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1. Introduction and Filon-type quadrature

For a given k ∈ Rwith |k| large, we seek to evaluate

Q (f ) :=
∫ 1

−1
eikg(x)f (x)dx. (1)

Here, f and g are assumed to satisfy:

Assumption 1.1. Gg ⊂ Gf ⊂ C are open neighborhoods of [−1, 1]. The function f ∈ L∞(Gf ) is holomorphic on Gf , the
function g is real-valued on [−1, 1], g ′ 6= 0 on [−1, 1], g and 1/g ′ are holomorphic on Gg , and 1/g ′ ∈ L∞(Gg).

Filon-type quadrature (see [1–3]) assumes that integrals
∫ 1
−1 e

ikg(x)π(x)dx can be evaluated for polynomials π . Hence, a
quadrature rule for the integral (1) can be obtained by replacing the integrand x 7→ eikg(x)f (x) with x 7→ eikg(x)I∆f (x),
where I∆f is a polynomial (Hermite)interpolant of f ; that is, we obtain the Filon-type quadrature rule

Q∆(f ) :=
∫ 1

−1
eikg(x)I∆f (x)dx. (2)

Throughout this note, wewill associatewith a sequence∆ = (z0, . . . , zn) of n+1 nodes the (Hermite)interpolation operator
I∆ that maps f to the polynomial I∆f ∈ Pn of degree n that interpolates in the n + 1 nodes; the implicit understanding of
Hermite interpolation is that if a node ξ appearsm+ 1 times in∆, then (f − I∆f )(j)(ξ) = 0 for j = 0, . . . ,m.
For a sequence (∆n)∞n=0 of interpolation points ∆

n
= (z(n)0 , . . . , z

(n)
n ) we can study the convergence behavior of

Q (f )− Q∆n(f ) as a function of k and n. This analysis is the purpose of the present note.
It is well known that for large |k|, the most important contribution to the integral comes from the endpoints. Hence,

it is sensible to include as much endpoint information in the choice of the interpolant I∆f as possible. The extreme case
is to take I∆ as the interpolation operator of Hermite type associated with the endpoints ±1; that is, ∆ = ∆

2p−1
H =

(−1, . . . ,−1, 1, . . . , 1), where each of the nodes ±1 appears p times. The Filon quadrature Q
∆
2p−1
H
, which we call ‘‘pure
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Filon quadrature’’ in this note, is shown to satisfy

|Q (f )− Q
∆
2p−1
H

(f )| ≤ C min
{
q,
γ (p+ 1)
|k|

}p+1
(3)

for some constants C , q, γ > 0 independent of k and p (combine Theorems 2.1 and 2.2). The parameter q is in general≥1 so
that convergence as p→∞ is not guaranteed—however, good approximations can be expected if |k| is large compared to
p. Theorem 2.2 gives explicit conditions on the domains of analyticity of f and g to ensure q ∈ (0, 1), namely:

Assumption 1.2. In addition to Assumption 1.1, the domain Gf satisfies

Gf ⊃ WHr for some r > 1, WHr := {z ∈ C | |z2 − 1| < r2}. (4)

If Assumption 1.2 is satisfied, then q ∈ (0, 1) in (3) so that the pure Filon quadrature is a convergent (as p → ∞) method
whose preasymptotic behavior improves as |k| becomes large.
Assumption 1.2 is seen in numerical examples (see Section 4) to be necessary for convergence of the pure Filon

quadrature. Section 3.1 shows that the limitations imposed by Assumption 1.2 can be overcomewith composite quadrature
rules; an alternative, discussed in Section 3.2, is to insert additional quadrature points in the interior of the integration
domain. Section 2.3 finally shows that by suitably clustering the quadrature points near the endpoints, Filon-type quadrature
rules can be designed that do not require derivative information but still lead to convergentmethods under Assumption 1.2.
Concluding this introduction, we mention that our analysis ignores several important aspects: Firstly, we do not discuss

the issue of numerical stability; in particular, our numerical experiments in Section 4 are done inMaplewith high precision
arithmetic. Secondly, we skirt the so-calledmoment problem, i.e., the question of how to evaluate integrals

∫ 1
−1 e

ikg(x)π(x)dx
for polynomials π ; one option is to use the classical method of steepest descent coupled with Gauß–Laguerre quadrature
(see, e.g., [4] for a recent account of this procedure). Concerning notation: Bδ(z) ⊂ C denotes an (open) ball of radius δ
centered at z; for sets A ⊂ C, we set Bδ(A) :=

⋃
z∈A Bδ(z).

1.1. Reduction to interpolation error analysis

The simplest quadrature error estimate is

|Q (f )− Q∆(f )| = |Q (f − I∆f )| ≤ ‖f − I∆f ‖L1(−1,1) ≤ 2‖f − I∆f ‖L∞(−1,1). (5)

Integration by parts yields sharper bounds in terms of k:

Lemma 1.3. Let Assumption 1.1 be valid. Set γg := ‖1/g ′‖L∞(Gg ). Let ∆ = (z0, . . . , zn) ⊂ [−1, 1] be given. Let J0 ∈ N0
be such that (f − I∆f )(j)(±1) = 0 for j = 0, . . . , J0 − 1. Then, for every J ∈ N0 and 0 < δ ≤ dist({±1}, ∂Gg) and
0 < d ≤ dist([−1, 1], ∂Gg):

|Q (f )− Q∆(f )| ≤
γg

|k|

J−1∑
j=J0

(
jγg
|k|δ

)j
‖f − I∆f ‖L∞(Bδ({±1})) +

(
Jγg
d|k|

)J
‖f − I∆f ‖L∞(Bd([−1,1])).

Proof. Let η0 := f − I∆f and define the sequence (ηj)∞j=0 of holomorphic functions by the recursion

ηj+1 =

(
1
g ′
ηj

)′
, j = 0, 1, . . . . (6)

Integrating Q (f )− Q∆(f ) = Q (f − I∆f ) = Q (η0) by parts J ∈ N0 times gives

Q (η0) =
1
ik

J−1∑
j=0

(
−1
ik

)j
eikg

ηj

g ′

∣∣∣∣∣
1

−1

+

(
−1
ik

)J ∫ 1

−1
eikg(x)ηJ(x)dx. (7)

The result now follows from Lemma 1.4 applied to η0 = f − I∆f . �

Lemma 1.4. Let G ⊂ C be open and g, η0 be holomorphic on G. Set γg := ‖1/g ′‖L∞(G). For δ > 0 define Gδ := {z ∈ G |
dist(z, ∂G) > δ}. Starting from the function η0, define the functions ηj, j = 1, . . . recursively by (6). Then:

‖ηj‖L∞(Gδ) ≤

(
γg j
δ

)j
‖η0‖L∞(G), j = 0, 1, . . . . (8)

Here, we employ the convention 00 = 1. If additionally η(j)(z0) = 0 for j = 0, . . . , p for a fixed z0 ∈ G, then ηj(z0) = 0 for
j = 0, . . . , p.
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Proof. We proceed by induction on j. The statement is true for j = 0 by definition. Assuming it to be true for some j ∈ N0
and all δ > 0, we get for every x ∈ Gδ and every 0 < ε < δ by Cauchy’s integral representation formula

|ηj+1(x)| =
∣∣∣∣ 12π i

∫
∂Bε(x)

ηj(t)
g ′(t)(t − x)2

dt
∣∣∣∣ ≤ 1ε ‖1/g ′‖L∞(G)‖ηj‖L∞(Gδ−ε) (9)

≤
γg

ε

(
γg j
δ − ε

)j
‖η0‖L∞(G). (10)

If j = 0, we let ε→ δ in (9) to see that (8) is true for j = 1. For j ≥ 1, we select ε := δ 1
j+1 < δ to get from (10)

|ηj+1(x)| ≤
(
γg(j+ 1)

δ

)j+1
‖η0‖L∞(G).

Noting that x ∈ Gδ is arbitrary, we can conclude the induction step. Finally, if η0 and its derivatives up to order p vanish at
z0, then ‖η0‖L∞(Br (z0)) ≤ Cr

p+1 for all sufficiently small r > 0. Taking G = Br(z0) and δ = r/2 and letting r → 0, the bound
(8) then implies ηj(z0) = 0 for j = 0, . . . , p. �

1.2. Polynomial interpolation

The following result is classical in polynomial interpolation of holomorphic functions and can be found, for example,
in [5, Chapter IV]:

Proposition 1.5 (Hermite). Let f ∈ L∞(D(f )) be holomorphic on the domain D(f ). Let ∆ = (z0, . . . , zn) and set ω∆(z) :=∏n
i=0(z − zi). Then for every z ∈ D(f ) and every simple, closed Jordan curve C ⊂ D(f ) with {z, z0, . . . , zn} ∈ Int(C) ⊂ D(f )

there holds

f (z)− I∆f (z) =
1
2π i

∫
t∈C

ω∆(z)
ω∆(t)

f (t)
t − z

dt. (11)

Furthermore, for every compact K ⊂ D(f ) there exist C, γ > 0 depending solely on K and D(f ) such that if ∆ ⊂ K then

|f (z)− I∆f (z)| ≤ C |ω∆(z)|γ n+1‖f ‖L∞(D(f )) ∀z ∈ K . (12)

Proof. The representation (11) is taken from [5, Chapter IV]; to see (12), select a Jordan curve C ⊂ D(f ) with K ⊂ Int(C).
Then, dist(C,∆) ≥ dist(C, K) > 0. Hence, |ω∆(t)| ≥ C dist(C, K)n+1, and (12) follows from (11). �

Of particular interest here is Hermite interpolation in the endpoints given by

∆
2p−1
H := (−1, . . . ,−1︸ ︷︷ ︸

p times

, 1, . . . , 1︸ ︷︷ ︸
p times

). (13)

The Hermite interpolation operator I
∆
2p−1
H
: Cp−1([−1, 1])→ P2p−1 is characterized by the conditions

f (j)(±1) =
(
I
∆
2p−1
H
f
)(j)

(±1), j = 0, . . . , p− 1. (14)

Lemma 1.6 will express the approximation properties of I
∆
2p−1
H
in terms of the functions ωH2p, ω

H , and the setsWHr :

ωH2p(z) = (z + 1)
p(z − 1)p = (z2 − 1)p, ωH(z) := |z2 − 1|1/2, (15)

WHr = {z ∈ C | ωH(z) =
√
|z2 − 1| < r}. (16)

The setsWHr are nested: clo(W
H
r ′ ) ⊂ W

H
r for r

′ < r . We note that the interval [−1, 1] is only contained in the setsWHr for
r > 1. Then, however, already the interval [−

√
2,
√
2] is contained inWHr (see Fig. 1). The error representation (11) gives

us:

Lemma 1.6. Let f be holomorphic on the domain D(f ), and let r > 1 be such that clo(WHr ) ⊂ D(f ). Then for every 0 < r
′ < r

there exists C > 0 (depending only on r, r ′) such that for every δ with Bδ({±1}) ⊂ WHr ′ :

‖f − I
∆
2p−1
H
f ‖L∞(WH

r′
) ≤ C

(
r ′

r

)2p
‖f ‖L∞(WHr ) ∀p ∈ N0,

|(f − I
∆
2p−1
H
f )(z)| ≤ C

(
δ(2+ δ)
r2

)p
‖f ‖L∞(WHr ) ∀z ∈ Bδ({±1}).
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Fig. 1. ∂WHr (i.e., the level lines of ω
H (z) =

√
|z2 − 1|) for r ∈ {0.8, 1, 1.1, 1.2}.

A perturbation argument allows us to infer from Lemma 1.6 error bounds for interpolation that clusters points near the
endpoints:

Lemma 1.7. Let 1 < r ′ < r and q ∈ ((r ′/r)2, 1). Then there exist constants δ0, C , γ > 0, which depend only on r, r ′, q, such
that the following is true: For any δ ∈ (0, δ0] and∆2p−1 with 2p points satisfying

∆2p−1 has exactly p points in Bδ(−1) and exactly points p in Bδ(1) (17)

the interpolation error f − I∆f satisfies

‖f − I∆f ‖L∞(WH
r′
) ≤ Cq

p
‖f ‖L∞(WHr ), (18)

|(f − I∆f )(z)| ≤ (δγ )p‖f ‖L∞(WHr ) ∀z ∈ Bδ({±1}). (19)

Proof. Let zi, i = 0, . . . , p− 1 be the points of∆2p−1 in Bδ(−1) and let z̃i, i = 0, . . . , p− 1 be the points of∆2p−1 in Bδ(1).
We then write for z 6= ±1:

ω∆2p−1(z) =
p−1∏
i=0

(z − zi)
p−1∏
i=0

(z − z̃i) = (z2 − 1)p
p−1∏
i=0

(
1+
−1− zi
z + 1

) p−1∏
i=0

(
1+

1− z̃i
z − 1

)
.

Hence, we can find γ > 0 depending only on r , r ′ such that for any p ∈ N0

(1− γ δ)2p|ωH2p(z)| ≤ |ω∆2p−1(z)| ≤ (1+ γ δ)
2p
|ωH2p(z)| ∀z ∈ W

H
r \W

H
r ′ . (20)

Choosing δ sufficiently small, we can make |ω∆2p−1(z)/ω
H
2p(z)|

1/(2p) arbitrarily close to 1 uniformly in z ∈ WHr \W
H
r ′ . By the

maximummodulus principle for holomorphic functions (18) is shown once |f (z)−I∆f (z)| can be bounded by the right-hand
side of (18) for z ∈ ∂WHr ′ . However, this follows from (15), (20) and (11) with C = ∂WHr . For (19), we insert into the error
formula (11) the bound |ω∆2p−1(z)| ≤ (2δ)

p(2+ 2δ)p together with (20) and (15). �

2. Quadrature error analysis

2.1. k-asymptotics

Theorem 2.1 (k-asymptotics). Let Assumption 1.1 be valid and let [−1, 1] ⊂ K ⊂ Gg be compact. Set γg := ‖1/g ′‖L∞(Gg ). Fix
δ0 < min{1, dist({±1}, ∂Gg)}. Then there exist constants C, γ > 0 that depend solely on K , dist(K , ∂Gg) > 0, and δ0 such that
for arbitrary interpolation points∆ = (z0, . . . , zn) with∆ ⊂ K the following holds:

(i) Let p ∈ N0 be such that (f − I∆f )(j)(±1) = 0 for 0 ≤ j ≤ p− 1. Then

|Q (f )− Q∆(f )| ≤ Cγ n+1min

{
1,
(
γg(p+ 1)
|k|

)p+1}
‖f ‖L∞(Gg ).
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(ii) For δ > 0 such that δ/|k| ≤ δ0 denote by p−1,δ := card{i | 0 ≤ i ≤ n, zi ∈ Bδ/|k|(−1)} and p1,δ := card{i | 0 ≤ i ≤ n, zi ∈
Bδ/|k|(1)} the number of interpolation points in the δ/|k|-neighborhoods of −1 and 1, respectively. Set pδ := min{p−1,δ, p1,δ}.
Then

|Q (f )− Q∆(f )| ≤ Cγ n+1
γg

|k|
min

{
1,
(
δ + γg(pδ + 1)

|k|

)pδ}
‖f ‖L∞(Gg ).

Proof. (5) together with (12) gives |Q (f ) − Q∆(f )| ≤ Cγ n+1‖f ‖L∞(Gg ). To complete the proof of (i), we apply Lemma 1.3
with J0 = p, J = p+ 1, δ = d = 1/2 dist([−1, 1], ∂Gg) and again (12) (with the compact set clo(Bd([−1, 1]))).
To see (ii), let K ′ ⊂ Gg be compact such that Bδ0({±1}) ∪ Bd([−1, 1]) ⊂ K

′ for some 0 < d < 1/2. (12) provides
a constant (again denoted γ ) such that for z ∈ Bδ/|k|({±1}) we have |(f − I∆f )(z)| ≤ C(2δ/|k|)pδγ n+1‖f ‖L∞(Gg ) and
‖f − I∆f ‖L∞(K ′) ≤ Cγ n+1‖f ‖L∞(Gg ). Lemma 1.3 with J0 = 0, J = 1 gives

E := |Q (f )− Q∆(f )| ≤ Cγ n+1
γg

|k|
‖f ‖L∞(Gg ).

This is the first bound. Lemma 1.3 with J0 = 0 and J = pδ + 1 gives

E ≤ Cγ n+1‖f ‖L∞(Gg )

[
γg

|k|

pδ∑
j=0

|k|−j
(
γg j
δ/|k|

)j (2δ
|k|

)pδ
+

(
(pδ + 1)γg
d|k|

)pδ+1]

≤ Cγ n+1
γg

|k|

(
γg

|k|

)pδ
‖f ‖L∞(Gg )

(
pδ∑
j=0

(
γg j
δ

)j (2δ
γg

)pδ
+

(
pδ + 1
d

)pδ+1)
.

The convexity of the function j 7→ (jγg/δ)j(2δ/γg)pδ then gives us

E ≤ Cγ n+1
γg

|k|

(
γg

|k|

)pδ
‖f ‖L∞(Gg ) ×

(
(pδ + 1)max

{(
2δ
γg

)pδ
, (2pδ)pδ

}
+

(
pδ + 1
d

)pδ+1)

≤ Cγ n+1(pδ + 1)
γg

|k|

(
γg

|k|

)pδ
‖f ‖L∞(Gg )

(
max

{
2δ
γg
,
pδ + 1
d

, 2pδ

})pδ
.

Noting pδ ≤ n+ 1 and adjusting the constant γ gives the desired bound. �

2.2. Convergent Filon quadrature

As Theorem 2.1 shows, it is advantageous to cluster interpolation points near the endpoints±1 for large |k|. Convergence
(as n→∞) of Filon quadrature that is based on such interpolation point distribution can only be expected under suitable
conditions on the size of the domain of analyticity of f . The following theorem shows that in the case of pure Filon quadrature
the domain of analyticity Gf of f should containWH1 :

Theorem 2.2 (Pure Filon Quadrature). Let ∆2p−1H be given by (13). Let Assumption 1.2 be valid. Set γg := ‖1/g ′‖L∞(Gg ). Then
there exist C, γ > 0 (depending only on r and dist([−1, 1], ∂Gg)) such that

|Q (f )− Q
∆
2p−1
H

(f )| ≤ C
(
min

{
r−2, γ

γg(p+ 1)
|k|

})p+1
‖f ‖L∞(WHr ).

Proof. (5) and Lemma1.6with r ′ = 1 (note: [−1, 1] ⊂ clo(WH1 )) give the error bound |Q (f )−Q∆2p−1H
(f )| ≤ Cr−2p‖f ‖L∞(WHr ).

Adjusting the constant by the factor r2 gives the first estimate. For the second one, select 0 < d ≤ dist([−1, 1], ∂Gg) such
that Bd([−1, 1]) ⊂ WHr ′ for some r

′ < r (e.g., r ′ = (1+ r)/2) and apply Lemma 1.6 to Lemma 1.3 with J0 = p, J = p+ 1. �

2.3. Derivative-free Filon quadrature

Quadrature formulas that avoid knowledge of derivatives are of interest. [1] proposes to cluster the interpolation points
near the endpoints ±1. As in the case of the pure Filon quadrature, Assumption 1.2 is the key to ensure convergence as
n→∞:

Theorem 2.3. Let Assumption 1.2 be valid. Fix q ∈ (1/r2, 1). Set γg := ‖1/g ′‖L∞(Gg ). Then there exist δ0, C , γ > 0 (all depending
only on r, q, dist([−1, 1], ∂Gg)) such that for any δ with δ/|k| ≤ δ0 and any∆2p−1 satisfying

∆2p−1 has exactly p points in Bδ/|k|(−1) and exactly p points in Bδ/|k|(1) (21)
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the corresponding Filon quadrature Q∆2p−1 satisfies

|Q (f )− Q∆2p−1(f )| ≤ C
γg

|k|
min

{
q, γ

δ + γg(p+ 1)
|k|

}p
‖f ‖L∞(WHr ).

Proof. The proof follows from the arguments given in the proof of Theorem 2.1 and an appeal to Lemma 1.7. �

The following point distribution guarantees a smooth transition from an extreme clustering near the endpoints ±1 to
the asymptotic distribution that essentially coincides with the Chebyshev points:

∆
2p−1
C := (z0, . . . , zp−1,−zp−1,−zp−2, . . . ,−z0), (22a)

zi = cos θi, θi := iδC , δC :=
π

2
min

{
λ

|k|
,

1
p− 1/2

}
; (22b)

here λ > 0 is a user-chosen parameter. The Filon quadrature based on∆2p−1C converges under the same conditions on f and
g as the pure Filon quadrature:

Theorem 2.4. Let Assumption 1.2 be valid. Then there exist q ∈ (0, 1), C , γ > 0, and an open neighborhood U of [−1, 1]
(depending only on r and dist([−1, 1], ∂Gg)) such that f − I∆2p−1C

f with∆2p−1C given by (22) satisfies

‖f − I
∆
2p−1
C
f ‖L∞(U) ≤ Cqp‖f ‖L∞(WHr ) ∀p ∈ N0. (23)

Upon setting γg := ‖1/g ′‖L∞(Gg ), the Filon quadrature based on∆
2p−1
C satisfies

|Q (f )− Q
∆
2p−1
C

(f )| ≤ C
γg

|k|
min

{
q, γ

δCp|k| + γg(p+ 1)
|k|

}p
‖f ‖L∞(Gf ). (24)

Proof. See [6]. The result shows that the parameter λ should be chosen proportional to γg . The constants C , q, γ are
independent of λ. �

3. Integrands with small domain of analyticity

Theorem 2.2 shows that the pure Filon quadrature converges as n→ ∞ provided the domain of analyticity Gf is suffi-
ciently large—the numerical experiments in Section 4 indicate sharpness of the result. Theorem 2.4 shows that convergent
derivative-free quadrature rules can be devised under the same regularity assumptions. As pointed out above, the condition
[−1, 1] ⊂ WHr is only satisfied for r > 1, in which case already [−

√
2,
√
2] ⊂ WHr . Thus, the domain of analyticity of f

and g cannot be an arbitrary open neighborhood of [−1, 1]. We now discuss two options to create convergent Filon-type
quadrature for integrands f whose domain of analyticity is just an open neighborhood of [−1, 1]: In Section 3.1, we present
composite Filon-type quadratures, and in Section 3.2 we insert additional quadrature points in the interval [−1, 1].

3.1. Composite Filon-type quadratures

Assumption 3.1. Q refk,p(f , g) is a quadrature rule for integration on [−1, 1] with the following property: For every f , g
satisfying Assumption 1.2 there exist constants C , γ > 0, q ∈ (0, 1) (all depending only on r > 1 and dist([−1, 1], ∂Gg))
such that, upon setting γg := ‖1/g ′‖L∞(Gg ), there holds

|Q (f )− Q refk,p(f , g)| ≤ C min
{
q, γ

γg(p+ 1)
|k|

}p+1
‖f ‖L∞(Gf ) ∀p ∈ N0. (25)

Assumption 3.1 is satisfied in the settings of Theorems 2.2 and 2.4 (if the parameter λ is chosen proportional to γg ). A
composite quadrature rule is obtained in the usual way: For a partition T of [−1, 1] into elements K of size hK and affine
bijections FK : [−1, 1] → K the composite quadrature rule QT ,k,p is defined as

QT ,k,p(f , g) :=
∑
K∈T

hK
2
Q refk,p(f |K ◦ FK , g|K ◦ FK ).
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Theorem 3.2. Let Q refk,p satisfy Assumption 3.1. Let f , g satisfy Assumption 1.1. Set γg := ‖1/g
′
‖L∞(Gg ). Assume that T satisfies,

for some r > 1,

F−1K (Gf ) ⊃ WHr ∀K ∈ T . (26)

Then, there exist constant C, γ > 0 depending only on the constants appearing in Assumption 3.1 and dist([−1, 1], ∂Gg) such
that ∣∣Q (f )− QT ,k,p(f , g)

∣∣ ≤ C∑
K∈T

hK min
{
q, γ

γg(p+ 1)
hK |k|

}p+1
‖f ‖L∞(Gf ). (27)

Proof. We observe that (g|K ◦ FK )′ = hK
2 g
′
◦ FK . Hence, the constant γg appearing in (25) is adjusted by a factor 2/hK , which

gives the claim. �

Geometric considerations give an easy sufficient condition for (26) to bemet: DenotingmK ∈ K themid point of the element
K , then (26) is fulfilled if

clo
(
B√2
2 hK

(mK )
)
⊂ Gf ∀K ∈ T . (28)

3.2. Stabilized Filon-type quadratures

The composite quadrature that satisfies (26) can be viewed as inserting additional quadrature points in the interior of the
integration domain. A similar effect can be achieved by combining Hermite interpolation with interpolation in, for example,
the Gauß points. To fix ideas, denote by ∆nG the n + 1 Gauß points and define, for a parameter m ∈ N0 to be chosen, the
stabilized rule with points ∆mp+2pS := ∆

mp
G ∪ ∆

2p−1
H . That is, we use mp + 2p + 1 evaluations of f or its derivatives in the

quadrature. The quadrature error then satisfies:

Theorem 3.3 (Stabilized Filon-type Quadrature). Let Assumption 1.1 be valid. Set γg := ‖1/g ′‖L∞(Gg ). Then there exist constants
C, γ > 0, q ∈ (0, 1), and m ∈ N0 depending only on Gf and Gg such that

|Q (f )− Q
∆
mp+2p
S

(f )| ≤ C
(
min

{
q, γ

γg(p+ 1)
|k|

})p+1
‖f ‖L∞(Gf ).

We note that the number of evaluations of f and its derivatives is (2+m)p+ 1.

Proof. Proceed as in the proof of Theorem 2.2. The key observation is that the asymptotic distribution of the Gauß points
is known, [5, Theorem 12.4.5]. Specifically, for the Gauß points z(n)i , i = 0, . . . , n and ω

G
n+1(z) :=

∏n
i=0(z − z

(n)
i ) we have

limn→∞ |ωGn+1(z)|
1/(n+1)

=
1
2ρ(z); here, ρ(z) > 1 is determined by the condition z ∈ ∂Eρ(z), where the ellipse Eρ is given

by Eρ = {z ∈ C | |z − 1| + |z + 1| = ρ + 1/ρ}. For ω
∆
(m+2)p
S

(z) := ωH2p(z)ω
G
mp+1(z)we compute

ωSm(z) := limp→∞
|ω
∆
(m+2)p
S

(z)|1/(2p+mp+1) =
(
ωH(z)

)2/(m+2) (1
2
ρ(z)

)m/(m+2)
. (29)

The representation ρ(z) = ζ +
√
ζ 2 − 1 where 2ζ = |z − 1| + |z + 1| shows that ωSm is a continuous function. Thus,

the sets W Sr := {z ∈ C | ωSm(z) < r} are open. Note [−1, 1] ⊂ W Sr for r > 2−m/(m+2). Fix 1 < ρ such that
clo(Eρ) ⊂ D(f ). Fix 1/2 < r < ρ/2 and note that Eρ′ ⊂ Eρ for ρ ′ < ρ. Then (29) implies that for m sufficiently large,
we have [−1, 1] ⊂ W Sr ⊂ Eρ ⊂ D(f ). The approximation properties of the interpolation operator I∆(2+m)pS

now follow from

Proposition 1.5. Noting (f − I
∆
(2+m)p
S

f )(j)(±1) = 0 for 0 ≤ j ≤ p − 1 allows us to complete the proof by arguing as in the
proof of Theorem 2.2. �

Remark 3.4. Analogous results hold for Gauß–Lobatto or Chebyshev points.

4. Numerical examples

All calculations in this section are done inMaple using a sufficient number of digits to be able to focus on the convergence
properties of the Filon quadrature. In the Examples 4.1–4.3 we consider

g(x) = 1, f1(x) = (a− x2)1/2 =
(√
a+ x

)1/2 (√
a− x

)1/2
, a > 1. (30)
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Fig. 2. Top row and bottom left: pure Filon quadrature based on ∆2p−1H for a = 1.5, a = 2, and a = 3. Bottom right: composite Filon quadrature with
geometric mesh (31) for L = 4, σ = 0.2, a = 1.01.

Fig. 3. Filon quadrature based on∆2p−1C of (22) for a = 1.01 (left), a = 3 (right).

Example 4.1 (Pure Filon Quadrature Based on ∆2p−1H ). Assumption 1.2 is only satisfied for a > 2. For the pure Filon
quadrature, we therefore expect convergence (as p→∞) only for a > 2. In this case, we expect the initial convergence to
be the more rapid the larger |k| is. This is indeed visible in Fig. 2. For a < 2 Theorem 2.1 suggests, for a problem-dependent
constant γ , rapid error decay for p ≤ γ |k| and error increase for p > γ |k|. This behavior is also visible in Fig. 2 for the case
a = 1.5. �
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Fig. 4. Stabilized Filon quadrature based on∆mp+2pSC for a = 1.7. Top row and bottom left:m = 0,m = 1,m = 2. Bottom right: k = 100 andm ∈ {0, 1, 2}.

Example 4.2 (Filon Quadrature Based on∆2p−1C ). Theorem 2.4 ensures uniform (in k) convergence of the method Q
∆
2p−1
C
for

a > 2. This is visible in Fig. 3 for the case a = 3. For a < 2, Theorem 2.4 leads us to expect good results for k large compared
to p and, since for p ≥ |k|/λ the points essentially coincide with the classical Chebyshev points, also good results in that
regime. In the intermediate regime, the estimates of Theorem 2.4 permit large errors; indeed, these arise as shown in Fig. 3
for the case a = 1.01. The parameter λ appearing in (22) is chosen as λ = 1. �

Example 4.3 (Composite Pure Filon Quadrature). Section 3.1 shows that composite Filon rules can make Filon quadrature
applicable to integrands with singularities near the domain of integration. The condition to be satisfied is (26), or, more
simply, (28). It is desirable to minimize the number of elements in the mesh T under the constraint (26). For the integrand
given by (30), this can be achieved with geometric meshes that are refined towards the singularities of f : Let the mesh T geo

be defined by the points

{−1,−1+ σ i, | i = 0, . . . , L} ∪ {1, 1− σ i | i = 1, . . . , L}. (31)

If σ > (
√
2 − 1)2, then – with the exception of the elements K abutting the endpoints ±1 – condition (26) is satisfied by

all K ∈ T regardless of a > 1. Condition (26) is satisfied by the boundary elements only if L is sufficiently small. Sufficiently
conditions for T geo to perform well are therefore:

σ > (
√
2− 1)2, L ≥ L0 with

√
2
2
σ L0 <

√
a− 1 = dist([−1, 1], ∂D(f )).

The numerical example shown in the bottom right part of Fig. 2 is done with a = 1.01, σ = 0.2, and L = 4 and a pure Filon
quadrature on each element. Since we show relative errors, we mention that Q (f ) ≈ 1.4 for k = 1, Q (f ) ≈ 0.01 for k = 10,
Q (f ) ≈ −0.0025 for k = 100. �
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Fig. 5. Left: composite pure Filon quadrature based on 2 elements of equal length, a = 1.7. Right: stabilized Filon quadrature based on∆mp+2pSC with a = 4,
m = 1.

Example 4.4 (Stabilized Filon Quadrature).We consider the case

g(x) = 1, f2(x) = (
√
a+ x)1/2, a > 1. (32)

We employ the stabilized Filon quadrature ∆mp+2pSC based on Hermite interpolation in the endpoints and in the Chebyshev
points:

∆
mp+2p
SC := ∆

2p−1
H ∪

{
cos

(
2i+ 1
mp+ 1

π

2

)
| i = 0, . . . ,mp

}
. (33)

Assumption 1.2 is only satisfied for a > 2. Hence, convergence (as p→∞) cannot be guaranteed for a = 1.7 and m = 0;
indeed Fig. 4 suggests divergence as p→∞ form = 0. Convergence is ensured by selectingm ≥ 1, which is visible in Fig. 4.
The error bound of Theorem 3.3 is of the form u(p) := (min{q, γ (p + 1)/|k|})p+1 for some q ∈ (0, 1) and γ > 0. For q

close to 1 the function u is decreasing on (0, |k|eγ ), increasing on (
|k|
eγ ,

q|k|
γ
) and decreasing on ( q|k|

γ
,∞). Qualitatively, such a

behavior is visible in Fig. 4 for the case a = 1.7 and m = 1. It is worth noting that the range of p in which this undesirable
behavior occurs is proportional to |k|. For sufficiently small q the function u is monotone. Indeed, the numerical experiment
in the right part of Fig. 5 with a = 4 andm = 1 shows a better behavior. �
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