundary value problems considered by many authors (see, e.g., [4–7] and the references therein). Nowadays, the problem of the existence of positive (or of nonnegative) solutions for various types of boundary value problems is the subject

0893-9659/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. Typeset by AATS-TEX

Pll: 30893-9059(01)00149-5
of many papers. Among others, we refer to the papers [4,8–13] and to the recent book by Agarwal and O'Regan [14]. A very usual technique to get such results is based on fixed-point theorems in cones and especially on the following well-known fixed-point theorem due to Krasnoselskii [15].

Theorem 1.1. Let B be a Banach space and let K be a cone in B. Assume Ω_1, Ω_2 are open subsets of E, with $0 \in \Omega_1 \subset \overline{\Omega_1} \subset \Omega_2$, and let

$$A : K \cap (\Omega_2 \setminus \overline{\Omega_1}) \rightarrow K$$

be a completely continuous operator such that either

$$\|Au\| \leq \|u\|, \quad u \in K \cap \partial \Omega_1,$$

or

$$\|Au\| \geq \|u\|, \quad u \in K \cap \partial \Omega_1,$$

and

$$\|Au\| \leq \|u\|, \quad u \in K \cap \partial \Omega_2.$$

Then A has a fixed point in $K \cap (\Omega_2 \setminus \overline{\Omega_1})$.

The most common "secret" in applying Theorem 1.1 is the knowledge of the behavior of the response function at 0 and at $+\infty$ relatively to some linear functions, whose slopes satisfy known conditions.

In this paper, we assume that the response function is positive at 0 and that it satisfies an integral condition at $+\infty$. So, our method goes as follows: first we consider truncations of the response function and formulate an (infinite) sequence of BVPs. Then the above fixed-point theorem is used to prove the existence of nonnegative solutions for each of these problems. By applying the classical Arzela-Ascoli Theorem, we conclude that an accumulation point of the family of these solutions exists. By continuous dependence arguments, we conclude that such a point is a solution of the boundary value problem under investigation.

2. THE ASSUMPTIONS AND THE BASIC NOTATIONS

In the sequel, we shall denote by \mathbb{R} the real line, by \mathbb{R}^+ the interval $[0, \infty)$, and by I the interval $[0,1]$. Let also $C^0_0(I)$ be the space of all functions $x : I \rightarrow \mathbb{R}$, whose first derivative x' is absolutely continuous on I and $x(0) = 0$. The set $C^0_0(I)$ is a Banach space when it is furnished with the norm $\| \|$ defined by

$$\|x\| := \sup \{|x'(t)| : t \in I\}.$$

Finally, we denote by $L^+_1(I)$ the space of all functions $x : I \rightarrow \mathbb{R}^+$ which are Lebesgue integrable on I, endowed with the usual norm $\| \cdot \|_1$.

Consider equation (e) associated with the conditions (c1), (c2). It is clear that, without loss of generality, we can assume that $g(0) = 0$. By a solution of this boundary value problem we mean a function $x \in C^0_0(I)$ satisfying condition (c2), as well as equation (e) for almost all $t \in I$. Searching for the existence of solutions, we shall first reformulate the problem to an operator equation of the form $x = Ax$, where A is a suitable operator. To find A, consider an equation of the form

$$x'' = -z, \quad \text{a.e. on } I,$$

subject to conditions (c1), (c2). By integration we get

$$x'(t) = x'(1) + \int_t^1 z(s) \, ds, \quad t \in I. \quad (2.1)$$

Then from (c2) it follows that

$$x'(1) = \gamma \int_0^1 \int_t^1 z(s) \, ds \, dg(t),$$
where
\[
\gamma = \frac{1}{1 - g(1)}
\]
provided that \(g(1) \neq 1\). From (2.1) and (c₁), we finally obtain
\[
x(t) = \gamma t \int_0^1 \int_s^1 z(r) \, dr \, dg(s) + \int_0^t \int_s^1 z(r) \, dr \, ds, \quad t \in I.
\]
This process shows that solving the boundary value problem (e),(c₁),(c₂) is equivalent to solving the operator equation \(x = Ax \in C₀^1(I)\), where \(A\) is the operator defined by
\[
(Ax)(t) := \gamma t \int_0^1 \int_s^1 q(r)Z(x)(r) \, dr \, dg(s) + \int_0^t \int_s^1 q(r)Z(x)(r) \, dr \, ds,
\]
for \(x \in C₀^1(I)\) and \(t \in I\), where \(Z(x)(t) = f(x(t), x'(t))\). It is clear that \(A\) is a completely continuous operator.

For our convenience, we also define
\[
\Phi(\psi) := \gamma \int_0^1 \int_s^1 q(r)Z \left(\left(\int_0^s \psi \right)(r) \right) \, dr \, dg(s) + \int_0^t \int_s^1 q(r)Z \left(\int_0^t \psi \right)(r) \, dr,
\]
for \(\psi \in AC(I)\), the space of absolutely continuous real-valued functions defined on \(I\), endowed with the sup-norm \(\|\cdot\|_{AC}\), i.e., \(\|\psi\|_{AC} := \sup_{s \in I} |\psi(s)|\), \(\psi \in AC(I)\). Then for every \(x \in C₀^1(I)\) we have
\[
(Ax)'(0) = \Phi(x').
\]

Before presenting our results, we give the notation and the list of our assumptions, which we use in this paper.

Let
\[
M(L) := \max\{f(u, v) : u, v \in [0, L]\}, \quad L > 0,
\]
\[
\sigma := \gamma \int_0^1 \int_s^1 q(r) \, dr \, dg(s) + \|q\|_1 = \gamma \|q\|_1 + \|q\|_1,
\]
and
\[
K_+ := \{x \in C₀^1(I) : x \geq 0, x \text{ is nondecreasing and } x' \text{ is nonincreasing}\},
\]
which is a cone in \(C₀^1(I)\).

(H₁) \(f\) is a real-valued continuous function defined at least on \(I \times \mathbb{R}^2\), satisfying the inequality \(f(u, v) \geq 0\) when \(u > 0, \ v > 0\). Also, \(q \in L_1^1(I)\) and \(g : I \to \mathbb{R}\) is a nondecreasing function with \(0 = g(0) \leq g(1) < 1\) and \(\sigma > 0\).

It is easy to see that, under condition (H₁), the operator \(A\) maps the cone \(K_+\) into itself.

(H₂) It holds that \(f(0, 0) > 0\).

(H₃) There exists a nondecreasing function \(\omega : \mathbb{R}^+ \to (0, +\infty)\) such that
\[
f(u, v) \leq \omega(v), \quad \text{for all } u, v \in \mathbb{R}^+,
\]
and moreover,
\[
\lim_{\tau \to +\infty} \inf_{\gamma \|q\|_1, \omega(\tau)} \frac{dr}{\omega(\tau)} > \|q\|_1.
\]

(H₄) It holds that \(\inf_{L > 0} M(L)/L < 1/\sigma\).
REMARK. If we set
\[m(L) := \min\{f(u, v) : u, v \in [0, L]\}, \quad L > 0, \]
then Assumption (H₂) is equivalent to the following:

(H₂₇) It holds that \(\sup_{L>0} m(L)/L = +\infty. \)

Indeed, assume (H₂). Then \(m(T) > 0 \), for some \(T > 0 \). Consider a positive real number \(c \) and set \(N := \min\{T, m(T)/c\}(>0) \). Then observe that \(m(N) \geq m(T) \geq cN \). (Notice that \(m(\cdot) \) is a nonincreasing function.) Hence, \(m(N)/N > c \).

Conversely, if (H₂₇) holds, then there exists a certain \(T > 0 \) such that \(m(T) \geq T \) and so \(f(0, 0) \geq m(T) \geq T > 0. \)

3. THE MAIN RESULTS

Before presenting our main results we give a lemma.

Lemma 3.1. Consider the functions \(f, q, \) and \(g \) satisfying Assumptions (H₁) and (H₂). Then there exists \(m > 0 \) such that for any \(x \in K_+ \) with \(||x|| = m \), we have \(||Ax|| \geq ||x||. \)

Proof. We assume the contrary. Then for every positive integer \(n \), there exists a function \(x_n \in K_+ \), with \(||x_n|| = n^{-1} \) and \(||Ax_n|| < ||x_n|| \). Let \(\psi_n := x'_n \). Then for all \(n \) and every \(s \in [0, 1] \) we have

\[0 \leq \psi_n(s) \leq \psi_n(0) = ||x_n||, \]

which implies that \(\psi_n \rightarrow 0 \) in \(AC(I) \). So, we must have

\[0 \geq \lim_{n \to \infty} \psi_n(0) = \lim_{n \to \infty} \Phi(\psi_n) = \Phi(0) \]

\[= f(0, 0) \left[\gamma \int_0^1 \int_s^1 q(r) \, dr \, dg(s) + \|q\|_1 \right] \]

\[= \sigma f(0, 0), \]

which, due to (H₂), is a contradiction.

Now we are ready to give our first main result.

Theorem 3.2. Consider the functions \(f, q, \) and \(g \) satisfying (H₁), (H₂), and (H₃). Then the boundary value problem \((e),(c₁),(c₂)\) has at least one nonnegative solution.

Proof. For each positive integer \(n \), define the function

\[f_n(u, v) := \min\{f(u, v), n\} \]

and consider the problem \((e_n),(c₁),(c₂)\), where \((e_n)\) stands for the equation

\[x''(t) + q(t)f_n(x(t), x'(t)) = 0, \quad \text{a.a. } t \in [0, 1]. \]

(eₙ)

From (H₃), we have \(f_n(u, v) \leq \omega(v) \) for all \(u, v \in \mathbb{R}^+ \), \(n = 1, 2, \ldots. \) Moreover, let \(A_n \) and \(\Phi_n \) be the operators corresponding to \(A \) and \(\Phi \) given by the relations (2.2) and (2.3), respectively.

Since the function \(f_n \) satisfies Assumption (H₁), by Lemma 3.1, there exists a positive real number \(m_n \) such that for every \(x \in K_+ \) with \(||x|| = m_n \), it holds that \(||A_n x|| \geq ||x||. \) Moreover, if \(x \in K_+ \) is such that

\[||x|| = n\sigma =: M_n, \]

then it is not hard to see that

\[||A_n x|| = \Phi_n x' \leq M_n = ||x||. \]
holds. Hence, by Theorem 1.1, there exists a solution $x_n \in C_0^1(I)$ of the problem (e_n),(c_1),(c_2), such that $m_n \leq \|x_n\| \leq M_n$.

Now we claim that the set $\{x_n : n = 1, 2, \ldots\}$ is a precompact subset of $C_0^1(I)$. To prove the claim, we shall use the classical Arzela-Ascoli Theorem. Thus, it is enough to show that the sets $\{x'_n : n = 1, 2, \ldots\}$ and $\{x''_n : n = 1, 2, \ldots\}$ are bounded. Keep also in mind that $x_n(0) = 0$ for all $n = 1, 2, \ldots$.

Let n be a fixed index and define

$$y_n := x'_n.$$

Then observe that $y_n \geq 0 \geq y'_n$, and for every $t \in I$ we have

$$0 \leq -y'_n(t) \leq q(t)\omega(y_n(t)).$$ \tag{3.1}

This implies that

$$\int_{y_n(1)}^{y_n(0)} \frac{dr}{\omega(r)} \leq \|q\|_1. \tag{3.2}$$

On the other hand, from condition (c_2) and the fact that $g(0) = 0$, we get

$$y_n(1) = \int_0^1 y_n(s) dg(s) = y_n(1)g(1) - \int_0^1 y'_n(s)g(s) \, ds$$

$$= y_n(1)g(1) + \int_0^1 q(s)f_n(x_n(s), x'_n(s))g(s) \, ds$$

$$\leq y_n(1)g(1) + \int_0^1 q(s)\omega(y_n(s))g(s) \, ds.$$

Thus,

$$y_n(1) \leq \gamma \omega(y_n(0))\|qg\|_1.$$

Taking into account (3.2), we obtain

$$\int_{\gamma \omega(y_n(0))\|qg\|_1}^{y_n(0)} \frac{dr}{\omega(r)} \leq \|q\|_1.$$

Now, if the sequence $(y_n(0))$ is not bounded, by taking a subsequence, if necessary, we can assume that $y_n(0) \to +\infty$. This fact implies that

$$\liminf_{r \to +\infty} \int_{\gamma \omega(r)\|qg\|_1}^{r} \frac{dr}{\omega(r)} \leq \|q\|_1,$$

contrary to (2.4). Thus, the sequence $(y_n(0))$ is bounded and, by (3.1), also the sequence (y'_n) is bounded. Our claim is proved.

Consequently, we can assume that the sequence (x_n) converges in $C_0^1(I)$ to a certain x. This is equivalent to saying that $x_n \to x$ and $x'_n \to x'$ uniformly on I. Then, from the equation (e_n), by using continuous dependence arguments, we can easily obtain that x is a nonnegative solution of the problem (e),(c_1),(c_2).

LEMMA 3.3. Consider the functions f, q, and g satisfying Assumptions (H_1) and (H_4). Then, there exists a certain $T > 0$ such that for every $x \in K_+$, with $\|x\| = T$, we have $\|Ax\| \leq \|x\|$.

PROOF. Because of (H_4), there exists $T > 0$ such that

$$\frac{M(T)}{T} \leq \frac{1}{\sigma}.$$
Let x be a point in the cone K_+, with $\|x\| = x'(0) = T$. Then for every $r \in I$, the numbers $x(r), x'(r)$ belong to the interval $[0, T]$, and hence, we obtain

$$\|Ax\| = (Ax)'(0) = \gamma \int_0^1 \int_s^1 q(r)f(x(r), x'(r)) \, dr \, dg(s) + \int_0^1 q(r)f(x(r), x'(r)) \, dr \leq M(T) \left[\gamma \int_0^1 \int_s^1 q(r) \, dr \, dg(s) + \|q\| \right] = M(T) \sigma \leq T = \|x\|.$$

Here we give the following result.

Theorem 3.4. Consider the functions f, q, and g satisfying Assumptions (H₁), (H₂), and (H₄). Then the boundary value problem (e₁),(c₁),(c₂) has at least one nonnegative solution.

Proof. This follows by applying Theorem 1.1, when we take into account Lemmas 3.1 and 3.3 and set $\Omega_1 := \{x \in C^1_0(I) : \|x\| < r_1\}$, $\Omega_2 := \{x \in C^1_0(I) : \|x\| < r_2\}$, with $r_1 := \min\{m, T\}$ and $r_2 := \max\{m, T\}$.

Example 1. Consider the following boundary value problem:

$$x''(t) + \frac{1}{2} \cos^2 x(t) + \beta x'(t) = 0, \quad t \in [0, 1],$$
$$x(0) = 0,$$
$$x'(1) = \frac{1}{2} x'\left(\frac{1}{2}\right).$$

We observe that for

$$g(t) = \begin{cases}
0, & \text{if } 0 \leq t < \frac{1}{2}, \\
\frac{1}{2}, & \text{if } \frac{1}{2} \leq t \leq 1,
\end{cases}$$

the boundary condition (c₂) reduces to the boundary condition (c). Moreover, if we set

$$\omega(v) := \frac{1}{2} + \beta v,$$

we can see that (2.4) is satisfied if and only if

$$\beta e^\theta < 2.$$

So, for every β such that $\beta e^\theta < 2$ (hence, for every $\beta \leq 0.85259$), we have that Assumption (H₄) is fulfilled. Since, obviously, Assumptions (H₁) and (H₂) are also satisfied, by Theorem 3.2, the boundary value problem (e₁),(c₁),(c) has at least one nonnegative solution, provided that $\beta \leq 0.85259$.

For the same boundary value problem, we can also use Assumption (H₄). To this end, we set

$$M(L) := \frac{1}{2} + \beta L, \quad L > 0.$$

Then, since $\sigma = 3/2$ and $\inf_{L \in (0, \infty)} M(L)/L = \beta$, by Theorem 3.4 we conclude that for every $\beta < 2/3$, the boundary value problem (e₁),(c₁),(c) has at least one nonnegative solution. However, as one can see, Theorem 3.3 provides a better upper bound for β. On the other hand, in the following example we see that Theorem 3.4 gives existence results, but Theorem 3.3 cannot be applied at all.

Example 2. Consider the boundary value problem (e₂),(c₁),(c), where (e₂) stands for the equation

$$x''(t) + \frac{1}{2} \cos^2 x'(t) + \beta x(t) = 0, \quad t \in [0, 1].$$

(e₂)
It is clear that for this boundary value problem, Assumptions (H₁), (H₂) are satisfied. Also, as in the previous example, we have \(M(L) = 1/2 + \beta L \) and \(\sigma = 3/2 \). So, for every \(\beta < 2/3 \), Assumption (H₄) is satisfied and, so, the boundary value problem \((e₂),(c₁),(c)\) has at least one nonnegative solution.

It is clear that Assumption (H₃) cannot be applied for the boundary value problem \((e₂),(c₁),(c)\).

REFERENCES