
lable at ScienceDirect

Archives of Biochemistry and Biophysics 603 (2016) 110e117
Contents lists avai
Archives of Biochemistry and Biophysics

journal homepage: www.elsevier .com/locate/yabbi
The death enzyme CP14 is a unique papain-like cysteine proteinase
with a pronounced S2 subsite selectivity

Melanie Paireder a, Ulrich Mehofer a, Stefan Tholen b, Andreas Porodko a, Philipp Sch€ahs a,
Daniel Maresch c, Martin L. Biniossek b, Renier A.L. van der Hoorn d, Brigita Lenarcic e,
Marko Novinec e, Oliver Schilling b, f, Lukas Mach a, *

a Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
b Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany
c Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
d The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, United Kingdom
e Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Slovenia
f BIOSS Centre for Biological Signaling Studies, University of Freiburg, Germany
a r t i c l e i n f o

Article history:
Received 7 April 2016
Received in revised form
25 May 2016
Accepted 26 May 2016
Available online 28 May 2016

Keywords:
Cathepsin
Cysteine protease
Cell death
Degradomics
Plant
Abbreviations: ALP, aleurain-like protease; Bz, b
CDR, complementarity-determining region; DTT, dith
antibody; MCA, 4-methylcoumaryl-7-amide; Nb, N
Proteomic Identification of Protease Cleavage Sites
proteinase; Z, benzyloxycarbonyl.
* Corresponding author. Department of Applied Ge

versity of Natural Resources and Life Sciences, Mu
Austria.

E-mail address: lukas.mach@boku.ac.at (L. Mach).

http://dx.doi.org/10.1016/j.abb.2016.05.017
0003-9861/© 2016 The Authors. Published by Elsevie
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The cysteine protease CP14 has been identified as a central component of a molecular module regulating
programmed cell death in plant embryos. CP14 belongs to a distinct subfamily of papain-like cysteine
proteinases of which no representative has been characterized thoroughly to date. However, it has been
proposed that CP14 is a cathepsin H-like protease. We have now produced recombinant Nicotiana
benthamiana CP14 (NbCP14) lacking the C-terminal granulin domain. As typical for papain-like cysteine
proteinases, NbCP14 undergoes rapid autocatalytic activation when incubated at low pH. The mature
protease is capable of hydrolysing several synthetic endopeptidase substrates, but cathepsin H-like
aminopeptidase activity could not be detected. NbCP14 displays a strong preference for aliphatic over
aromatic amino acids in the specificity-determining P2 position. This subsite selectivity was also
observed upon digestion of proteome-derived peptide libraries. Notably, the specificity profile of NbCP14
differs from that of aleurain-like protease, the N. benthamiana orthologue of cathepsin H. We conclude
that CP14 is a papain-like cysteine proteinase with unusual enzymatic properties which may prove of
central importance for the execution of programmed cell death during plant development.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The tobacco-related plant species Nicotiana benthamiana is a
popular model organism for the study of plant-pathogen in-
teractions [1]. Substantial evidence has been obtained for a mo-
lecular arms race between plant-derived papain-like cysteine
proteinases (PLCPs) and antagonistic effectors released by
enzoyl; CHN2, diazomethyl;
iothreitol; mAb, monoclonal
icotiana benthamiana; PICS,
; PLCP, papain-like cysteine
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pathogens at the site of infection [2]. Intriguingly, a delicate balance
between endogenous PLCPs and cysteine proteinase inhibitors also
dictates proper timing of programmed cell death in tobacco em-
bryos [3]. Hence, N. benthamiana is a suitable host for further
studies on the diverse physiological functions of PLCPs. Further-
more, N. benthamiana is increasingly used as expression platform
for the production of biotherapeutics [4]. In particular,
N. benthamiana lines have been established which permit the
production of recombinant proteins such as monoclonal antibodies
(mAbs) with customized post-translational modifications and thus
superior biological activities [5,6]. However, a frequent challenge
encountered during the production of mAbs in plants is their pro-
teolytic degradation [7e10]. Recent studies have highlighted that
mAb fragmentation in N. benthamiana and tobacco involves serine
and cysteine proteases including PLCPs [11e14].

Considerable progress is currently made in the biochemical and
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structural characterization of PLCPs and their animal counterparts,
the cysteine cathepsins [15,16]. Based on a comprehensive phylo-
genetic analysis, PLCPs have been recently divided into 9 sub-
families. The first six subfamilies comprise cathepsin L-like
proteases differing in individual molecular aspects, with two of
them (subfamilies 1 and 4) featuring C-terminal extensions. Sub-
families 7e9 are phylogenetically distinct and display homologies
to mammalian cathepsins F, H and B, respectively [17]. The devel-
opment of sophisticated activity-based probes has allowed the
selective identification of several PLCPs in different plant species
including N. benthamiana [18]. However, only two N. benthamiana
PLCPs have been studied thoroughly on the protein level so far:
aleurain-like protease (ALP), assigned to subfamily 8, and cathepsin
B, a member of subfamily 9 [19e21]. Another N. benthamiana PLCP
has recently received substantial attention. This enzyme promotes
plant immunity in a similar way as tomato C14 (subfamily 1) and
thus was initially named NbC14 [22,23]. However, it later became
evident that NbC14 belongs to subfamily 4 [17] and is the ortho-
logue of NtCP14, a protease involved in the spatiotemporal control
of programmed cell death [3]. Based on specificity profiling with a
small number of synthetic PLCP substrates, it was concluded that
the enzymatic properties of NtCP14 resemble those of mammalian
cathepsin H [3].

To study the catalytic features of N. benthamiana NbC14 (here-
after referred to as NbCP14) in depth, we have now produced re-
combinant forms of this protease in different heterologous
expression systems. This enabled us to conduct a detailed charac-
terization of its enzymatic properties using synthetic substrates as
well as proteome-derived peptide libraries. Our results demon-
strate that CP14 lacks cathepsin H-like aminopeptidase activity and
exhibits a specificity profile distinct of ALP, the plant orthologue of
cathepsin H.

2. Materials and methods

2.1. Heterologous expression of NbCP14 in insect cells

The plasmid pTP11 containing the complete open reading frame
of NbCP14 [22] was used as a PCR template. Two different con-
structs were generated: pVTBacHis-FLAG-NbCP14 encodes a trun-
cated version of the proenzyme lacking the C-terminal granulin
domain (NbCP14 residues 30e397, preproprotein numbering),
whereas both the granulin domain and the proline-rich linker re-
gion were removed in the case of pVTBacHis-FLAG-NbCP14DP
(NbCP14 residues 30e367). The same forward primer (50-AAATC-
TAGATTTACTACTGATTTTCCAATAC-30) was used in conjunctionwith
different reverse primers, 50-TCTGGTACCTCAACTTGGTTTTG-
GAAAAG-30 (NbCP14) or 50-TCTGGTACCTCAAGAGGCTTCTTTCGTTG-
30 (NbCP14DP). The PCR products were cleaved with XbaI and KpnI
(Fermentas, St. Leon-Rot, Germany) at the underlined sites and
ligated into pVTBacHis-FLAG [24] digested with the same enzymes.
In the resulting plasmids, the respective NbCP14 sequence is
positioned in-frame behind a leader segment consisting of the
melittin signal peptide followed by a 4-kDa linker region contain-
ing six consecutive histidine residues and the FLAG epitope.

Heterologous production of pro-NbCP14 and pro-NbCP14DP in
insect cells was conducted according to previously published pro-
cedures [24,25]. Briefly, recombinant baculoviruses were generated
by co-transfection of Spodoptera frugiperda Sf9 cells with the
respective pVTBacHis-FLAG construct and baculoviral DNA. After
infection of S. frugiperda Sf21 cells, the recombinant proteins were
isolated from the culture supernatants by two-step affinity chro-
matography using Chelating Sepharose (GE Healthcare, Little
Chalfont, United Kingdom) and Anti-FLAG M2 Affinity Gel (Sigma-
Aldrich, St. Louis, USA).
2.2. Production of NbCP14 in Escherichia coli

The sequence encoding NbCP14 residues 30e397 was amplified
by PCR with the primer combination 50-GCAGCTAGCTTTACTACT-
GATTTTCCAATACTA-30 (forward) and 50-GCACTCGAGT-
CAACTsTGGTTTTGGAAAAG-30 (reverse). The PCR product was then
cleaved with NheI and XhoI at the underlined positions and ligated
into the corresponding sites of pET-32/28 prior to expression in the
E. coli strain Rosetta-gami B (DE3) pLysS as described previously
[21,26]. The resulting cell pellet was resuspended in 20 mM Hepes
(pH 7.4) supplemented with 500 mM NaCl and 20 mM imidazole.
After cell lysis by sonication, debris was removed by centrifugation
at 16,000g for 15 min at 4 �C. The supernatant was then passed
through a column of Chelating Sepharose charged with Ni2þ ions
and equilibrated in resuspension buffer. After successive washes
with 40, 60 and 80 mM imidazole, recombinant pro-NbCP14 was
eluted with 250 mM imidazole. Protein-containing eluate fractions
were pooled, dialysed against phosphate-buffered saline (20 mM
sodium phosphate, pH 7.4, 150 mM NaCl) containing 0.02% (w/v)
NaN3 and then concentrated by ultrafiltration.

2.3. Activity assays

Pro-NbCP14 (0.3 mg/ml) was autocatalytically activated by in-
cubation in 0.1 M sodium acetate (pH 5.0) containing 2.5 mM DTT
for 30 min at 37 �C. Stopped assays were performed at 37 �C as
outlined previously [27,28], using 10 mM of the respective peptidyl-
MCA substrate (Bachem, Bubendorf, Switzerland; PeptaNova,
Sandhausen, Germany) in 0.1 M sodium acetate (pH 5.0), 1%
dimethylsulfoxide, 5 mM DTT. The reactions were terminated by
addition of an equal volume of 0.1 M monochloroacetic acid, 0.1 M
sodium acetate (pH 4.3) prior to analysis by spectrofluorimetry.
Active-site titration was done by preincubation with varying con-
centrations of the irreversible inhibitor E-64 for 60 min at 0 �C [29].
Kinetic measurements with Z-Leu-Arg-MCA or Z-Phe-Arg-MCA as
substrate were performed at 25 �C following previously published
procedures [26]. The assay buffer was the same as stated above. 5%
dimethylsulfoxide was used to enhance the solubility of Z-Phe-Arg-
MCA at high substrate concentrations. Reaction rates were deter-
mined from the respective progress curves. The kinetic parameters
Km and kcat were derived by non-linear regression analysis using
the Henri-Michaelis-Menten equation and GraphPad Prism 5.0
software.

2.4. Specificity profiling with proteome-derived peptide libraries

Specificity profiling of N. benthamiana aleurain-like protease
(NbALP) and NbCP14 was performed using the Proteomic Identifi-
cation of Protease Cleavage Sites (PICS) procedure [30e32] or an
adaption thereof [33]. Briefly, proteome-derived peptide libraries
were prepared by digestion of E. coli or HEK293 lysates with trypsin
or GluC. These peptide samples (300 mg) were incubated with the
enzyme to be tested (0.6e3 mg) in assay buffer (NbALP: 0.2 M Mes
(pH 5.0), 5 mM DTT; NbCP14: 0.1 M sodium acetate (pH 5.0), 5 mM
DTT) for up to 16 h at room temperature. Protease-treated and
control samples were then differentially labelled by reductive
dimethylation with either light (12COH2) or heavy formaldehyde
(13COD2), combined and fractionated by strong-cation exchange
chromatography prior to analysis by liquid chromatography-
tandem mass spectrometry as described previously [34]. Spec-
trum to sequence assignment and relative peptide quantitation
were performed as reported [35] with the following adaptations:
asymmetric precursor mass error of þ150 ppm/�0 ppm, fragment
ion mass tolerance of 0.1 Da, semi-GluC or semi-tryptic specificity.
Semi-specific peptides that were enriched >4-fold in the protease-



Fig. 1. Characterization of NbCP14 produced in insect cells. (A) Purified pro-NbCP14DP
was incubated in 0.1 M sodium acetate (pH 5.0), 2 mM cysteine in the absence or
presence of 10 mg/ml dextran sulphate (DS) prior to analysis by SDS-PAGE and silver
staining. An untreated sample served as control. (B) Pro-NbCP14DP was subjected to
treatment with peptide N-glycosidase F prior to immunoblotting analysis with anti-
FLAG antibodies. The migration positions of prestained molecular mass standards
are indicated, with their respective masses expressed in kDa.
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treated samples were considered as cleavage products. The corre-
sponding prime and non-prime sequences were reconstructed
bioinformatically through database searches and visualized using
iceLogo [36].

2.5. Profiling with activity-based probes

Active-site labelling of NbCP14 was performed in 0.1 M sodium
acetate (pH 5.5) supplemented with 5 mM DTT and varying con-
centrations of DCG-04 ([37]; Matthew Bogyo, Stanford University,
USA), biotin-CA074 ([38]; Norbert Schaschke, University of Biele-
feld, Germany) or biotin-Leu-Val-Gly-CHN2 ([39]; Gilles Lalmanach,
University of Tours, France). After incubation for 30 min at 37 �C,
the reactions were stopped by addition of 50 mg/ml E-64 and sub-
sequent treatment for 5 min at 95 �C.

2.6. Digestion of mAbs

The human anti-HIV mAbs 2F5 and 2G12 (Dietmar Katinger,
Polymun Scientific GmbH, Klosterneuburg, Austria) were tested for
their susceptibility to NbCP14 as outlined earlier [12]. Briefly, 2F5 or
2G12 (200 mg/ml) were treated with NbCP14 (50 mg/ml) in 0.1 M
sodium acetate (pH 5.5) containing 2 mM DTT at 37 �C. After in-
cubation for up to 16 h, reactions were stopped by treatment for
5 min at 95 �C.

2.7. SDS-PAGE and western blotting analysis

Samples were denatured for 5 min at 95 �C under reducing
conditions and then subjected to 12.5% SDS-PAGE. Separated
polypeptides were then either subjected to silver staining or elec-
trophoretically transferred onto Hybond-C nitrocellulose mem-
branes (GE Healthcare). After probing the membranes with
monoclonal mouse anti-FLAG M2 (Sigma-Aldrich), bound immu-
noglobulins were visualized with peroxidase-conjugated goat anti-
mouse IgG antibodies (Jackson ImmunoResearch, West Grove, USA)
and enhanced chemiluminescence reagents (Bio-Rad, Richmond,
USA). mAbs and their heavy-chain fragments were detected with
peroxidase-labelled anti-human IgG (g-chain-specific; Sigma-
Aldrich). Streptavidin-peroxidase (Vector Laboratories, Burlin-
game, USA) was used for the detection of biotinylated proteins on
western blots.

2.8. Mass spectrometry

Purified pro-NbCP14 (0.5 mg/ml) was fractionated on a Thermo
ProSwift RP-4H column (250 � 0.20 mm) using a Dionex UltiMate
3000 HPLC system (Thermo Scientific, Waltham, USA). After
application of the sample (5 ml), elutionwas performed at 80 �C and
a flow rate of 8 ml/min with a gradient of 20e95% solvent B (80%
acetonitrile in 0.01% trifluoroacetic acid) in solvent A (0.05% tri-
fluoroacetic acid) over 40 min as follows: 20e65% B (20 min),
65e95% B (20 min). Eluted polypeptides were analysed online on a
maXis 4G ETD QTOF mass spectrometer (Bruker, Billerica, USA)
equipped with an electrospray ionization source and operated in
the positive ionmode (m/z range: 400e3800). Them/z values of the
8 most prominent charge states were used to deduce the molecular
mass of recombinant pro-NbCP14.

2.9. Other methods

Recombinant pro-NbALP was produced and activated as
described previously [21]. N-terminal sequence analysis of blotted
bands was conducted at the Department of Molecular and
Biomedical Sciences (Jozef Stefan Institute, Ljubljana, Slovenia) and
the Protein Micro-Analysis Facility (Medical University of Inns-
bruck, Austria) as outlined earlier [12]. Enzymatic deglycosylation
of proteins was performed as reported [25]. Total protein content
was determined with the BCA Protein Assay Kit (Pierce, Rockford,
USA), using bovine serum albumin as standard.

3. Results

3.1. Heterologous expression of NbCP14

Full-length NbCP14 (505 amino acids; 56.9 kDa; GenBank:
KU212214) shares 93% identity with NtCP14 (GenBank: KF113573),
and the catalytic domains differ only at 11 positions (5%). Both
enzymes belong to PLCP subfamily 4 [17] and are considerably
larger than other PLCPs due to the additional presence of a C-ter-
minal granulin domain (108 amino acids), which is connected to
the other parts of the protease by a 30-residue proline-rich linker
region. The latter segment is preceded by an N-terminal signal
sequence (29 amino acids), a propeptide (116 residues) encom-
passing the ERFNIN motif typical for cathepsin L-like PLCPs [15,16],
and the catalytic domain (222 amino acids) with the three active-
site residues (Cys170, His308 and Asn328; Table S1).

Biochemical information on subfamily 4 enzymes is still sparse,
but related PLCPs belonging to subfamily 1 have been characterized
in more detail. Since the C-terminal granulin domain of subfamily 1
proteases is dispensable for proteolytic activity [20] but renders the
enzymes prone to precipitation [40], we have first generated a
truncated NbCP14 precursor (residues 30e397, preproprotein
numbering) devoid of the granulin domain (pro-NbCP14) in order
to improve the likelihood of proper secretion of the proenzyme into
the culture medium. Although pro-NbCP14 could be expressed in
insect cells, the amounts of recombinant protein accumulating in
the culture supernatant were too low for further characterization.
We have therefore generated a second deletion construct (residues
30e367) which additionally lacks the proline-rich region (pro-
NbCP14DP). This protein was more efficiently secreted than pro-
NbCP14 and could be purified to near homogeneity. When puri-
fied pro-NbCP14DP was subjected to SDS-PAGE analysis, a major
43-kDa band was observed. This apparent molecular mass is in
reasonable agreement with its theoretical size (41.9 kDa). However,
a 31-kDa polypeptide was also consistently present in purified pro-
NbCP14DP samples (Fig. 1A). Incubation at low pH in the presence
of a reducing agent resulted in the rapid conversion of pro-
NbCP14DP into the faster migrating species, even in the absence of
the processing enhancer dextran sulphate [21]. It is well established
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that cysteine cathepsins and PLCPs can undergo autocatalytic
maturation under acidic conditions [28,41]. Although pro-
NbCP14DP contains an N-glycosylation sequon within its prodo-
main, the electrophoretic mobility of the recombinant proenzyme
was not increased by treatment with peptide N-glycosidase F. This
suggests that the potential N-glycosylation site of pro-NbCP14DP
(Asn87) is structurally buried and thus inaccessible for N-glycosyl-
ation enzymes (Fig.1B). Furthermore, these results indicate that the
discrepancy between the size of the 31-kDa autocatalytic matura-
tion product and its predicted molecular mass (24.4 kDa) is not due
to N-glycosylation.

Opposite to the baculovirus expression system, pro-NbCP14
containing the proline-rich linker region could be produced in
E. coli with good yields and purity (3 mg proenzyme per liter bac-
terial culture). The calculated molecular mass of the recombinant
proenzyme (43220.3 Da) could be experimentally verified by liquid
chromatography-electrospray ionization-mass spectrometry
(43220.1 ± 1.5 Da), thus confirming proper removal of the initiator
methionine and formation of the predicted 4 disulphide bridges
(Fig. 2A). However, the recombinant proenzyme migrated in SDS-
PAGE gels as a 51-kDa polypeptide, which gave rise to a 36-kDa
band upon acid-induced autocatalytic maturation (Fig. 2B). The
main N-terminal sequence of the 36-kDa protein as determined by
Edman degradation was found to correspond to Ser143-Cys-Asp-
Val-Pro, accompanied by smaller amounts of Thr141-Thr-Ser-Cys-
Asp and Asp145-Val-Pro-Pro-Ser. Similar to cysteine cathepsins [42],
self-processing of NbCP14 thus takes place 1e5 residues upstream
of the first amino acid of the protease domain (Val146; Table S1). The
theoretical molecular mass of themain form of the autocatalytically
maturated enzyme is therefore 27.3 kDa. Hence, the electrophoretic
mobility of mature NbCP14 is slower than expected as also noted
for its precursor and 31-kDa NbCP14DP. Similar observations have
been previously reported for recombinant pro-NtCP14 as well as
cathepsins B and L [3,43,44].
Fig. 3. Profiling of NbCP14 with activity-based probes. Mature NbCP14 was incubated
for 30 min at 37 �C with the indicated concentrations of DCG-04, biotin-Leu-Val-Gly-
CHN2 (LVG) or biotin-CA074 (CA074) followed by SDS-PAGE and western blotting using
3.2. Catalytic features of NbCP14

Activity-based probes are used increasingly to detect PLCPs in
complex samples such as plant extracts. We have therefore tested
mature NbCP14 for its reactivity with three such probes: DCG-04
[37], biotin-CA074 [38] and biotin-Leu-Val-Gly-CHN2 [39] (see
Fig. S1 for the chemical structures of these compounds). NbCP14
was strongly labelled by DCG-04 in a concentration-dependent
manner. The protease also showed a pronounced reaction with
biotin-CA074. By contrast, labelling of NbCP14 with biotin-Leu-Val-
Gly-CHN2 was comparatively weak, rendering DCG-04 and biotin-
CA074 the preferred reagents for the detection of active forms of
NbCP14 in cell and tissue homogenates (Fig. 3).
Fig. 2. Characterization of NbCP14 produced in E. coli. (A) Purified pro-NbCP14 was subjecte
theoretical molecular mass of the recombinant protein is 43220.3 Da. (B) Pro-NbCP14 was in
analysis by SDS-PAGE and silver staining. An untreated sample (�) served as control. The m
We have then assessed the catalytic properties of mature
NbCP14 using a series of synthetic substrates frequently used to
monitor the activities of cysteine cathepsins and PLCPs. While the
enzyme cleaved a number of endopeptidase substrates, no activity
was observed with aminopeptidase substrates such as Arg-MCA
(Table 1). In particular, NbCP14 was found to display high hydro-
lytic activity towards Z-Leu-Arg-MCA. It is of note that Z-Phe-Arg-
MCA is cleaved much less efficiently by this enzyme, mainly due to
a far slower turnover (Table 2). This indicates that NbCP14 favours
leucine over phenylalanine in its specificity-determining S2 subsite.

We have also tested NbCP14 for its capacity to degrade native
proteins. For these experiments, the two monoclonal anti-HIV an-
tibodies 2F5 and 2G12 were chosen as substrates. We have previ-
ously observed that 2F5 is far more sensitive to PLCPs than 2G12
[12]. Treatment of 2F5 with two other N. benthamiana PLCPs,
NbALP and cathepsin B, preferentially results in the formation of a
discrete 40-kDa polypeptide due to cleavage within the CDR H3
loop of the antibody (Leu-Phe-Gly108YVal109-Pro-Ile) [21]. Entirely
different results were obtained for NbCP14. This enzyme
completely degraded both mAbs, with only transient accumulation
of fragments with apparent masses of 30e40 kDa (Fig. 4). The N-
terminus of the 30-kDa 2F5 polypeptide produced by NbCP14 was
determined as Thr240, indicative of cleavage at the same site (Lys-
Thr-His239YThr240-Cys-Pro; Table S2) as previously reported for
papain [45] and human cathepsin L [12].
3.3. Subsite specificity profile of NbCP14

To assess the subsite specificity of NbCP14, we applied the
conventional Proteomic Identification of Protease Cleavage Sites
(PICS) procedure [30e32] as well as a recently reported adaptation
thereof [33]. Preliminary experiments revealed that an enzyme-to-
library ratio of 1:100 and an incubation time of 16 h result in the
most informative data sets. Standard PICS analysis of tryptic E. coli
and HEK293 libraries treated with NbCP14 under these conditions
yielded 1971 and 1193 unique cleavage sequences, respectively
(Fig. 5). The substrate specificity of cysteine cathepsins and PLCPs is
largely defined by their S2 pocket [46]. Both sequence logos depict a
d to analysis by liquid chromatography-electrospray ionization-mass spectrometry. The
cubated in 0.1 M sodium acetate (pH 5.0), 2.5 mM DTT for 30 min at 37 �C (þ) prior to
igration positions of prestained molecular mass standards are indicated.

streptavidin-peroxidase for detection. The migration positions of prestained molecular
mass standards are indicated.



Table 1
Hydrolysis of peptidyl-MCA substrates by NbCP14. The following substrates were
not cleaved (<0.2 mU/mg): Ala-MCA, Arg-MCA, Leu-MCA, Phe-MCA, Gly-Phe-MCA,
Z-Arg-MCA, Z-Arg-Arg-MCA, Z-Ala-Ala-Asn-MCA, Z-Gly-Pro-Arg-MCA, acetyl-Tyr-
Val-Ala-Asp-MCA, methoxysuccinyl-Ala-Ala-Pro-Val-MCA. All substrates were
tested at a final concentration of 10 mM. mU, nmol per min; Suc, succinyl.

Substrate Specific activity (mU/mg) Relative activity (%)

Z-Leu-Arg-MCA 771 100
Boc-Val-Leu-Lys-MCA 158 20.4
Bz-Phe-Val-Arg-MCA 112 14.5
Boc-Val-Arg-MCA 48 6.2
Z-Phe-Arg-MCA 39 5.1
Z-Leu-Leu-Glu-MCA 26 3.3
Z-Val-Val-Arg-MCA 25 3.2
Suc-Leu-Leu-Val-Tyr-MCA 4.4 0.6
Z-Leu-Leu-Leu-MCA 3.8 0.5
Z-His-Glu-Lys-MCA 0.3 <0.1

Table 2
Kinetic parameters of NbCP14.

Enzyme Substrate Km [mM] kcat [s�1] kcat/Km [mM�1 s�1]

NbCP14 Z-Leu-Arg-MCA 9.4 ± 1.5 1.7 ± 0.4 181
Z-Phe-Arg-MCA 23 ± 2 0.05 ± 0.02 2.2

Cat Ha Bz-Phe-Val-Arg-MCA 38 ± 8 110 ± 13 2900
Z-Phe-Arg-MCA 82 ± 26 4.3 ± 1.0 52.5

Papainb Z-Phe-Arg-MCA 420 ± 70 52 ± 6 119
Asp158Alab Z-Phe-Arg-MCA 920 ± 70 0.46 ± 0.08 0.5

a Cat H, recombinant human cathepsin H lacking the mini-chain; data taken from Ref. [55].
b Asp158Ala, mutant papain (Asp158 / Ala); data taken from Ref. [59].

Fig. 4. Processing of anti-HIV mAbs 2F5 and 2G12 by NbCP14. mAbs (200 ng) were
incubated with mature NbCP14 (50 ng) at pH 5.5 for the indicated times and then
analysed by immunoblotting with antibodies to the heavy chain of human IgG. Un-
treated mAb was used as control. The migration positions of selected molecular mass
standards are indicated. o/n, overnight (16 h).

Fig. 5. Specificity profiling of NbCP14 using conventional PICS. Tryptic peptide libraries
derived from E. coli (A) or HEK293 cells (B) were incubated with mature NbCP14
(protease-to-library ratio: 1:100) for 16 h at room temperature. IceLogos are used to
present the identified cleavage sites as cumulative fold-change normalized for the
natural abundance of the respective amino acids.
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strong preference of NbCP14 for branched, aliphatic amino acids in
P2 (leucine > valine > isoleucine). In P1, NbCP14 accepts small
amino acids like glycine and threonine, but also tolerates glutamic
acid and glutamine as reported for cathepsins B, L and S [32]. The
known preference of PLCPs for basic amino acids in P1, as revealed
by positional scanning of combinatorial synthetic substrate li-
braries [47], cannot be assessed using tryptic peptide libraries. A
moderate selectivity of NbCP14 for histidine and hydrophobic
amino acids in P3 is consistent with similar findings for cysteine
cathepsins and other PLCPs [32,47], but a distinct substrate speci-
ficity is not observed for this position. The same applies to P10

where small amino acids as well as aspartic acid/asparagine and
glutamic acid/glutaminewere found to beweakly enriched. Overall,
the subsite profile of NbCP14 as determined by standard PICS ar-
gues for P2 as the major specificity factor with only minor contri-
butions from other positions.

The NbCP14 subsite specificity was also assessed with an
adapted PICS procedure [33]. This method avoids chemical
modification of primary amines prior to exposure to a protease
under investigation and thus also enables the profiling of lysine
specificities. E. coli libraries generated by treatment with trypsin or
GluC were incubated with NbCP14 under the same conditions as
above prior to differential labelling of protease-treated and control
samples by reductive dimethylation using different stable isotopes
of formaldehyde. Upon analysis by liquid chromatography-mass
spectrometry, NbCP14 cleavage products could be identified as
semi-specific peptides enriched for the corresponding isotopic la-
bel. Two independent digests of tryptic E. coli libraries with NbCP14
yielded 149 and 207 cleavage sequences, respectively. Consistent
with the data acquired by conventional PICS, the preference of
NbCP14 for aliphatic amino acids in P2 was pronounced. Glycine
and threonine were the most strongly enriched P1 residues (Fig. 6),
which is also in good agreement with the results obtained using the
conventional PICS protocol. Glycine has been previously reported to
be tolerated well in P1 and P10 of human cathepsins B, L and S.
Furthermore, threonine is frequently observed in the P1 position of
cysteine cathepsin and PLCP specificity profiles [32,47]. P3 was
again found to contribute little to the specificity of NbCP14 with
solely histidine exceeding its natural abundance by more than 2-
fold at this position. However, the adapted PICS procedure
revealed that NbCP14 readily accepts acidic amino acids in P10.

Many PLCPs accept lysine or arginine residues in the P1 position.
Such sequences are rare in tryptic libraries due to the substrate
specificity of this enzyme. Therefore, we additionally used the
adapted PICS procedure to investigate the action of NbCP14 on a
GluC-treated E. coli library, obtaining 213 cleavage sequences
(Fig. 6). For P2, the same subsite specificity was observed as in the



Fig. 6. Specificity profiling of NbCP14 using the adapted PICS procedure. E. coli peptide
libraries prepared with trypsin (A) or GluC (B) were incubated with mature NbCP14
(protease-to-library ratio: 1:100) for 16 h at room temperature. Semi-specific peptides
with a more than 4-fold enrichment were used for reconstruction of the cleavage sites
displayed as iceLogos.
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aforementioned profiles. However, NbCP14 was found to display a
preference for lysine and arginine in P1, which is in good agreement
with the data available for other PLCPs [47]. An enrichment of basic
amino acids was also observed at P3, whereas small and acidic
amino acids dominated in P10. Taken together, these results
demonstrate that the adapted and conventional PICS protocols
yield comparable results for the subsite specificity of NbCP14.
However, it should be pointed out that the sequence logos obtained
with the modified procedure were much easier to interpret than
those derived using the standard protocol.

The PLCP most closely related to cathepsin H is ALP. Like its
mammalian counterpart, ALP primarily functions as aminopepti-
dase with moderate endopeptidolytic activity [21,48]. This is
attributed to the so-called mini-chain, which partially occupies the
active-site cleft and thereby restricts the substrate-binding sites of
cathepsin H and related enzymes [49]. Adapted PICS assays of
NbALP with tryptic HEK293 libraries led to the identification of 252
cleavage sequences. Strikingly, a large fraction of the detected
cleavage events (60%) resulted from the removal of a single residue
and were thus due to the aminopeptidase activity of the enzyme.
27% corresponded to the removal of two or three amino acids.
Notable differences were observed between the subsite preferences
of NbALP and NbCP14. In P1, NbALP readily accepts bulky side
chains such as those of phenylalanine, tyrosine and methionine.
Serine and threonine are also tolerated in this position (Fig. 7).
Similar features have been reported for cathepsin H [50,51]. The S10

pocket of NbALP prefers hydrophobic residues (valine, alanine,
isoleucine) as well as tyrosine and aspartic acid. The P2 selectivity
of NbALP is not as pronounced as that of NbCP14 and displays an
enrichment of small neutral amino acids such as threonine, valine
Fig. 7. Specificity profiling of NbALP using the adapted PICS procedure. A tryptic
peptide library derived from HEK293 cells was incubated with mature NbALP (pro-
tease-to-library ratio: 1:100) for 16 h at room temperature. Semi-specific peptides
with a more than 4-fold enrichment were used for reconstruction of the cleavage sites
displayed as iceLogo.
and alanine. Taken together, NbALP and NbCP14 clearly differ in
their modes of action as well as in their substrate specificities.

4. Discussion

In tobacco, NtCP14 was identified as a key component of a
bipartite module controlling the initiation of programmed cell
death during the early stages of embryogenesis [3]. In the case of
N. benthamiana, previous studies have revealed that NbCP14 is
required for a powerful response to plant pathogens. This is remi-
niscent of tomato and potato C14 which also promote plant im-
munity [22,23]. The latter two enzymes are closely related to
Arabidopsis thaliana RD21, an extensively studied protease from
PLCP subfamily 1 [17,20,40]. However, NbCP14 appears to differ
from RD21 in various aspects, thus providing evidence for sub-
stantial biochemical variations between subfamilies 1 and 4. For
instance, our results unequivocally demonstrate that NbCP14 is
capable of autocatalytic activation. By contrast, previous studies
have indicated that maturation of recombinant RD21 produced in
insect cells requires the addition of plant extracts [40]. Hence, it has
been suggested that RD21 activation depends on the action of
vacuolar processing enzymes, an unrelated class of cysteine pro-
teases. However, we have recently obtained genetic evidence that
vacuolar processing enzymes are dispensable for RD21 activation in
A. thaliana [20]. Another difference between NbCP14 and RD21
relates to the functional significance of the proline-rich region
connecting the catalytic and granulin domains. In the case of RD21,
deletion of this spacer element resulted in accumulation of an
apparently inactive precursor protein, suggesting that the proline-
rich segment has to be present for proper folding of RD21-like
proteases [20]. Conversely, recombinant NbCP14 lacking this
linker sequence is capable of rapid autocatalytic maturation, thus
highlighting remarkable differences between PLCP subfamilies 1
and 4 with respect to their folding competence and cellular acti-
vation mechanisms.

Opposite to NbALP and N. benthamiana cathepsin B [21], NbCP14
failed to cleave the anti-HIV mAb 2F5 in its CDR H3 loop. Inter-
estingly, the cleavage site of the former enzymes in this region of
the antibody (Leu-Phe-GlyYVal-Pro-Ile) features a phenylalanine in
the P2 position. Using synthetic peptide substrates, we observed
that NbCP14 displays a pronounced preference for leucine at this
location (see Table 1). This unique feature prompted us to test
NbCP14 for its reaction with various activity-based probes which
are frequently used to map the subsite specificities of cysteine
proteinases. The prototypical PLCP probe is DCG-04, whose struc-
ture is based on the potent cysteine proteinase inhibitor E-64 [37].
DCG-04 and derivatives thereof have been successfully used to
detect PLCPs in plant extracts, including the NbCP14 orthologue
XBCP3 from A. thaliana [17,52]. Interestingly, all these compounds
contain a leucine residuewhich docks into the affinity-determining
S2 subsite of target PLCPs [53]. Hence, the strong labelling of
NbCP14 by DCG-04 is in good agreement with the observed sub-
strate specificity of this protease. NbCP14 also gave pronounced
signals with another E-64 relative, biotin-CA074. This probe has
been originally designed as a selective high-affinity label for
cathepsin B [38]. The reaction of biotin-CA074 with NbCP14 in-
dicates that the latter enzyme can tolerate the C-terminal dipeptide
extension of the inhibitor in its prime-site pockets. By contrast, the
binding of biotin-Leu-Val-Gly-CHN2 to NbCP14was relatively weak.
This could reflect the preference of NbCP14 for leucine over valine
in the P2 position. However, it has been also noted that the biotin
moiety of the probe can interfere with its efficient accommodation
in the active site of PLCPs due to the absence of a linker segment
[39].

For plants, very few proteomics-based studies of protease
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specificity have been conducted so far. Recently, the PICS meth-
odology has been used to determine the cleavage-site specificities
of matrix metalloproteinases from A. thaliana [54]. In this study, we
have now used NbCP14 to evaluate an improved PICS protocol [33]
for its suitability to assess the substrate preferences of PLCPs. This
new procedure circumvents a number of known PICS limitations,
such as the lack of normalization and the modification of certain
amino acids during library generation. The adapted method omits
the dimethylation of primary amines and preserves free thiols in
the peptide library allowing the recognition of unmodified N-
termini, lysines and cysteines by the test protease. Importantly, the
adapted and conventional PICS protocols yielded similar results
with respect to the subsite preferences of NbCP14. As expected, the
observed cleavage patterns are largely determined by the distinct
P2 specificity of the enzyme, which clearly favours aliphatic over
aromatic amino acids at this position as previously observed for
human cathepsin S [32].

The strong preference of NbCP14 for leucine over phenylalanine
in P2 is not only due to enhanced substrate affinity, but at large the
result of a major difference in the turnover rate. Similar observa-
tions have been made previously for cathepsin H, which favours
valine over phenylalanine in P2 like NbALP [55,56] (see Table 2).
However, the residues forming the S2 subsite of NbCP14 (Met214,
Ala280, Leu306, Ala309, Leu358) are inconspicuous when compared
with papain [57]. Hence, a different molecular feature shared by
NbCP14 and cathepsin H could contribute to the distinct enzymatic
properties that these two enzymes have in common. In the prox-
imity of the active-site histidine, cathepsin H contains a small four-
residue loop (Lys155A-Thr-Pro-Asp155D) that is not found in other
cysteine cathepsins [49]. It has been put forward that this flexible
loop could cause partial obstruction of the S2 subsite [55]. Inter-
estingly, NbCP14 also contains such an insertion (Ser301-Asn-Pro-
Asp304) at the equivalent position.

Opposite to cathepsin H, NbCP14 does not display any amino-
peptidase activity. Clearly, this can be attributed to the absence of
the mini-chain, a segment of the propeptide which remains
attached to mature cathepsin H and its plant orthologues via a
disulphide bond not present in NbCP14 [21,55,58]. Another striking
difference between NbCP14 and cathepsin H-like enzymes relates
to the amino acid preceding the active-site histidine. For papain, it
has been shown that this residue (Asp158) is involved in a
hydrogen-bonding network stabilizing the thiolate-imidazolium
ion pair required for catalysis [59]. While cathepsin H and NbALP
feature an asparagine at this position, Asp158 is replaced by Ser307 in
NbCP14. Site-directed mutagenesis experiments with papain have
revealed that substitution of Asp158 with Asn has little impact on
the catalytic efficiency of the protease [60]. However, the enzymatic
activity of an Asp158-Ala variant was found to be severely
compromised, which was mainly due to a more than 100-fold
decrease in kcat [59] (see Table 2). Hence, Ser307 could at least in
part account for the moderate processivity of NbCP14 as compared
to papain and cathepsin H. Taken together, the unique molecular
features of NbCP14 identified in this study may explain its unusual
low-affinity interactions with endogenous cysteine proteinase in-
hibitors [3] and thus provide a rationale for the non-redundant role
of the enzyme during execution of programmed cell death in the
plant embryo.
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