
NORTH- HOLLAND 

Circulant Preconditioners With Unbounded Inverses 

E. E. Tyrtyshnikov 

Institute of Numerical Mathematics 
Russian Academy of Sciences 
Leninskij Prospekt, 32-A 
I1 7334, Moscow, Russia 

Submitted by Richard A. Brualdi 

ABSTRACT 

The eigenvalue and singular-value distributions for matrices SilAn and Ci’ An are 
examined, where A,,, S,,, and C, are Toeplitz matrices, simple circulants, and optimal 
circulants generated by the Fourier expansion of some function f. Recently it has been 
proven that a cluster at 1 exists wheneverf is from the Wiener class and strictly positive. 
Both restrictions are now weakened. A proof is given for the case whenf may take the zero 
value, and hence the circulants are to have unbounded inverses. The main requirements 
onf are that it belong to La and be in some sense, sparsely vanishing. Specifically, iff is 
nonnegative and circulants S,, (or C,) are positive definite, then the eigenvalues of S; ‘An (or 
C; ‘A,,) are clustered at 1. Iff is complex-valued and S, (or C,) are nonsingular, then the 
singular values of .!?;‘A,, (or Ci’A,) are clustered at 1 as well. Also proposed and studied 
are the improved circulants. It is shown that (improved) simple circulants can be much more 
advantageous than optimal circulants. This depends crucially on the smoothness properties 
off. Further, clustering-on theorems are given that pertain to multilevel Toeplitz matrices 
preconditioned by multilevel simple and optimal circulants. 

1. INTRODUCTION 

Let A,, = [ai_j]&o be a Hermitian positive definite Toeplitz matrix, and 
suppose that a linear algebraic system with A,, is given, and attacked with the 
method of conjugate gradients. Then some preconditioners of choice are the 
optimal (Cesaro) [7, 13, 141 circulant 
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2 E. E. TYRTYSHNIKOV 

where 

co = ao, ck = j& [(n + 1 - k)ak + ka-(,+,-k)] , k = 1, . . . , n, (1.1) 

and, alternatively, the simple (in fact, of Strang’s type [ 121) circulant 

where 
akT 0 5 k < n/2, 

Sk = a-(,+1-k), n/2 < k 5 n, (1.2) 
0, k = n/2. 

In this paper we are going to further substantiate the usefulness of these circulants. 
According to [2] the problem may be viewed as that of proving that the eigenvalues 
of C; ‘A, or S; ‘A, are condensed into a cluster. 

We assume that matrices A,, originate from the Fourier expansion of 

Iff belongs to the Wiener class, that is 

k=-cm 

(1.3) 

(1.4) 

and, in addition, 
inff(x) = S > 0, (1.5) X 

then, as is shown in [3,4], the eigenvalues of C;‘A, and S;‘A, are clustered at 1. 
In this case, for all n 

IlC;1112 5 s-l, (1.6) 

and for any g > 1, for all sufficiently large n 

IIS,-’ 112 I A+-‘. (1.7) 

In the proof given in [3, 41, both (1.4) and (1.5) are essential. However, there 
are some cases of practical interest wheref(x) is nonnegative, but takes the zero 
value at some x. So (1.5) is no longer true. Consequently, even with 5, and C,, 
positive definite (as established in [ 131, C,, is positive definite whenever A,, is), the 
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norms of S;’ and CL’ grow infinitely as n increases. Notwithstanding the lack 
of theoretical background, we often observe that the eigenvalues of C;‘A, and 
S;‘A, cluster at 1 even in this more general case. 

For instance, this is so for Hermitian Toeplitz matrices 

A,, = 
-1 

[ 1 
(i _j)2 - t ’ (1.8) 

which are generated by 

f(x)=2aisin 51. (1.9) 

In this case (1.4) holds, whereas (1.5) does not, becausef(0) = 0. Just the same, 
the convergence of the preconditioned conjugate-gradient method is rapid, and 
most of the eigenvalues of C; ‘A, are amassed at 1: 

Number of iterations Number of eigenvalues 

Matrix order to reach relative of Cl’A, which lie 

(n+ I) error about 10F5 outside (0.9, 1.1) 

64 8 6 

128 9 6 

256 10 9 

512 10 9 

1024 12 20 

In this paper, we will furnish a proof that a cluster exists whenf(x) is allowed 
to take the zero value. In addition, the condition (1.4) will be greatly weakened, 
being replaced by the requirement thatf E L2. 

As a practical matter, our most important results have to do with twofold 
(doubly) Toeplitz matrices, threefold ones, and the like. These are the cases 
where iterative solvers meet no efficient direct method to vie with. Clustering-on 
theorems for multifold (multilevel) Toeplitz matrices are given in Section 5. In 
preceding sections, we take up the one-level case in such full detail that it enables 
us to treat the multilevel case rather in brief. 

In Section 2, we present some preliminary results. After the notions of a 
general and proper cluster, we convey the definition of an asymptotic distribution, 
which is a generalization of a definition by H. Weyl (see [lo]). One immediate 
advantage of the new definition is that it allows us to handle generating functions 
which belong to LQ rather than L,. A few statements are given that are somewhat 
modified versions of those from our work [ 141, where one can find a full treatment. 
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In Section 3, the general clustering-on theorems concerning S;‘A, and C;‘A, 
are proposed. Instead of (1.5) we impose onf the demand that it should be “sparsely 
vanishing.” Roughly speaking, this means that the set of those x E [-7r, ~1 for 
which f (x) = 0 is not too large. Instead of (1.4) we require that f E L2. One more 
restriction we need is that S,, (or C,,) should be nonsingular. If so, then Theorem 3.3 
states that the singular values of S;‘A, (or C;‘A,,) cluster at 1. Iff is nonnegative, 
then A,, S,, and C,, are Hermitian, and Theorem 3.1 says that the eigenvalues of 
S;‘A,, (or C;‘A,) cluster at 1, provided that S, (or C,) is positive definite. 

The restriction that S,, and C, are nonsingular (positive definite) is not very sig- 
nificant, and can be easily obviated if we “improve” these circulants by changing 
their zero (nonpositive) eigenvalues, if any, so as to have them nonzero (positive). 
Such “improved” circulants, considered in Theorems 3.2 and 3.4, are always non- 
singular (positive definite) and appear to maintain the clustering. 

In Section 4, some neater estimates of the clustering are provided. Specifi- 
cally, we examine m(e), the number of eigenvalues of S;‘A, (or C;‘A,) which 
lie beyond s-distance from 1. One may anticipate that the growth of T,,(E) as n 
increases should be crucially dependent on the smoothness off. We discover that 
this is true only as far as simple circulants are concerned. For optimal (Cesaro) 
circulants, enhancing the smoothness has no bearing on that growth. This dis- 
crepancy between simple and optimal circulants is in good agreement with the 
different approximation properties of partial Fourier sums and Cesaro sums. 

An interesting extreme case is when f is analytic. In this case, we show 
m(&) = (0 log n). Moreover, iff is a trigonometric polynomial, then T”(E) = 0( 1) 
(which means that the cluster is proper). We would like to stress that these nice 
estimates are valid only for simple circulants (properly “improved,” if needed). 
For example, if 

f(x) = 2 - 2 cos x (1.10) 

then 
-2 -1 

-1 2 -1 0 
-1 2 -1 

A, = 
o . . . 1; ‘2 -1 

E R(n+%(n+l) (1.11) 

-1 2_ 

Here, f(0) = f’(0) = 0 and f”(0) # 0. Hence by Theorem 4.2 we have T”(E) = 
O(n2i3) when using optimal circulants. At the same time, for improved simple 
circulants m(e) = O(l), which is much better. The theory is entirely confirmed 
numerically: 

In Section 5, the clustering-on theorems obtained in Section 3 are generalized 
to multilevel Toeplitz matrices. In Section 6 we give concluding remarks. 
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Matrix order -y&) where E = 0. I T”(E) where E = 0. I 

(n+ 1) for optimal circulants for improved simple circulants 

64 12 3 
128 16 4 

256 26 3 

512 40 2 

1024 71 3 

2. PRELIMINARY RESULTS 

Let us be given a sequence of real numbers {$“}~!i, and let p be real and 
fixed. Denote by ‘yn(&), E > 0, the number of those k E { 1, . . . , n} for which 
Xp) $ (CL - E, p + E). We will say that {Xr’} has a cluster at ,u if m(E) = o(n) [as 
usual, o(n) designates a function of n such that o(n)/n -+ 0 as it -+ 001. A cluster 
is called proper if T,,(E) 5 C(E), where C(E) does not depend on n. 

The notion of clusters is bound up with the notion of an asymptotic distribution 
for {A?)}. Letf be a real-valued 2r-periodic Lebesgue-integrable function. We 
will say that {XF’} is distributed asf(x) if for any continuous function F(x) with 
bounded support, 

(2.1) 

This definition, which is a generalization of that given by H. Weyl, is proposed in 
[ 141. Obviously, iff(x) = ~1, then there is a cluster at p. 

LEMMA 2.1. Given a sequence {A,,} of Hermitian matrices A,, E Cnx”, 
suppose that there are Hermitian matrices A,, such that 

II& - In + AnIl; = o(n), (2.2) 
rank A,, = o(n). (2.3) 

Then the eigenvalues of A,, are clustered at 1. 

PROOF. Denote by &(A, + A,) the eigenvalues of the Hermitian matrix 
A, + A,, taken in nondecreasing order. Then, by the Hoffman-Wielandt theorem 
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(see [ 16, pp. 104-108]), due to (2.2), 

2 IMA, + A,,) - 112 = o(n). 
k=l 

(2.4) 

Let ‘yn(&; A, + A,) be the number of k E { 1, . . , n} such that Xk(An + A,,) 
$ (1 - E, 1 + E). It readily follows from (2.4) that 

“in(~; A,, + A,> = o(n). (2.5) 

Now, remember the interlacing property which holds when a Hermitian matrix is 
perturbed by a Hermitian rank-l matrix ([16, pp. 94-971; see also [9, p. 4121). 
Then we immediately conclude that 

%(E; A,) I “I~(E; A,, + A,) + rank A,, = 0(n). (2.6) 

The proof is thus completed. ??

Note that this lemma is a consequence (in fact, a modified representation) of 
the results from Section 2 of our work [ 141. We will also make use of the following 

LEMMA 2.2. IfAn, A,, E C”‘” satisfy (2.2) and (2.3), then An’s singular 
values have a cluster at 1. 

To this end, it is sufficient to construct Hermitian matrices 

A= 0 A, 
n 

[ 1 A; 0 ’ 
and take into account thati,‘s eigenvalues equal fQ(A,), where ok are the singular 
values of A,,. Applying Lemma 2.1 to &, and A,,, we obtain the result. 

LEMMA 2.3. Suppose (complex) Teoplitz matrices A, are generated by the 
Fourier extension of a (complex-valued) function f E L2, and optimal circulants 
C,, and simple circulants S,, are de$ned by (1,l) and (1.2). Then 

IIAn - Gll$ = 44, (2.7) 

IIAn - &ll~ = oh>, (2.8) 

LEMMA 2.4. Letf E L+ Then the singular values of C,, and S, are distributed 
as f(x)l. Iff is real-valued, then C,, and S,, are Hermitian, and their eigenvalues 
are distributed as f (x). 
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REMARK. As far as C, alone is concerned, all the statements stand even if 
f E ~51. For proofs see [ 141. 

3. CLUSTERING-ON THEOREMS 

The results here will rest on the notion of a sparsely vanishing function. Let 
f(x) be a 2r-periodic Lebesgue-integrable function such that 

s ll 

lim 
E-+fO _~ 

%(VOl) Q!x = 0, (3.1) 

where qE is the characteristic function for the interval [0, E], i.e., &x) = 1 if 
x E [0, E], and cp,(n) = 0 otherwise. Such a functionf will be called sparsely 
vanishing. 

THEOREM 3.1. Letf be a nonnegative sparsely vanishing function from L2, 
and A,,, C,,, S,, be Toeplitz, optimal, and simple circulant matrices, respectively, 
generated by f. Suppose in addition that the matrices C,, (or S,,) are positive 
definite. Then eigenvalues of C;‘A,, (or S;‘A,) are real, and have a cluster at 1. 

PROOF. Take E > 0, and define the continuous function F, as follows: 

I 
0, x I -&, 

1 +X/E, -&IX<O, 

F,(x) = 1, OLX<&, (3.2) 
2 - X/E, E I x I 25 

0, 2E 5 x. 

Denote by p,,(c) the number of those eigenvalues of C,, which fall inside the 
interval [0, E]. Then, by Lemma 2.4, for n sufficiently large we obtain 

Pn(E> = 1 n cp (&(C )) 
n+l c 

n + 1 k=O & n 

(3.3) 
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From the well-known properties of circulants, we can write 

C, =Q,*diag(&, . . . . MQ,, (3.4) 

where Qn is unitary and shared by all circulants of the same order. Starting from 
(3.4), we set 

where 

GE = Q,*diag (Ao;~, . . . , A,;,) Q,,, (3.5) 

(3.6) 

According to the theory of circulants, C,,;, is a circulant. Further, it is easy to 
verify that 

where 

C;I’=(A, - Cn)C;;/2 = C;‘/=A,C;r/= -I+ A,;,, 

A,;, = C;;“(Cn;E - Cn)C;;‘2 + (C;;/= - C;‘/2)A,C;:/2 
+ @=A, C-112 ( n;E - c,-“2). 

By virtue of (3.3)-(3.6) we thus find 

rank A,; E 5 ~/L(E) I 3a(~)(n + 1). 

At the same time, according to (3.5), (3.6), 

~~c;~“~~2 I e-“2, 

and hence, allowing for (3.7) and Lemma 2.3, we obtain 

~~C;“2A,C,-‘/2 - I + A,& 5 E-=[[A~ - C& = c20(n). 

Therefore, there exists N(E) such that for n 2 N(E) 

-&llC,-‘~2A.C;1/2 -I + A,& 5 E, 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

with 
1 

- rank A,,; E 5 34~). 
n+l 
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Since f is assumed to be sparsely vanishing, (Y(E) + 0 as E --) 0. Hence, 
the relationships (3.11), (3.12) mean that the sequence of Hermitian matrices 

{ C~“2A,Ci”2} satisfies all the hypotheses of Lemma 2.1. So the eigenvalues of 
C-‘12A C-II2 , which coincide with those of C;‘A,, are clustered at 1. The above 
re’asoni;g is still available if C, is replaced by S,. The proof is thus completed. ??

REMARK. If we require A, to be positive definite, then this will entail the 
positive definiteness of C, [ 131. 

Usually, the main restriction on f-that it is sparsely vanishing-is easy to 
check. The function (1.9) from the introduction is evidently such. Since Toeplitz 
matrices (1.8) are diagonally dominant, they are positive definite. Using the above 
remark, we see that in this case all hypotheses of Theorem 3.1 are fulfilled. 

The other restriction-that circulants C,, (or 5,) are positive definite-can be, 
in some sense, abandoned, if we replace C,, or S, by other close by rank circulants 
which are positve definite. Specifically, if C, = Q; diag(Xa, . . . , A,) Q,, as in 
(3.4), we put 

C,, = Qz diag(&, . . . , x,,) Qn, (3.13) 

where 

(3.14) 

here S is an arbitrary positive number. Similarly, if 

& = Q,* diagh . . . , A> Q,, (3.15) 

then we set 

%=Ql:diag(C~, . . ..h)Q., (3.16) 

where 

pk = 
pk if pk # 0, 
6 otherwise. 

(3.17) 

In addition to z,,,, we also define 

$, = Q,' diag(k . . . , Liin) Qn, (3.18) 

where 

6 otherwise. 
(3.19) 

With these improved circulants we state the following 
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THEOREM 3.2. Let f E L2 be a nonnegative spars$y vanehing function, 
A,, be Hermitian Toeplitz matrices generated by f, and C,, and S,, be improved 
circulants defined by (3.13), (3.14) and (3.18), (3.19). Then the matrices ?,, and 
5, are Hermitian positive definite, and the eigenvalues of e;‘A, and ?;‘A, are 
clustered at 1. 

PROOF. The eigenvalues of C, are shown in [ 141 to equal 

k = 0, I, . . . , n, (3.20) 

where a,(x) is the Cesaro sum, possessing the Fejer representation 

s 77 

flrsx) = f&(x, W(t) 4 (3.21) 
-7T 

where 

K&, r) = 
1 sin2 (n + 1)(x - t)/2 

27r(n + 1) sin2 (x - t)/2 ’ 
(3.22) 

and, as is well known, 

s 

?r 
K,(x, t)dt = 1. (3.23) 

--K 

We thus see that iff(t) 2 0 then (T,(X) 2 0, and hence Xk(C,J 2 0 for all k. It 
follows that the matrices ?,, are positive definite. The matrices %” are positive 
definite by their very definition. 

The remainder of the proof is quite analogous to the proof of the Theorem 3.1. 
Instead of (3.7) and (3.8) we write 

where 

& = C;;'2(Cn;E - Cn)C;;'2 + (C;;'" - ?;1/2)A,C;;‘2 

+ z;‘/2A,(C;;/2 - e;‘12). 
(3.25) 

This time it can be guaranteed that 

rank &: E 5 5Me) I 5a(e)(n + l), 

and we have as well 

ll?~‘/2A,~~‘/2 -Z + &,,,II$ 5 &-2o(n). 

(3.26) 

(3.27) 
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Again, the sequence Ci 1’2A,Cc I” satisfies the hypotheses of Lemma 2.1, and 
we thus achieve the desired result. Everything stands if $ replaces C,, ??

Thus, while use of C, and S, is accompanied bl some hazard (C,, and S, may 
turn out to be singular), the improved circulants C,, and S,, are always positive 
definite. Nothing ever prevents us from using the improved circulants. It is 
worth noting that getting improved circulants needs no additional work, because 
circulants are usually diagonalized via the FFT prior to further iterative calculations 
(see [13, 151). 

Now consider amore general situation, whenf(x) may change sign, and perhaps 
be complex-valued. The previous circulants can be still regarded as precondition- 
ers, the only difference being that the conjugate gradient method should be used 
with some symmetrization technique, e.g. the transition to (C;‘A,)*(C;‘A,,) or 
(C; I A,)* (e; I A,). Consequently, the effect of such preconditioning depends on 
the distribution of singular values of C;‘A, or ?;‘A,. We explore this in the 
following theorems. 

THEOREM 3.3. Suppose (complex-valued)f E L2 is sparsely vanishing, and 
let A, and C,, (or S,) be Toeplitz matrices and optimal (or simple) circulants allied 
withf. If C,, (or S,,) are nonsingulac then the singular values of C;‘A,, (or S;‘A,) 
are clustered at 1. 

THEOREM 3.4. LEtf E Lzbe sparsely vanishing. Then the improvedoptin@ 
and simple circulants, C,, and S,, are nonsingular, and the singular values of C,, 
and $, have a cluster at 1. 

The proofs of these theorems are almost identical with those of Theorems 3.1 
and 3.2, differing only in a final reference to Lemma 2.2 instead of Lemma 2.1. 
In fact, the proofs turn out to be simpler, because we need no similarity transition 
to Hermitian matrices. 

4. SOME ESTIMATES 

More precise information about clusters can be gained by specifying T,,(E) 
introduced at the beginning of Section 2. Here we have a look at the behavior of 
T,,(E) when E is fixed and n is growing. 

Suppose a 2n-periodic function f (x) is such that its mth derivative f(“)(x) is 
piecewise continuous and has a bounded derivative on each continuity interval. 
Let K,,, denote the set of all such functions. 
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It is an easy matter to verify that iff E K,,, then 

ak = 0 

We thence infer that the nth Fourier sums 

fn(x) = 2 a!$@ 
k=-n 

approximatef, so that 

while the nth Cesaro sums 

m=~ l- 
k=_” ( 2%) Qeikx 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

satisfy 

_,“<“,“<, V(N - G(Nl = 
{ 

O(i), mL2, 
O(y), m=l. (4.5) - .- 

Further, suppose that there are a finite number of points xj E [-n, T], j = 
1 , . . . . t, such that 

f@j) = 0, j= l,..., t. (4.6) 

Letp)(x + 0) and f @)(x - 0) denote the pth right- and left-hand derivatives of 
f at X, respectively. Assume that for every Xj, there exists p,f and p,: such that 

f(')(Xj + 0) = ” ’ = f@:-"(Xj + 0) = 0, fo;t?(Xj + 0) # 0, 
f(')(Xj - 0) = . . . =f@,T-"(~j - 0) = 0, f@J”(Xj (4.7) - 0) # 0, 

and set 
p=max{pif :j= 1, . . . . t}. (4.8) 

Let K$') signify the set of those f E K,,, which are characterized by relationships 
(4.6)-(4.8) where p is fixed, and t is arbitrary but finite. 

We shall need the following auxiliary lemma. 
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LEMMA 4.1. Suppose the points yk E R form a uniform mesh with the step 
size h, and let M be a$nite union of nonintersecting intervals with total length d. 
Let in M denote the number of indices k such that yk E M. Then 

(inM)h < d + ch, 

where c depends on the number of intervals but not on h. 

The proof is evident. 

THEOREM 4.1. Suppose f E Kg’ is nonnegative, and A,, and S,, are Toeplitz 
matrices and simple circulants generated by f. Assume that the matrices S,, are 
positive de$nite. Then the eigenvalues of S;‘A, are real, and clustered at 1 so that 

m(E) = O(npl@+m)). (4.9) 

PROOF. Take arbitrary but sufficiently small S > 0, and set 

M(S) = {x E [-7r, ~1 : v(.x>l 26) (4.10) 

Using the theorem’s hypotheses, we can deduce that M(S) is embedded in some 
M’(S) which is a union oft nonintersecting intervals with total length 

d(6) = 0(6’/P), (4.11) 

provided that 6 is sufficiently small. 
The eigenvalues of S, are expressed as (see [ 141) 

k=O,l,..., n. (4.12) 

Denote by ,&(S) the number of those k E (0, 1, . . . , n} such that I&(&)] 5 6. 
Let cp&) = 1 if x E [0, 61, and (p&(x) = 0 elsewhere. Next, let in M be the 
number of those k E (0, 1, . . . , n} for which 27rk/(n + 1) E M. Then by (4.3) 
(4.11) and on the basis of Lemma 4.1 we find 
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= 
in M(6 + O(n-m)) < in M’(S + O(nem)) 

nfl - n+l 

= O((6 + O(n-m))l/P) + 0 t . 
0 

Therefore, 
P,(S) 5 cl6 l/P n + c2n l-mlP + c-j, 

where cl, ~2, cg > 0 are independent of n and S. 
As in [3,4], we bring in matrices 

(4.13) 

U[N] . . . a1 

&;N = a[N] 0 ... a,, g c(n+lMn+l) , (4.14) 

. . 

a-1 ... u-Wl 

and allowing for (1.2) and (4.1) obtain 

IIAn - & + &;NII~ I $, (4.15) 

where CO > 0 is independent of n and N. As previously, we consider the unitary 
diagonalization of S,,: 

and set 

S, = Q,* diag Gb CM) Q,, (4.16) 

where 

S,; 6 = Q,* diag (A,, 6) Qn, (4.17) 

Ak;6 = xk&) if xk(&) > 6, 
6 otherwise. 

The theory of circulants tells that S,,; 6 is a circulant, and because of (4.18) 

(4.18) 

Being interested in the eigenvalues of SY’A,, which coincide with those of the 
Hermitian matrix S~“2A,S~“2, we proceed as follows: 

S$” (A, - S,, + A,;.) S,$” = Sr “* (An - S,) S11/2 + A$.,, (4.20) 
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where 
A’? = (S-‘12 

n,N n,6 - S,“2)(A, - S,)S,“2 

+ S,;‘2(A, - S,)(S$‘” - S,-“2) 

+S,t/2A,,~S,;12, 

and the relationships (4.13), (4.14), and (4.16)_(4.1g) imply 

(4.21) 

rank Af’, 5 2(c161/Pn + c2n’-m’P + ~3 + N). (4.22) 

At the same time, by virtue of (4.15) and (4.19), 

Let us take E > 0 and set ca/6Nm = E, that is, 

(4.23) 

(4.24) 

Then all the eigenvalues of the matrix in the left-hand side of (4.20) are not greater 

in modulus than E, and the number of those eigenvalues of Si 1’2A,S~“2 -I which 
are greater in modulus than E does not exceed 

rank A:!‘, < 2 ctS;n + c2n1--m~P + c3 + co 
l/m ()I 6E 

(4.25) 

Let us pick 
6 = n-PMPfm), 

Then, because n’-m/p < nf’/@‘+@, we have - 

(4.26) 

rank A:$, = O(nP’@+“‘)), (4.27) 

and that completes the proof. 

THEOREM 4.2. Suppose f E K$) is nonnegative, and A, and C,, are Toeplitz 
matrices and optimal circulants generated by f. Assume that the matrices C,, are 
positive definite. Then the eigenvalues of C;‘A, are real, and clustered at 1 so 
that 

%I(&) = 
{ 

O(nPl@+‘)), rn> 1, 
O(np”p+‘) In n), m = 1. 

(4.28) 
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PROOF. We will use the notation from the preceding proof, throughout re- 
placing S, by C,,. Thus, pn(6> now means the number of k E (0, 1, . . . , n} such 
that jX,(C,,)l < 6. Since the eigenvalues of C,,, by (3.20), are the values of a,(x), 
and (4.5) holds, we have, for rn > 1, 

= inM(6 + O(n-‘)) < inM’(6 + 0(n-l)) 

n+l nfl 

= 0 (p + 0 (n-‘)]1’p) + 0 (f) ) 

and hence 
&(S) < qS1lPn + c2.n ‘-“P + c3, 

where cl, ~2, cg > 0 do not depend on n and 5. Further, 

(4.30) 

IIAn - C, + An;~llco < ;, (4.31) 

and, instead of (4.25), we this time obtain 

rank A:!$ 5 2 
( 

ct 6’/f’n + c2n ‘-“P+c3+2 . 
> 

To achieve what we are after, it is sufficient to choose S = n--P/@+‘). 
If m = 1, then, instead of (4.30X4.31), we arrive at 

(4.32) 

,8,(S) 5 clG’iPn + c2n’-‘1P ln”P n + c3, 

IIAn - G + &;,vllm 5 coy. 

If we take 

then, as is easily seen, 

and, instead of (4.32), 

N=$lnz, 

CO In N 
SN I&, 

rank A:!‘, 5 2 
( 

ciS”Pn +- czn ‘--l/p ln’/P n + c3 + Co In Co 
& > 6& . 

(4.33) 

(4.34) 

(4.35) 

(4.29) 
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Trying 6 = n--P/@+‘) Inn, we obviously arrive at (4.28) for m = 1, and that 
completes the proof. W 

Next, we turn to the case whenf may be complex-valued. If such functions 
are included in K,,,, the definition remains unaltered. Suppose f has only a finite 
number of zeros xj E [-r, rr], j = 1, . . . , t, and, analogously to (4.7), assume 
that at each xi, 1 f (x)1 has nonzero left- and right-hand derivatives of some order. 
Denote by p the maximum order of such first nonzero derivatives, and by g,$’ the 
corresponding class of complex-valued functions f E K,. 

THEOREM 4.3. Iff E k,@’ and simple circulants S,, are nonsingular; then 
the singular values of S;‘A, are clustered at 1, so that T,,(E) is of the form (4.9). 

PROOF. Almost everything from the proof of Theorem 4.1 is available. Al- 
lowing for 

_F<y<, IV(x)l - W)ll 5 max V(x) -fn(x)I, --?r<,X<TT -- 

we again arrive at (4.13). In parallel with (4.15), we also have 

Moreover, 

and consequently 

(4.36) 

(4.37) 

(4.38) 

It immediately follows that all singular values of S; ;(A, - S, + A,; N) are no 
greater in modulus than co/SP. Furthermore, 

S;&% - & + A,;,) = S,-‘(An - S,) + &$‘N, (4.39) 

where 
s:‘!‘N = (S;; - S,‘)(A, - S,) + S;;A,;.. (4.40) 

Clearly, rank a:$, can be upper-bounded by the right-hand side of (4.22), and the 
remainder of the proof is similar to that of Theorem 4.1. ??
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THEOREM 4.4. Iff E g,@' and optimal circulants C,, are nonsingular, then 
the singular values of C;‘A, are clustered at 1 so that ‘y,,(e) satisfies (4.28). 

We omit the proof, because it is wholly analogous to those of Theorems 4.1 
and Theorem 4.3. 

An interesting case is that of infinite smoothness. In particular, assume that 

f(x) = We”“), (4.41) 

where (a(z) is a function of the complex variable z which is analytic in a ring 
r-1 < jzj < r-2, where r-1 < 1 < r-2. Then for some q > 1 

1 
lakl=0 - . 0 qk 

(4.42) 

Denote by KW the set of all such functions f, and let Kz and @$ be defined in a 
similar way to K,$) and g’) m . Theorem 4.1 and 4.3 are naturally complemented by 
the following 

THEOREM 4.5. Iff E Kg is nonnegative and S,, are positive dejnite, the 
eigenvalues of S; ‘A,, are distributed so that 

m(E) = O(lnn). (4.43) 

Iff E k) and S, are nonsingualr then the singular values of S;‘A, are clustered 
at 1 so that (4.43) holds as well. 

The proof can follow the same scheme as in the above proofs. One need 
only note that, instead of (4.23), we have the right-hand side of the form ca/?$‘v. 
Setting this equal to E, we find N = log2(ca/6E). Instead of (4.23), rank AL’!,, is 
now estimated as 0(61/Pn + nq-P/” + In 6-t). Picking S = n-‘/r, we thus arrive 
at (4.43). The proof for the singular value case is very much the same. 

It is curious, though rather foreseen, that the infinite smoothness has no effect 
on the estimates for optimal circulants. We should also caution against a possible 
misunderstanding by stressing that infinite smoothness as we mean it here is not 
the same as the existence of the infinite number of derivatives. The latter may not 
provide (4.42). 

One more limiting case seems to deserve some attention. That is the one when 

f(x) = 2 akeikx. 
k=--v 

(4.44) 
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In this case, the Toeplitz matrices A,, become banded. 

THEOREM 4.6. Suppose f is of the form (4.44) and not everywhere zero. If 
f is nonnegative and the circulants S, are positive deJnite, then the eigenvalues of 
S;‘A, are clustered so that 

rn(&) = O(1). (4.45) 

In a wider case, if the circulants S,, are nonsingular, then the singular values of 
S;‘A, are clustered so that (4.45) stands as well. 

PROOF. If we take N > p + Y, then for sufficiently large n, A,, - S,, + A,, ;N 

approaches zero. Letf 2 0 and S,, > 0. Then S,“2(A, - S,,)S~‘/2 differs from 
the zero matrix by S,, -“2A,,. NS~“~, whose rank is upper-bounded by 2N. Hence 

’ 1 at most 2N eigenvalues of S; A, -I can be distinct from zero. Similar arguments 
are needed concerning the singular-value case. ??

We are now ready to present six more theorems. These are, in effect, the above 
six theorems of this section adjusted to deal with improved circulants defined by 
(3.13)-(3.19). When f is nonnegative, we replace S, by $, which must always 
be positive definite. When f is complex-valued, we use S,,, which must always 
be nonsingular. Further, instead of C,, we may always use C,,. The necessary 
adjustment of formulations will be clear. 

5. MULTILEVEL CIRCULANT PRECONDITIONERS 

Here we take up a block Toeplitz matrix composed of (nl + 1) x (nl + 1) 
blocks, and suppose that every block is again a block Toeplitz matrix composed 
of (n2 + 1) x (n2 + 1) blocks, and so on. If there are L levels of such nested parti- 
tionings, then the corresponding matrix will be called an L-level Toeplitz matrix. 
The order of such a matrix is obviously equal to 

n = h + 1). (q. + 1), (5.1) 

and for its (i, j) entry, 0 5 i, j 5 n, it is convenient to write 

aij = ail-j,; . . ..i..-j,, (5.2) 
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i = il n(nv + 1) + i2 n(G + 1) + . . . + iL-l(nL + 1) + iL, 
v=2 v=3 

L L 

j = jl~(~~+1)+j2~(~~+1)+~~~+jL-l(nL+1)+jL, 

(5.3) 

v=2 v=3 

0 5 h, jl 5 4, . . . , 0 5 iL, jL 5 nL. 

We shall assume that L-level Toeplitz matrices 

AX = [ai,-~l;...;iL-j,_l~ E = (nr, . . . , nL), 

are generated by the L-dimensional Fourier series 

(5.4) 

k,=-oo kL=-co 

In order to precondition A,, it is natural to try L-level circulants, i.e. matrices of 
the form 

C = [Gil-j,(modnl+l);...;i~-j~(modn~+I)l. 

Here we focus on the optimal (Cesaro) L-level circulants [ 13, 141, 

c, = c!“) 1 rl-Jl(modnl+l);...;i~-jL(modnL+l) . 

and also on the simple L-level circulants [ 141 

where 

0 if there exists i such that 
Ak,; . . ..kL = ki = (ni + 1)/Z, 

%o,(k,);...;pdkd otherwise, 

Cpi (ki) = ki if ki < (ni + 1)/2, 
-(ni + 1 - ki) otherwise. 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 
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The contents of Section 2 can be naturally extended to the case of multilevel 
matrices [ 141, and this permits us to produce the analogs of the previous results. 

By a sparsely vanishing function of L variables, we mean a Lebesgue-integrable 
function f(xl , . . . , XL) which is 2r-periodic with respect to each argument, and 
enjoys the relationship 

7T 

.I s 77 

lim ... 
c++a ___?i 

P,([f(Xl, ‘. . , XL)I)Qh . ..dTL = 0, (5.11) 
__x 

where q,(x) = 1 if x E [O, E], and cp,(x) = 0 elsewhere. 

THEOREM~.~. Letf(xl, . . . , xL) E L~besparselyvanishing, andAii, C,, Sz 
be L-level Toeplitz_ matrices and optimal and simple L-level circulants, respectively. 
Assume that C,(&) are positive de$nite. Then the eigenvalues of CL’ A, (orS<’ An) 
are real and clustered at 1. 

As previously, we can bring in improved circulants. Since all L-level circulants 
with common E are unitarily diagonalized via the same transforming matrix (see 
[ 13]), we can write 

C- = Qr diag(/\(“)) Q- n ” k n, S, = Qr diag(p@‘) Q- n k nr 

and then set 

Es = Qff diag(xF)) Qs, 

2s = Qi diag($))Q,=,, 

5s = Q,* diag@)) Qs, 

where 

qi’ = C XF) if XF) # 0, 
6 otherwise, 

j$) = 
{ 

pi’) if pi” # 0, s 
otherwise, 

-00 
pk = 

clF’ if p$J’ > 0, 
6 otherwise; 

here 6 is arbitrary but positive. 
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THEOREM 5.2. Iff(xi , . . . , XL) E LQ is nonegative and sparsely vanishing, 
then the eigenvalues of ?;‘AE (or $‘A,) are real and clustered at 1. 

THEOREM 5.3. Suppose that f (.x1, . . . , XL) E L2 is sparsely vanishing and 
the matrices C,(&) are nonsingular Then the singular value of CF’AE (or S;‘A?) 
are clustered at 1. 

THEOREM 5.4: Iff (x1, . . . , XL) E LZ is sparsely vanishing, then the im- 
proved circulants CE and S2 are nonsingualr, and the singular values of ?;‘Afi 
and ?;‘A, are clustered at 1. 

The proofs echo those of theorems 3.1-3.4 almost word by word. 

6. CONCLUDING REMARKS 

It should be said that we do not know how sharp are the estimates on m(&) 
obtained in Section 4. 

All the same, even if those estimates were sharp it would not immediately 
follow that simple circulants are much better than optimal ones. First of all, the 
estimates are of an asymptotic nature, and the corresponding constants are not 
yet known. We guess that gleaning them is not a simple task. In practice, we 
often observe that m(&) grows in a very moderate fashion. As a consequence, 
circulant preconditioners prove to be nicely efficient even when their inverses 
have unbounded norm. 

For “bad”functionsf, optimal circulants are sometimes better than simple ones, 
but they seem to never be much better. At the same time, the simple circulants, 
in practice, do not very often outperform the optimal ones. However, there are 
some cases when they distinctly do (see the example of banded matrices in the 
Introduction). 

Finally, when using circulants we recommend always using the improved cir- 
culants. Perhaps these should be improved simple circulants. 

I gratefully acknowledge the assistance by V Strela in obtaining the above- 
discussed numerical information. I am also indebted to the referee, who kindly 
suggested many corrections to improve the language of this paper. 
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