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Abstract

We prove three inequalities relating some invariants of sets of matrices, such as the joint
spectral radius. One of the inequalities, in which proof we use geometric invariant theory, has
the generalized spectral radius theorem of Berger and Wang as an immediate corollary.
© 2003 Elsevier Science Inc. All rights reserved.
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1. Introduction

Let M(d) be the space of d × d complex matrices. If A ∈ M(d), we indicate by
ρ(A) the spectral radius of A, that is, the maximum absolute value of an eigenvalue
of A. Given a norm ‖·‖ in Cd , we endow the space M(d) with the operator norm
‖A‖ = sup{‖Av‖; ‖v‖ = 1}.

For every A ∈ M(d) and every norm ‖·‖ in Cd , we have ρ(A) � ‖A‖. On the
other hand, there is also a lower bound for ρ(A) in terms of norms:

‖Ad‖ � Cρ(A)‖A‖d−1, where C = 2d − 1. (1)

In particular, if ρ(A)
 ‖A‖ then ‖Ad‖ 
 ‖A‖d .
Inequality (1) is a very simple consequence of the Cayley–Hamilton theorem.

Indeed, let p(z) = zd − σ1z
d−1 + · · · + (−1)dσd be the characteristic polynomial

of A. Since p(A) = 0,
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‖Ad‖ �
d∑

i=1

|σi | ‖A‖d−i .

Since the σi are the elementary symmetric functions on the eigenvalues of A,

|σi | �
(
d

i

)
ρ(A)i �

(
d

i

)
ρ(A)‖A‖i−1.

Therefore (1) follows.
The spectral radius theorem (for the finite-dimensional case) asserts that

ρ(A) = lim
n→∞‖A

n‖1/n. (2)

The formula above may be deduced from the inequality (1), as we now show. Since
‖An+m‖ � ‖An‖‖Am‖, the limit in (2) exists (see [11, Problem I.98]); let us call it r.
Clearly, r � ρ(A). Applying (1) to An in the place of A, using that ρ(An) = ρ(A)n

and taking the 1/dn-power, we obtain

‖Adn‖1/dn � C1/dnρ(A)1/d‖An‖(d−1)/dn.

Taking limits when n→∞, we get r � ρ(A)1/dr(d−1)/d , that is, r � ρ(A), proving
(2). The author ignores whether this proof has ever appeared in the literature.

Now, let � be a non-empty bounded subset of M(d). Define

‖�‖ = sup
A∈�
‖A‖, ρ(�) = sup

A∈�
ρ(A).

If n ∈ N, we denote by �n the set of the products A1 · · ·An, with all Ai ∈ �. Since
‖�n+m‖ � ‖�n‖‖�m‖, the limit

R(�) = lim
n→∞‖�

n‖1/n

exists and equals infn ‖�n‖1/n. Besides, it is independent of the chosen norm. The
quantity R(�) was introduced by Rota and Strang [15] and is called the joint spectral
radius of the set �. For a nice geometrical interpretation of the joint spectral radius,
see [13] (or [14]).

Our first main result is a generalization of (1) to sets of matrices:

Theorem A. Given d � 1, there exists C1 > 1 such that, for every bounded set
� ⊂ M(d) and every norm ‖·‖ in Cd ,

‖�d‖ � C1R(�)‖�‖d−1.

Our next result relates the joint spectral radius of � with spectral radii of products
of matrices in �:

Theorem B. Given d � 1, there exists C2 > 1 and k ∈ N such that, for every
bounded set � ⊂ M(d),

R(�) � C2 max
1�j�k

ρ(�j )1/j .
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Using Theorem B, we can extend the spectral radius theorem (2):

Corollary 1 (Berger–Wang generalized spectral radius theorem). If � ⊂ M(d) is
bounded then

R(�) = lim sup
n→∞

ρ(�n)1/n.

Proof. The inequality R(�) � lim sup ρ(�n)1/n is trivial. Applying Theorem B to
�n and using that R(�n) = R(�)n, we obtain

R(�) � C
1/n
2 max

1�j�k
ρ(�jn)1/jn.

Taking lim sup when n→∞, we get the result. �

The result above was conjectured by Daubechies and Lagarias [2] and proved by
Berger and Wang [1]. Other proofs were given in [3,16].

The proof of Theorem A is elementary, while in the proof of Theorem B we shall
use some geometric invariant theory. We also give another generalization of (1),
Proposition 12, whose proof is elementary.

Remark. For all� andm,n ∈ N,we haveρ(�mn)1/mn � ρ(�n)1/n (because�nm ⊂
(�n)m). So in Theorem B it is sufficient to take the maximum of ρ(�j )1/j over j with
k/2 < j � k. Another consequence of the latter fact is that

lim sup
n→∞

ρ(�n)1/n = sup
n∈N

ρ(�n)1/n.

2. Proof of Theorem A

We first prove a weaker inequality:

Lemma 2. Let ‖·‖e be the euclidian norm in Cd . There exists C0 = C0(d) such that

‖S�dS−1‖e � C0‖�‖e‖S�S−1‖d−1
e .

for every non-empty bounded set � ⊂ M(d) and every S ∈ GL(d).

Proof. We shall also consider the norm in M(d) defined by

‖A‖0 = max |aij |, where A = (aij )i,j=1,...,d .

We first assume S is a diagonal matrix diag(λ1, . . . , λd), with λ1, . . . , λd > 0. Take
d matrices A1, . . . , Ad ∈ �, and write A� = (a

(�)
ij ). Then

‖S�S−1‖0 � max
i,j,�

∣∣λia
(�)
ij λ−1

j

∣∣
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and ∥∥SA1 · · ·AdS
−1

∥∥
0 � C0 max

i0,...,id

∣∣λi0a
(1)
i0i1
· · · a(d)

id−1id
λ−1
id

∣∣,
where C0 = dd−1. Given integers i0, . . . , id ∈ {1, . . . , d}, by the pigeon-hole prin-
ciple there exists 1 � k � d such that λik−1 � λik . Therefore

∣∣λi0a
(1)
i0i1
· · · a(d)

id−1id
λ−1
id

∣∣= ∏
1���d

∣∣λi�−1a
(�)
i�−1i�

λ−1
i�

∣∣

�
∣∣a(k)

ik−1,ik

∣∣ ∏
� /=k

∣∣λi�−1a
(�)
i�−1i�

λ−1
i�

∣∣
� ‖�‖0‖S�S−1‖d−1

0 .

It follows that ‖S�dS−1‖0 ≤ C0‖�‖0‖S�S−1‖d−1
0 . Up to changing C0, the same

inequality holds for the euclidian norm ‖·‖e.
Next consider the general case S ∈ GL(d). By the singular value decomposition

theorem, there exist unitary matrices U, V and a diagonal matrix D = diag(λ1, . . . ,

λd), with λ1, . . . , λd > 0, such that S = UDV. Since U and V preserve the eucli-
dian norm,

‖S�dS−1‖e = ‖D(V�V −1)dD−1‖e
� C0‖V�V −1‖e‖DV�V −1D−1‖d−1

e

= C0‖�‖e‖S�S−1‖d−1
e .

This proves the lemma. �

To make the constant in Lemma 2 independent of the norm, we will use:

Lemma 3. There exists C = C(d) such that, for every two norms ‖·‖1, ‖·‖2 in Cd ,

there is S ∈ GL(d) such that:

1. C−1‖v‖1 � ‖Sv‖2 � ‖v‖1 for all v ∈ Cd ;
2. C−1‖A‖1 � ‖SAS−1‖2 � C‖A‖1 for all A ∈ M(d).

Proof. The second part is an immediate consequence of the first one. To prove the
first part, it is enough to show that for every ‖·‖ in Cd , there is S ∈ GL(d) such that

C−1
d ‖v‖ � ‖Sv‖0 � ‖v‖ ∀v ∈ Cd , (3)

where ‖·‖0 is the sup-norm in Cd and Cd = 2d − 1. The proof is by induction. Let
‖·‖ be a norm in Cd+1. Restrict it to the subspace Cd = Cd × {0} ⊂ Cd+1. By in-
duction hypothesis, there is S ∈ GL(d) such that (3) holds. If πj : Cd+1 → C is
the projection in the j th coordinate, then |πj ◦ S(v)| � ‖v‖ for all v ∈ Cd and 1 �
j � d. By the Hahn–Banach theorem, there are linear functionals �j : Cd+1 → C
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such that �j |Cd = πj ◦ S and |�j (w)| � ‖w‖ for all w ∈ Cd+1 and 1 � j � d. Let
a = ‖πd+1‖ and define a linear map S̄ : Cd+1 → Cd+1 by

πj ◦ S̄ =
{
�j if 1 � j � d,

a−1πd+1 if j = d.

Then S̄ ∈ GL(d + 1) and ‖S̄w‖0 � ‖w‖, so S̄ satisfies the second inequality in (3).
To prove the first one, let ξ ∈ Cd+1 be such that πd+1(ξ) = a and ‖ξ‖ = 1. Write
S̄(ξ) = η + ed+1 with η ∈ Cd and ed+1 = (0, . . . , 0, 1) ∈ Cd+1. We have ‖η‖0 �
‖ξ‖ = 1 and so ‖S̄−1(η)‖ = ‖S−1(η)‖ � Cd‖η‖0 � Cd. Therefore

‖S̄−1(ed+1)‖ � ‖ξ‖ + ‖S̄−1(η)‖ � 1+ Cd.

Now let w ∈ Cd+1 be given. Write w = v + ted+1 with w ∈ Cd and t ∈ C. Then

‖S̄−1(w)‖� ‖S̄−1(v)‖ + |t |‖S̄−1(ed+1)‖
� Cd‖v‖0 + (Cd + 1)|t |
� (2Cd + 1)max{‖v‖0, |t |} = Cd+1‖w‖0.

This proves that (3) holds with d + 1 and S̄ in the place of d and S. �

The result below gives another characterization of the joint spectral radius. For a
proof, see [3] or [15].

Proposition 4. For all bounded � ⊂ M(d),

R(�) = inf‖·‖ ‖�‖,
where the infimum is taken over all norms in Cd .

Proof of Theorem A. Let C0 and C be as in Lemmas 2 and 3. Let ‖·‖e be the
euclidian norm, and let ‖·‖1, ‖·‖2 be any two norms in Cd . Let S1, S2 ∈ GL(d) be
given by Lemma 3 such that

C−1
∥∥SiAS−1

i

∥∥
e � ‖A‖i � C

∥∥SiAS−1
i

∥∥
e ∀A ∈ M(d), i = 1, 2.

Take � ⊂ M(d). Then (applying Lemma 2 with S = S1S
−1
2 and S2�S−1

2 in the place
of �)

‖�d‖1 � C
∥∥S1�

dS−1
1

∥∥
e

� CC0
∥∥S2�S−1

2

∥∥
e

∥∥S1�S−1
1

∥∥d−1
e � CdC0‖�‖2‖�‖d−1

1 .

Taking the infimum over ‖·‖2 in the left-hand side, we obtain, by Proposition 4,
‖�d‖1 � C1R(�)‖�‖d−1

1 , where C1 = CdC0. �

Let us reread Theorem A in terms of another invariant. Given a non-empty bounded
� ⊂ M(d), we define
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S(�) = sup
‖·‖
‖�d‖
‖�‖d−1

if � /= {0}, (4)

and S({0}) = 0. The functions R(·) and S(·) are comparable:

Proposition 5. R(�) � S(�) � C1R(�).

Proof. The second inequality is Theorem A. For any ‖·‖ we have ‖�d‖ � R(�)d

and so, using Proposition 4,

S(�) � sup
‖·‖

R(�)d

‖�‖d−1
= R(�). �

3. Proof of Theorem B

We shall need the following general result:

Proposition 6. Fix d, � ∈ N. Let f : M(d)�→ [0,∞) be a locally bounded func-
tion such that, for every A1, . . . , A� ∈ M(d),

• f (SA1S
−1, . . . , SA�S

−1) = f (A1, . . . , A�)∀S ∈ GL(d);
• f (tA1, . . . , tA�) = |t |f (A1, . . . , A�)∀t ∈ C.

Then there exist numbers k = k(d) ∈ N and C = C(d, �, f ) > 0 such that

f (A1, . . . , A�) � C max
1�j�k

ρ(�j )1/j , where � = {A1, . . . , A�}. (5)

Let us postpone the proof of this proposition and conclude the:

Proof of Theorem B. Let S(·) be as in (4). Define a function f : M(d)d → [0,∞)

by f (A1, . . . , Ad) =S({A1, . . . , Ad}). By Theorem A, f (�) � C1‖�‖ (for any
norm)—in particular, f is locally bounded. f also satisfies the other hypotheses of
Proposition 6, thus there are k and C2 such that

S(�) � C2 max
1�j�k

ρ(�j )1/j , (6)

for every � ⊂ M(d) with at most d elements. But

S(�) = sup{S(�′);�′ ⊂ �, #�′ � d},
hence (6) actually holds for every bounded �. Since R(�) � S(�) (Proposition 5),
Theorem B follows. �

A few preliminaries in geometric invariant theory are necessary to prove Propo-
sition 6. Some references are [6,10].
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3.1. Polynomial invariants

Let V be a complex vector space, G be a group and ι : G→ GL(V ) be a lin-
ear representation of G. We shall write gx = ι(g)(x). The orbit of x ∈ V is the
set O(x) = {gx; g ∈ G}. Let C[V ] be the ring of polynomial functions φ : V →
C. A polynomial φ ∈ C[V ] is invariant if it is constant along each orbit, that is,
φ(gx) ≡ φ(x). The ring of invariants, denoted by C[V ]G, is the set of all invariant
polynomials.

For some groups G, called reductive groups, a celebrated theorem of Nagata as-
serts that the ring C[V ]G is finitely generated. We shall not define a reductive group;
but some examples are GL(d), SL(d), PGL(d). We assume from now on that G is
reductive. In this case, the theory provides an algebraic quotient of V by G with good
properties:

Theorem 7. Let φ1, . . . , φN be a set of generators of C[V ]G. Let π : V → CN be
the mapping x �→ (φ1(x), . . . , φN(x)) ∈ CN. Then:

0. π is G-invariant (i.e., constant along orbits);
1. Y = π(V ) is closed;
2. π(x1) = π(x2) if and only if the closures O(x1) and O(x2) have non-empty inter-

section;
3. for every y ∈ Y, the fiber π−1(y) contains an unique closed orbit.

In the statement above, and in everything that follows, the spaces V and CN

are endowed with the ordinary (not Zariski) topologies. Notice item 2 says that π

separates every pair of orbits that can be separated by a G-invariant continuous func-
tion.

Indication of proof. Let C(V )G be the field of G-invariant rational functions. It is
easy to see that C(V )G is the field of quotients of C[V ]G. Let π and Y be as in the
statement. Let Z be the Zariski-closure of Y, and consider π as a function V → Z.

Then π induces a homomorphism π∗ : C(Z)→ C(V ) via f �→ f ◦ π. One easily
shows that π∗ is an isomorphism onto C(V )G, so π : V → Z is an algebraic quo-
tient in the sense of [6, Section II.3.2]. Therefore π is surjective, that is, Y = Z, and
item 1 follows. Items 2 and 3 are [10, Corollary 3.5.2] and [6, bemerkung 1, Section
II.3.2], respectively. In the references above the Zariski topology is used instead. But
this makes no difference here, by [6, Section AI.7]. �

Example. Let G = GL(d) act on V = M(d) by conjugation: ι(S)(A) = SAS−1

for S ∈ G and A ∈ V. Given A ∈ V, let σ1(A), . . . , σd(A) be the coefficients of the
characteristic polynomial of A. Then σ1, . . . , σd ∈ C[V ]G. Moreover, these poly-
nomials generate the ring C[V ]G. Let π = (σ1, . . . , σd). Then π is onto Cd . Every
fiber π−1(y) consists in finitely many orbits, each one corresponding to a different
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Jordan form. The closed orbits are those of diagonalizable matrices. The fiber π−1(0)
is the set of nilpotent matrices (see [6, Section I.3]).

3.2. Topological considerations

Fix π and Y = π(V ) as in Theorem 7. We endow the set Y ⊂ CN with the in-
duced topology. The following theorem was proved independently by Luna [7] and
Neeman [8, Corollary 1.6, Remark 1.7] (see also [9]):

Theorem 8. The topology in Y coincides with the quotient topology induced by
π : V → Y (i.e., U ⊂ Y is open if and only if π−1(U) is open in V ).

Corollary 9. The mapping π : V → Y is semiproper, that is, for every compact set
L ⊂ Y there exists a compact set K ⊂ V such that π(K) ⊃ L.

Proof. Suppose that for some compact L ⊂ Y there is no compact set K ⊂ V such
that π(K) ⊃ L. Take compact sets Kn ⊂ V such that Kn ⊂ intKn+1 and

⋃
n Kn =

V. Then, for each n, there exists yn ∈ L such that π−1(yn) ∩Kn = ∅. Up to replac-
ing (yn) with a subsequence, we may assume that y = lim yn exists and yn /= y for
each n. Then the set F = {yn; n ∈ N} is not closed in Y, but π−1(F ) =⋃

n π−1(yn)

is closed in V, contradicting Theorem 8. �

Let us derive a consequence of the above results:

Lemma 10. If f : V → [0,∞) is a G-invariant locally bounded function then there
exists a locally bounded h : Y → [0,∞) such that f � h ◦ π.

Proof. Given x ∈ V, let Fx = π−1(π(x)) be the fiber containing x. Set

f̄ (x) = inf
{

sup f |U ;U is a G-invariant open set containing Fx

}
.

(Here “U is G-invariant” means O(x) ⊂ U for all x ∈ U.) We claim that f̄ (x) is
finite for all x ∈ V. Indeed, each fiber Fx contains an unique closed orbit O(x0),

by Theorem 7. Let U0 be a bounded neighborhood of x0; so sup f |U0 is finite. Let
U =⋃

x∈U0
O(x); then U is a G-invariant open set and sup f |U = sup f |U0. More-

over, U contains Fx : for every ξ ∈ Fx, we have, by Theorem 7, O(ξ) ∩ O(x0) /= ∅,
hence O(ξ) ∩ U0 /= ∅ and ξ ∈ U. This proves that f̄ (x) � sup f |U <∞.

The function f̄ : V → R satisfies f̄ � f and is also locally bounded. Since f̄

is constant on fibers, there exist h : Y → R such that f̄ = h ◦ π. The function h is
locally bounded, because if L ⊂ Y is a compact set then, by Corollary 9, there is
some compact K ⊂ V such that π(K) ⊃ L and, in particular, h|L � (h ◦ π)|K =
f̄ |K <∞. �
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3.3. �-uples of matrices and end of the proof

From now on we set G = GL(d), V = M(d)d and

ι(S)(A1, . . . , A�) = (SA1S
−1, . . . , SA�S

−1).

In this case, a finite set of generators for C[V ]G is known:

Theorem 11 (Procesi [12], Theorem 3.4a). The ring of invariants is generated by
the polynomials tr(Ai1 · · ·Aij ) with 1 � j � k, where k = 2d − 1.

We are now able to give the:

Proof of Proposition 6. Let k = 2d − 1, N = �+ �2 + · · · + �k, and let α1, . . . ,

αN be all the sequences α = (i1, . . . , ij ) ∈ {1, . . . , �}j of length |α| = j, 1 � j � k.

Let π = (φ1, . . . , φN) : V → CN be given by

φi(A1, . . . , A�) = tr(Ai1 · · ·Aij ), where αi = (i1, . . . , ij ).

Let Y = π(V ). Define another function τ : CN → R by

τ(z1, . . . , zN) = max
{|z�|1/|αi |; 1 � i � N

}
.

So if x = (A1, . . . , A�) then

τ(π(x)) = max
{|tr(Ai1 · · ·Aij )|1/j ; 1 � j � k, 1 � i1, . . . , ij � �

}
.

Since |tr(A)| � dρ(A) for every A ∈ M(d), we have

τ(π(x)) � d max
1�j�k

ρ(�j )1/j , where � = {A1, . . . , A�}.
Notice τ(π(tx)) = |t |τ(π(x)) for all t ∈ C. Let h : Y → [0,∞) be given by Lemma
10. Since K = τ−1(1) is compact and Y is closed, C0 = sup h|(Y ∩K) is finite.
Given x ∈ V, let t = τ(π(x)). If t /= 0 then

f (x)= tf (t−1x) � th(π(t−1x)) � C0t

= C0τ(π(x)) � dC0 max
1�j�k

ρ(�j )1/j .

Let C = dC0. Then (5) holds. If t = 0, that is, π(x) = 0, we argue differently. By
Theorem 7, the orbit of x accumulates at 0. It follows from the hypotheses on f

that f (0) = 0 and f is continuous at 0. Therefore f (x) = 0 and (5) holds. This
completes the proof of Proposition 6 and so of Theorem B. �

4. Another inequality and some questions

We shall prove another inequality, Proposition 12, which generalizes (1) and is
also an elementary consequence of the Cayley–Hamilton theorem.
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We need some notation. For s � 1, let Ss be the set of permutations of {1, 2, . . . ,
s}. Given σ ∈ Ss, decompose σ in disjoint cycles, including the ones of length 1:

σ = (i1 · · · ik)(j1 · · · jh) · · · (t1 · · · te).
Then, given matrices A1, . . . , As, we set

5σ (A1, . . . , As) = tr(Ai1 · · ·Aik )tr(Aj1 · · ·Ajh) · · · tr(At1 · · ·Ate ).

Letting ε(σ ) be the sign of σ, we define

F(A1, . . . , As) =
∑
σ∈Ss

ε(σ )�σ (A1, . . . , As). (7)

Define also P(A1, . . . , As) =∑
σ∈Ss

Aσ(1) · · ·Aσ(s). The trace identity from [12,
Corollary 4.4] (which follows from the Cayley–Hamilton theorem by an elementary
process, see also [4, Section 4]) is

d∑
s=0

∑
(−1)sF (Ai1 , . . . , Ais )P (Aj1 , . . . , Ajd−s ) = 0, (8)

where the second sum runs over all partitions of {1, . . . , d} into two disjoint subsets
{i1 < · · · < is} and {j1 < · · · < jd−s}; it is understood that F(∅) = 1 and P(∅) = I.

Proposition 12. Given d � 1, there exists C > 1 such that for every operator norm
‖·‖ and every d matrices A1, . . . , Ad ∈ M(d), we have

‖P(A1, . . . , Ad)‖ � C‖�‖d−1 max
1�j�d

ρ(�j )1/j ,

where � = {A1, . . . , Ad}.

Proof. We estimate terms in (8) for 1 � s � d. If σ is a permutation of {i1 < · · · <
is} with cycles of lengths k1, . . . , kh then

|�σ (Ai1 , . . . , Ais )| � C0ρ(�
k1) · · · ρ(�kh),

where C0 is a constant. The right-hand side is � C0ρ(�ki )1/ki‖�‖s−1 for any ki .

Plugging this estimate in (7), we get

|F(Ai1 , . . . , Ais )| � C0‖�‖s−1 max
1�j�s

ρ(�j )1/j .

Using the inequality above and the obvious bound ‖P(Aj1 , . . . , Ajd−s )‖ � (d −
s)!‖�‖d−s , the result follows from (8). �

We do not know whether the methods of the proof of Proposition 12 can be im-
proved to give an elementary proof of Theorem B. Notice that if k in Theorem B
were equal to d then Proposition 12 would follow from Theorems A and B.
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Question. What is the minimum k such that Theorem B holds? Can one take k = d?

The answer is yes when d = 2. The ring of invariants of two 2× 2 matrices A1
and A2 is generated by trA1, detA1, trA2, detA2, trA1A2, see [4, Section 7]. Since
detA can be expressed as a polynomial in trA and trA2, one can take k = 2 in The-
orem 11, and so also in Theorem B, when d = 2. Moreover, since ρ(�) � ρ(�2)1/2,

Theorem B assumes the form

R(�) � C2ρ(�
2)1/2.

Using this inequality, it is easy to show that the sequence ρ(�2n)1/2n converges.
However, the sequence ρ(�n)1/n itself does not necessarily converge. We reproduce
an example from [5]:

� =
{(

0 1
0 0

)
,

(
0 0
1 0

)}
⇒ ρ(�n) =

{
0 if n is odd,
1 if n is even.
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