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We study the embedding of inflation with nilpotent multiplets in supergravity, in particular the 
decoupling of the sgoldstino scalar field. Instead of being imposed by hand, the nilpotency constraint 
on the goldstino multiplet arises in the low energy-effective theory by integrating out heavy degrees of 
freedom. We present explicit supergravity models in which a large but finite sgoldstino mass arises from 
Yukawa or gauge interactions. In both cases the inflaton potential receives two types of corrections. One 
is from the backreaction of the sgoldstino, the other from the heavy fields generating its mass. We show 
that these scale oppositely with the Volkov–Akulov cut-off scale, which makes a consistent decoupling 
of the sgoldstino nontrivial. Still, we identify a parameter window in which sgoldstino-less inflation can 
take place, up to corrections which flatten the inflaton potential.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Constrained chiral multiplets or, equivalently, nilpotent super-
fields and their application to cosmology have attracted a large 
amount of interest in recent years [1–17]. One feature of theories 
with nonlinear supersymmetry, i.e., with a constrained multiplet 
satisfying S2 = 0, is the absence of a dynamical scalar degree of 
freedom. The auxiliary field of S breaks supersymmetry and the 
goldstino fermion is the only propagating field [18–21]. This makes 
them appealing in cosmological model building for various reasons.

The connection of such theories to string theory has recently 
been studied in [15,22–27]. Effective supergravity theories with 
a constrained goldstino multiplet can be shown to arise from 
D3-branes in certain geometries [23–27]. The emergence of non-
linear supersymmetry in string models with anti-branes was 
proven in [28], in the context of global string theory vacua [29]. In 
such UV embeddings it is difficult to extract the behavior of the 
supergravity above the cut-off scale of the Volkov–Akulov action. 
Usually there is no scale at which linear supersymmetry is re-
stored and therefore the scalar component of S does not exist. 
A step towards understanding the connection between the linear 
and nonlinear regimes was recently made in [30], where it was 
shown explicitly that nonlinear supergravity theories are equiv-
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alent to linear supergravities with an infinitely heavy sgoldstino 
scalar, and that the limit relating the two is well-defined via func-
tional integration. With a few restrictions this connection was 
previously known in the rigid limit [31].1

Therefore it is desirable to study field theory examples in which 
a heavy sgoldstino exists so that supersymmetry becomes linearly 
realized at a high scale. In such cases, the sgoldstino field cannot 
be infinitely heavy. Its mass, and hence the Volkov–Akulov cut-off 
scale, must be lower than the Planck scale – and favorably be-
low the Kaluza–Klein and string scales. A stronger constraint arises 
from unitarity which signals a perturbative breakdown of the non-
linear theory at a scale ∼ √

m3/2 in Planck units. A UV complete 
theory which can describe both the linear and nonlinear regimes is 
bound to yield corrections which are missed by simply imposing a 
nilpotency constraint on the goldstino multiplet in supergravity. In 
this letter we compute these corrections and evaluate their effects 
in simple inflation models previously studied in the literature. It 
is our aim to prove that in a well-defined regime of the theory, 
corrections are under control – though in a quite constrained pa-
rameter space.

For this purpose the class of models developed in [7] is particu-
larly instructive.2 They feature the coupling of a nilpotent stabilizer 

1 For a recent study regarding the applicability of nilpotency conditions cf. [32].
2 We recommend [33] as a review of these and other inflation models involving 
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multiplet to a holomorphic function of the inflaton multiplet, giv-
ing rise to a plethora of possible potential shapes for the inflaton 
scalar. During inflation and in the vacuum supersymmetry is bro-
ken by the auxiliary field of the nilpotent multiplet. The setup 
can accommodate low-energy supersymmetry which is nontrivial 
given the high scale of inflation. We extend this setup to a super-
gravity with heavy fields in which a large mass for the sgoldstino 
scalar is generated dynamically. We expect our results to be rele-
vant in many other supergravity theories with nilpotent goldstino 
multiplets. Thus, we hope that this work is another step towards 
understanding nilpotent multiplets and their role in cosmology.

2. Sgoldstino decoupling

The success of nilpotent fields in cosmology has triggered grow-
ing interest in their field-theoretical origin. It is well-known that in 
spontaneously broken linear supersymmetry, the sgoldstino field 
acquires a large mass through the operator

K ⊃ c
|S|4
�2

(1)

in the Kähler potential. In the limit c → ∞, the sgoldstino becomes 
infinitely heavy and the resulting theory is equivalent to nonlin-
early realized supersymmetry with a nilpotent goldstino multi-
plet S [30,31]. Clearly this theory is only a low-energy effective 
theory. With the sgoldstino decoupled, it violates perturbative uni-
tarity at the intermediate energy scale √m3/2 [34]. Requiring in-
flation in the perturbative regime one obtains the generic con-
straint [7]

m3/2 > H2 , (2)

where H denotes the Hubble scale. However, the scale of super-
symmetry breaking may be different during and after inflation. 
Hence, nilpotent inflation models consistent with low-energy su-
persymmetry can be constructed [7].

A different concern is the limit c → ∞: in a UV-complete 
model the operator (1) arises from couplings of S to heavy degrees 
of freedom. As an example, we may consider the superpotential 
coupling W ⊃ λS X2 of S to the heavy field X with mass mX . This 
coupling generates a one-loop correction [35],

K ⊃ − λ4

16π2

|S|4
m2

X

. (3)

The limit c → ∞ in (1) then corresponds to taking the coupling 
λ to infinity or the mass mX to zero. Since both must be finite 
and mX must be large for the effective field theory (EFT) to make 
sense, we must consider the regime where the sgoldstino has a fi-
nite mass, i.e., finite c. In the remainder of this letter we strive to 
determine whether inflation is still possible in this case. Specifi-
cally, we determine whether the inflaton potential obtained in the 
nilpotent limit still holds and corrections are under control.

We will find that such corrections are of two different natures. 
Additional heavy fields at the energy scale � backreact on the in-
flaton potential, introducing corrections which vanish as � → ∞.3

On the other hand, the finite mass of the sgoldstino field leads to 
corrections which vanish in the limit where the latter is infinitely 
heavy. This corresponds to � → 0. Therefore, it is far from obvious 
that both types of corrections can be suppressed simultaneously.

Note that while we study this in the class of inflation models 
proposed in [7], our findings can straightforwardly be applied to 
alternative scenarios with nilpotent multiplets.

3 These we call “UV corrections” because they arise from embedding the nilpotent 
multiplet in a complete theory of supergravity.
3. Sgoldstino-less models of inflation

Let us briefly review the inflation models of [7]. They feature 
the Kähler and superpotential

K = 1

2
(� + �)2 + |S|2 , (4a)

W = f (�)
(

1 + √
3S

)
, (4b)

where � denotes the inflaton superfield and S contains the stabi-
lizer field. This setup is a generalization of the models developed 
in [36,37] with built-in supersymmetry breaking by the auxil-
iary field of S . The function f satisfies f (0) �= 0, f ′(0) = 0 and 
f (x) = f (−x̄). In [7] it is assumed that S fulfills the boundary con-
dition S2 = 0 of a nilpotent chiral multiplet. This implies 〈s〉 = 0
for its scalar component.4

The factor 
√

3 ensures the cancellation of the cosmological con-
stant in the vacuum at 〈φ〉 = 0. Along the inflationary trajectory 
the potential reads

V =
∣∣∣∣ f ′

(
i

ϕ√
2

)∣∣∣∣
2

, (5)

where ϕ = √
2 Imφ denotes the canonically normalized inflaton. 

Two examples for f are discussed in [7]. One is

f (�) = f0 − m

2
�2 , (6)

leading to the potential of chaotic inflation, V = 1
2 m2ϕ2. The other 

is

f (�) = f0 − i
√

V 0

(
� + i

√
3

2
e2i�/

√
3

)
, (7)

producing the plateau potential V = V 0

(
1 − e−√

2/3 ϕ
)

.5

In the following we call S the goldstino multiplet and s the 
sgoldstino, its scalar component. This is because s is the heavy 
scalar that is supposed to decouple, and despite the fact that the 
inflaton multiplet has a sub-dominant but nonvanishing auxiliary 
field during inflation.

4. Corrections from the sgoldstino

Let us discuss corrections to the inflaton potential which arise 
if the sgoldstino has a finite mass. To this end we consider

W = f (�)(1 + δS) , (8a)

K = 1

2
(� + �)2 + |S|2 − |S|4

�2
. (8b)

The difference compared to the previous section is that we do not 
impose the nilpotency constraint S2 = 0. Instead we introduce the 
term |S|4/�2 in the Kähler potential which generates a large – but 
finite – mass for the sgoldstino s and dynamically keeps s close 
to the origin.6 Supersymmetry breaking introduces an inflaton-
dependent linear term for the stabilizer field which slightly shifts 
it away from the origin [4]. As this effect scales inversely with the 
mass of s, it is absent in the nilpotent limit. Notice that we intro-
duced the parameter δ which allows us to tune the vacuum energy 

4 We use capital letters for superfields and small letters for their scalar compo-
nents.

5 As pointed out in Section 5 of [7], the function f can be extended to include 
matter fields like an MSSM sector. Tachyonic directions are avoided automatically 
for matter fields which appear at least quadratically in f .

6 Compared to Section 2 we absorbed the parameter c in the definition of �.
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to zero at the minimum of the potential. Due to the shift of s, δ is 
close to but not exactly 

√
3. We find

δ = √
3 + �2

2
√

3
+O(�4) . (9)

For a compact notation we introduce

V 0 =
∣∣∣∣ f ′

(
i

ϕ√
2

)∣∣∣∣
2

, (10)

denoting the inflaton potential in the limit where S is nilpotent 
and hence s is infinitely heavy. The gravitino mass along the infla-
tionary trajectory can be approximated as

m2
3/2 = eK |W |2 �

∣∣∣∣ f

(
i

ϕ√
2

)∣∣∣∣
2

. (11)

As only the real part of the stabilizer field is displaced during 
inflation, we set s̄ = s in the following. At second order in s the 
scalar potential reads

V = V 0 + m2
3/2�

2 + √
3
(

2V 0 − 4m2
3/2

)
s + m2

s s2 , (12)

including only terms up to O(�2).7 The sgoldstino mass is given 
by

m2
s = 12

m2
3/2

�2
, (13)

which, through m3/2, depends on ϕ during inflation. The inflaton-
dependent minimum of s lies at

〈s〉 = 2m2
3/2 − V 0

m2
3/2

�2

4
√

3
. (14)

The scalar potential after integrating out s reads

V = V 0

[
1 +

(
1 − V 0

4m2
3/2

)
�2 +O(�4)

]
. (15)

As mentioned above, the corrections from the sgoldstino sector ap-
pear in powers of m2

3/2/m2
s and H2/m2

s , where H ∼ √
V 0 again 

denotes the Hubble parameter. Corrections are under control as 
long as m3/2 > H� which is the case during inflation in the two 
examples of Section 3.8

Note that even when the corrections are small the sgoldstino 
can affect post-inflationary cosmology. If the above constraint is 
violated after inflation, s may no longer trace its minimum. If it 
gets trapped the associated potential energy can alter late-time 
cosmology. This is not necessarily problematic and may even in-
duce interesting signatures. We merely point out that decoupling s
from all dynamics in the universe requires the bound m3/2 > H�

to be satisfied during the entire cosmological evolution. We will 
show in the following that in a consistent EFT � cannot be arbi-
trarily small, making this a very severe constraint.

5. Corrections from UV completions

In the previous section we have included corrections to the 
inflaton potential which arise from the sgoldstino sector. The cor-
rections disappear in the limit � → 0 in which the sgoldstino 
becomes infinitely heavy. But there are more corrections related 

7 Notice that s =O(�2) and m2
s = O(�−2).

8 For the sgoldstino to be heavier than Re(�) one would additionally have to 
require | f ′′(�)|, | f ′′′(�)| < | f ′(�)| on the inflationary trajectory. These conditions 
are, however, already fulfilled by requiring slow-roll inflation.
to the heavy fields living at the scale �. Contrary to the sgold-
stino corrections, these scale with �−1 and prevent us from taking 
the limit � → 0. In the following we discuss these UV correc-
tions in two examples. In the first example the sgoldstino mass is 
generated by Yukawa interactions with heavy fields, in the second 
example by gauge interactions. Despite their simplicity we expect 
that our examples are representative of more sophisticated UV em-
beddings.

5.1. Example 1

Consider two additional chiral multiplets X, Y with a vector-like 
mass M . We consider M to be large compared to the Hubble scale 
and the gravitino mass during inflation. We define the model as 
follows,

W = f (�)(1 + δS) + λS X2 + M XY , (16)

K = 1

2
(� + �)2 + |S|2 + |X |2 + |Y |2 . (17)

It bears resemblance to the O’Raifeartaigh model [38]. The sgold-
stino superfield S obtains a mass term through its coupling to X . 
The parameter δ is chosen such that the vacuum energy vanishes 
at the minimum of the potential

δ = √
3

(
1 + 2π2M2

λ4

)
+O(M4) . (18)

The tree-level scalar potential along the direction x = y = 0 reads

V = V 0 + 12π2M2

λ4
m2

3/2 + 2
√

3
(

V 0 − 2m2
3/2

)
s

+
(

4V 2
0 − 2m2

3/2

)
s2 +O(s3) , (19)

where V 0 = | f ′|2 and m2
3/2 � | f |2 as before and s̄ = s is assumed. 

The imaginary part of s is stabilized at the origin and does not 
play a role in our discussion. The tree-level mass of s is negligi-
ble compared to the one-loop contribution due to the interaction 
with X . We use the Coleman–Weinberg formula

V CW = 1

64π2
StrM4 log

M2

Q 2
, (20)

where StrM4 = ∑
i(−1)2 J i (2 J i + 1)m4

i is the trace over the field-
dependent mass eigenvalues of states with spin J i . The Coleman–
Weinberg potential gives rise to an additional mass term

V CW = λ4
m2

3/2

π2M2
s2 + . . . . (21)

Note that it is the same as the mass term arising from the equiv-
alent quantum correction to the Kähler potential 	K = −|S|4/�2

with

� = 2
√

3π

λ2
M . (22)

We conclude that we obtain the model of Section 4 as a low-
energy effective theory and the small shift of s does not affect 
inflation for sufficiently small �.

However, we have yet to consider the effect of inflation on the 
sector of heavy fields X and Y . Inflation does not induce linear 
terms for the scalar components x and y. However, it generates a 
bilinear mass term for x. The mass of Im x is given by

m2
Im x � M2 − 2

√
3λm3/2 . (23)
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Table 1
Representative example of the different scales appearing in sgoldstino-less inflation. 
The values during inflation refer to the beginning of observable inflation, 50–60 
e-folds in the past.

m3/2 ms H �

inflation 8 · 1014 GeV 9 · 1015 GeV 9 · 1013 GeV 7 · 1017 GeV
vacuum 105 GeV 106 GeV ∼ 0 7 · 1017 GeV

Thus, taking the limit M → 0 to make S nilpotent introduces a 
tachyonic direction in the full theory, which makes inflation impos-
sible.9 To obtain a positive squared mass, we obtain the constraint

M2 > 2
√

3λm3/2 . (24)

Taking the example of chaotic inflation (6) and using m � 6 · 10−6, 
ϕ ∼ 15, this translates into M > 0.03

√
λ. At the same time, to 

make the sgoldstino sufficiently heavy we have to require that 
� � 1 which is equivalent to M � 0.09λ2, cf. (22). After com-
bining these two constraints there is a small window at λ � 1
and M ∼ 0.05, where sgoldstino-less inflation can consistently take 
place. In this regime the heavy fields remain at their minima and 
inflation does not receive corrections besides those of Section 4. 
Notice, however, that the sgoldstino mass can at most be enhanced 
by an O(10) factor compared to the gravitino mass. This is il-
lustrated in Table 1, where we show a possible choice of scales 
which leads to successful sgoldstino-less inflation. In the vacuum, 
the gravitino mass is much smaller than in the inflationary epoch 
and low-energy supersymmetry can be obtained.

5.2. Example 2

Second, we consider an example where the sgoldstino receives 
its mass from gauge interactions. We introduce three new chiral 
multiplets X , Y , 
 which carry the charges q(X) = −1, q(Y ) = 1
and q(
) = 0 under a U(1) symmetry.10 We further assume that 
q(S) = 1 and define the model by

W = f (�)(1 + δX S) + λ
(XY − v2) , (25)

K = 1

2
(� + �)2 + |S|2 + |X |2 + |Y |2 + |
|2 , (26)

where δ is again chosen to adjust the cosmological constant. We 
find

δ =
√

3

v

(
1 − 2v2

9
+O(v4)

)
. (27)

The second term in the superpotential is introduced to break the 
U(1) symmetry at a high scale. For the same reason as before we 
set x̄ = x, ȳ = y, ψ̄ = ψ in the following. The imaginary parts do 
not play a role in our discussion. Given that v 
 Max(m3/2, H) the 
U(1) symmetry is broken along the almost D- and F -flat direction

xy = v2 , s2 − x2 + y2 = 0 , ψ = 0 . (28)

Using these three conditions to eliminate x, y, and ψ yields the 
scalar potential

V = V 0 + 2

3
m2

3/2v2 + √
3
(

2V 0 − 2m2
3/2

)
s

+ m2
s s2 +O(s3) , (29)

9 We assume λ > 0. In the opposite case Re x is the tachyon.
10 In order to avoid anomalies we have to introduce another field Z with charge 

q(Z) = −1. The field Z can be coupled to a new singlet � via a term Y Z� in the 
superpotential. When Y breaks the U(1) symmetry this becomes a large vector-like 
mass term for Z . In this case Z and � do not affect our analysis, and we neglect 
them in the following discussion.
Fig. 1. Effective inflaton potential for the chaotic inflation model with v = 0.03
(blue) v = 0.1 (orange) and v = 0.3 (green). The backreaction of the heavy fields 
flattens the inflaton potential. For v � 0.1 corrections from the heavy fields are un-
der control, while sgoldstino decoupling requires v � 1. This leaves a small window 
of viable parameter space in which sgoldstino-less inflation consistently proceeds. 
(For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

with

m2
s = 9m2

3/2

2v2
. (30)

This resembles (12) if we identify � = √
4/3v .11 The large mass 

ms decouples the sgoldstino and the small shift of s does virtually 
not affect inflation.

Unfortunately, this is not the end of the story. So far we have 
worked in the regime m3/2, H � v . We expect additional correc-
tions if either m3/2 or H are close to the scale v . To find these 
corrections we must treat x, y and ψ as dynamical fields. We per-
form a Taylor expansion around s = 0, ψ = 0, x = v , y = v up to 
second order in the shift of the four fields. Setting the four fields 
to their new minima, we arrive at the following effective inflaton 
potential

V = V 0 − 9

4

(
1

2g2
+ 1

λ2

) m4
3/2

v4
. (31)

Notice the difference to our first example. In this case the shift 
of the heavy fields during inflation causes a backreaction on the 
potential. Expression (31) only includes the corrections due to the 
heavy fields. In addition, the sgoldstino-induced corrections of Sec-
tion 4 arise.

Requiring the correction to be suppressed compared to the 
leading-order inflaton potential leads to the constraint

v 
 m3/2

V 1/4
0

, (32)

for λ, g ∼ O(1). In the model of chaotic inflation defined by (6), 
with m ∼ 6 · 10−6 and ϕ ∼ 15, the constraint translates into

v 
 0.03 . (33)

Even for larger v there are substantial corrections. We depict 
the effective inflaton potential of the example (6) in Fig. 1 for 
f0 = 10−14, m = 6 · 10−6, λ = g = 1, and different values of v . 
Again there is a small window at v � 0.1 where the backreaction 
is under control and sgoldstino-less inflation can take place. As in 
the previous example, choosing v too large decreases the mass of 
the sgoldstino scalar beyond the point where it can be consistently 

11 To recover the exact form of (12) we would have to substitute m3/2 → √
2m3/2.
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decoupled. The corrections from the heavy fields of the UV com-
pletion cause a flattening of the inflaton potential.

6. Discussion

We have emphasized that sgoldstino decoupling in cosmology 
is nontrivial. Working in spontaneously broken linear supergravity, 
instead of imposing a nilpotency constraint by hand we assumed 
that the mass of the sgoldstino field is produced dynamically. 
This required the inclusion of heavy degrees of freedom which 
couple to the sgoldstino. We discussed two possible UV embed-
dings of nilpotent goldstino multiplets. Both scenarios result in the 
sgoldstino-less inflation models of [7] as a low-energy effective 
theory. The sgoldstino has a large but finite mass ms ∼ m3/2/�

during inflation, where � is the mass scale of the heavy fields 
which couple to the sgoldstino. As m3/2 > H the sgoldstino decou-
ples from the inflationary dynamics.

The scale � sets a new cut-off at which the low-energy effec-
tive theory breaks down and the heavy fields become dynamical 
degrees of freedom. For inflation to take place in a controlled 
regime, where the heavy fields can be integrated out, one has to 
require that the Hubble scale does not exceed �. However, an even 
more severe constraint arises in the class of models [7] which fea-
ture m3/2 
 H during inflation. There inflation induces large “soft 
terms” which may destabilize the heavy fields. Depending on the 
specific UV embedding, we find that tadpole terms ∝ m2

3/2M2
P/�

and bilinear terms ∝ m3/2MP are particularly dangerous. In all 
examples we find that inflation is generically spoiled if � � 0.1. 
This does not leave much room for a complete theory below the 
Planck scale with a decoupled sgoldstino. Still, a window of viable 
parameter choices survives in which sgoldstino-less inflation can 
successfully take place and the backreaction on the heavy fields is
under control. Within this window we calculated the corrections 
to the inflaton potential which typically appear in the form of flat-
tening effects.

The constraints on � imply that the sgoldstino mass can at 
most be enhanced by one order of magnitude compared to the 
gravitino mass. Requiring the sgoldstino to decouple in the post-
inflationary cosmology as well puts strong additional constraints 
on the form of the scalar potential.

Due to the structure of the dangerous terms that arise, we ex-
pect these results to be relevant for many other applications of 
constrained multiplets in cosmology.

Acknowledgements

The authors thank G. Dall’Agata and A. Uranga for discus-
sions. The work of C.W. is supported by the ERC Advanced 
Grant SPLE under contract ERC-2012-ADG-20120216-320421, by 
the grant FPA2012-32828 from the MINECO, and by the grant 
SEV-2012-0249 of the “Centro de Excelencia Severo Ochoa” Pro-
gramme. The work of L.H. is supported by the IISN and the Bel-
gian Federal Science Policy through the Interuniversity Attraction 
Pole P7/37 “Fundamental Interactions”. The work of M.W. is sup-
ported by the SFB-Transregio TR33 “The Dark Universe” (Deutsche 
Forschungsgemeinschaft).

References

[1] L. Alvarez-Gaume, C. Gomez, R. Jimenez, Phys. Lett. B 690 (2010) 68, http://
dx.doi.org/10.1016/j.physletb.2010.04.069, arXiv:1001.0010 [hep-th].
[2] A. Achucarro, S. Mooij, P. Ortiz, M. Postma, J. Cosmol. Astropart. Phys. 1208 
(2012) 013, http://dx.doi.org/10.1088/1475-7516/2012/08/013, arXiv:1203.1907 
[hep-th].

[3] I. Antoniadis, E. Dudas, S. Ferrara, A. Sagnotti, Phys. Lett. B 733 (2014) 32, 
http://dx.doi.org/10.1016/j.physletb.2014.04.015, arXiv:1403.3269 [hep-th].

[4] W. Buchmuller, E. Dudas, L. Heurtier, C. Wieck, J. High Energy Phys. 1409 
(2014) 053, http://dx.doi.org/10.1007/JHEP09(2014)053, arXiv:1407.0253 [hep-
th].

[5] S. Ferrara, R. Kallosh, A. Linde, J. High Energy Phys. 1410 (2014) 143, http://
dx.doi.org/10.1007/JHEP10(2014)143, arXiv:1408.4096 [hep-th].

[6] R. Kallosh, A. Linde, J. Cosmol. Astropart. Phys. 1501 (2015) 025, http://
dx.doi.org/10.1088/1475-7516/2015/01/025, arXiv:1408.5950 [hep-th].

[7] G. Dall’Agata, F. Zwirner, J. High Energy Phys. 1412 (2014) 172, http://
dx.doi.org/10.1007/JHEP12(2014)172, arXiv:1411.2605 [hep-th].

[8] R. Kallosh, A. Linde, M. Scalisi, J. High Energy Phys. 1503 (2015) 111, http://
dx.doi.org/10.1007/JHEP03(2015)111, arXiv:1411.5671 [hep-th].

[9] A. Linde, J. Cosmol. Astropart. Phys. 1505 (2015) 003, http://dx.doi.org/10.1088/
1475-7516/2015/05/003, arXiv:1504.00663 [hep-th].

[10] J.J.M. Carrasco, R. Kallosh, A. Linde, D. Roest, Phys. Rev. D 92 (4) (2015) 041301, 
http://dx.doi.org/10.1103/PhysRevD.92.041301, arXiv:1504.05557 [hep-th].

[11] Y. Kahn, D.A. Roberts, J. Thaler, J. High Energy Phys. 1510 (2015) 001, http://
dx.doi.org/10.1007/JHEP10(2015)001, arXiv:1504.05958 [hep-th].

[12] M. Scalisi, J. High Energy Phys. 1512 (2015) 134, http://dx.doi.org/10.1007/
JHEP12(2015)134, arXiv:1506.01368 [hep-th].

[13] J.J.M. Carrasco, R. Kallosh, A. Linde, J. High Energy Phys. 1510 (2015) 147, 
http://dx.doi.org/10.1007/JHEP10(2015)147, arXiv:1506.01708 [hep-th].

[14] E. Dudas, S. Ferrara, A. Kehagias, A. Sagnotti, J. High Energy Phys. 1509 (2015) 
217, http://dx.doi.org/10.1007/JHEP09(2015)217, arXiv:1507.07842 [hep-th].

[15] L. Aparicio, F. Quevedo, R. Valandro, arXiv:1511.08105 [hep-th].
[16] S. Ferrara, R. Kallosh, J. Thaler, arXiv:1512.00545 [hep-th].
[17] J.J.M. Carrasco, R. Kallosh, A. Linde, arXiv:1512.00546 [hep-th].
[18] D.V. Volkov, V.P. Akulov, Phys. Lett. B 46 (1973) 109, http://dx.doi.org/10.1016/

0370-2693(73)90490-5.
[19] M. Rocek, Phys. Rev. Lett. 41 (1978) 451, http://dx.doi.org/10.1103/PhysRevLett.

41.451.
[20] E.A. Ivanov, A.A. Kapustnikov, J. Phys. A 11 (1978) 2375, http://dx.doi.org/

10.1088/0305-4470/11/12/005.
[21] U. Lindstrom, M. Rocek, Phys. Rev. D 19 (1979) 2300, http://dx.doi.org/10.1103/

PhysRevD.19.2300.
[22] P. McGuirk, G. Shiu, F. Ye, J. High Energy Phys. 1207 (2012) 188, http://

dx.doi.org/10.1007/JHEP07(2012)188, arXiv:1206.0754 [hep-th].
[23] R. Kallosh, T. Wrase, J. High Energy Phys. 1412 (2014) 117, http://dx.doi.org/

10.1007/JHEP12(2014)117, arXiv:1411.1121 [hep-th].
[24] E.A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen, T. Wrase, J. High En-

ergy Phys. 1505 (2015) 058, http://dx.doi.org/10.1007/JHEP05(2015)058, arXiv:
1502.07627 [hep-th].

[25] R. Kallosh, F. Quevedo, A.M. Uranga, J. High Energy Phys. 1512 (2015) 039, 
http://dx.doi.org/10.1007/JHEP12(2015)039, arXiv:1507.07556 [hep-th].

[26] I. Bandos, L. Martucci, D. Sorokin, M. Tonin, arXiv:1511.03024 [hep-th].
[27] I. Garcia-Etxebarria, F. Quevedo, R. Valandro, arXiv:1512.06926 [hep-th].
[28] E. Dudas, J. Mourad, Phys. Lett. B 514 (2001) 173, http://dx.doi.org/10.1016/

S0370-2693(01)00777-8, arXiv:hep-th/0012071.
[29] S. Sugimoto, Prog. Theor. Phys. 102 (1999) 685, http://dx.doi.org/10.1143/

PTP.102.685, arXiv:hep-th/9905159;
I. Antoniadis, E. Dudas, A. Sagnotti, Phys. Lett. B 464 (1999) 38, http://dx.doi.
org/10.1016/S0370-2693(99)01023-0, arXiv:hep-th/9908023.

[30] R. Kallosh, A. Karlsson, D. Murli, arXiv:1511.07547 [hep-th].
[31] Z. Komargodski, N. Seiberg, J. High Energy Phys. 0909 (2009) 066, http://

dx.doi.org/10.1088/1126-6708/2009/09/066, arXiv:0907.2441 [hep-th].
[32] D.M. Ghilencea, arXiv:1512.07484 [hep-th].
[33] S. Ferrara, A. Sagnotti, arXiv:1509.01500 [hep-th].
[34] R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio, R. Gatto, Phys. Lett. B 216 

(1989) 325, http://dx.doi.org/10.1016/0370-2693(89)91123-4;
R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio, R. Gatto, Phys. Lett. B 229 
(1989) 439.

[35] M.T. Grisaru, M. Rocek, R. von Unge, Phys. Lett. B 383 (1996) 415, http://
dx.doi.org/10.1016/0370-2693(96)00777-0, arXiv:hep-th/9605149.

[36] M. Kawasaki, M. Yamaguchi, T. Yanagida, Phys. Rev. Lett. 85 (2000) 3572, 
http://dx.doi.org/10.1103/PhysRevLett.85.3572, arXiv:hep-ph/0004243.

[37] R. Kallosh, A. Linde, T. Rube, Phys. Rev. D 83 (2011) 043507, http://
dx.doi.org/10.1103/PhysRevD.83.043507, arXiv:1011.5945 [hep-th].

[38] L. O’Raifeartaigh, Nucl. Phys. B 96 (1975) 331, http://dx.doi.org/10.1016/
0550-3213(75)90585-4.

http://dx.doi.org/10.1016/j.physletb.2010.04.069
http://dx.doi.org/10.1088/1475-7516/2012/08/013
http://dx.doi.org/10.1016/j.physletb.2014.04.015
http://dx.doi.org/10.1007/JHEP09(2014)053
http://dx.doi.org/10.1007/JHEP10(2014)143
http://dx.doi.org/10.1088/1475-7516/2015/01/025
http://dx.doi.org/10.1007/JHEP12(2014)172
http://dx.doi.org/10.1007/JHEP03(2015)111
http://dx.doi.org/10.1088/1475-7516/2015/05/003
http://dx.doi.org/10.1103/PhysRevD.92.041301
http://dx.doi.org/10.1007/JHEP10(2015)001
http://dx.doi.org/10.1007/JHEP12(2015)134
http://dx.doi.org/10.1007/JHEP10(2015)147
http://dx.doi.org/10.1007/JHEP09(2015)217
http://refhub.elsevier.com/S0370-2693(16)30219-2/bib417061726963696F3A3230313570736Cs1
http://refhub.elsevier.com/S0370-2693(16)30219-2/bib466572726172613A3230313574796Es1
http://refhub.elsevier.com/S0370-2693(16)30219-2/bib436172726173636F3A3230313569696As1
http://dx.doi.org/10.1016/0370-2693(73)90490-5
http://dx.doi.org/10.1103/PhysRevLett.41.451
http://dx.doi.org/10.1088/0305-4470/11/12/005
http://dx.doi.org/10.1103/PhysRevD.19.2300
http://dx.doi.org/10.1007/JHEP07(2012)188
http://dx.doi.org/10.1007/JHEP12(2014)117
http://dx.doi.org/10.1007/JHEP05(2015)058
http://dx.doi.org/10.1007/JHEP12(2015)039
http://refhub.elsevier.com/S0370-2693(16)30219-2/bib42616E646F733A32303135786E66s1
http://refhub.elsevier.com/S0370-2693(16)30219-2/bib4761726369612D457478656261727269613A323031356C6966s1
http://dx.doi.org/10.1016/S0370-2693(01)00777-8
http://dx.doi.org/10.1143/PTP.102.685
http://dx.doi.org/10.1016/S0370-2693(99)01023-0
http://refhub.elsevier.com/S0370-2693(16)30219-2/bib4B616C6C6F73683A3230313570686Fs1
http://dx.doi.org/10.1088/1126-6708/2009/09/066
http://refhub.elsevier.com/S0370-2693(16)30219-2/bib4768696C656E6365613A32303135617068s1
http://refhub.elsevier.com/S0370-2693(16)30219-2/bib466572726172613A32303135637761s1
http://dx.doi.org/10.1016/0370-2693(89)91123-4
http://refhub.elsevier.com/S0370-2693(16)30219-2/bib436173616C62756F6E693A313938387378s2
http://refhub.elsevier.com/S0370-2693(16)30219-2/bib436173616C62756F6E693A313938387378s2
http://dx.doi.org/10.1016/0370-2693(96)00777-0
http://dx.doi.org/10.1103/PhysRevLett.85.3572
http://dx.doi.org/10.1103/PhysRevD.83.043507
http://dx.doi.org/10.1016/0550-3213(75)90585-4
http://dx.doi.org/10.1016/j.physletb.2010.04.069
http://dx.doi.org/10.1007/JHEP10(2014)143
http://dx.doi.org/10.1088/1475-7516/2015/01/025
http://dx.doi.org/10.1007/JHEP12(2014)172
http://dx.doi.org/10.1007/JHEP03(2015)111
http://dx.doi.org/10.1088/1475-7516/2015/05/003
http://dx.doi.org/10.1007/JHEP10(2015)001
http://dx.doi.org/10.1007/JHEP12(2015)134
http://dx.doi.org/10.1016/0370-2693(73)90490-5
http://dx.doi.org/10.1103/PhysRevLett.41.451
http://dx.doi.org/10.1088/0305-4470/11/12/005
http://dx.doi.org/10.1103/PhysRevD.19.2300
http://dx.doi.org/10.1007/JHEP07(2012)188
http://dx.doi.org/10.1007/JHEP12(2014)117
http://dx.doi.org/10.1016/S0370-2693(01)00777-8
http://dx.doi.org/10.1143/PTP.102.685
http://dx.doi.org/10.1016/S0370-2693(99)01023-0
http://dx.doi.org/10.1088/1126-6708/2009/09/066
http://dx.doi.org/10.1016/0370-2693(96)00777-0
http://dx.doi.org/10.1103/PhysRevD.83.043507
http://dx.doi.org/10.1016/0550-3213(75)90585-4

	UV corrections in sgoldstino-less inﬂation
	1 Introduction
	2 Sgoldstino decoupling
	3 Sgoldstino-less models of inﬂation
	4 Corrections from the sgoldstino
	5 Corrections from UV completions
	5.1 Example 1
	5.2 Example 2

	6 Discussion
	Acknowledgements
	References


