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Nanomedicine is an emerging form of therapy that focuses on alternative drug delivery and improvement of the
treatment efficacy while reducing detrimental side effects to normal tissues. Cancer drug resistance is a
complicated process that involves multiple mechanisms. Here we discuss the major forms of drug resistance
and the new possibilities that nanomedicines offer to overcome these treatment obstacles. Novel nanomedicines
that have a high ability for flexible, fast drug design and production based on tumor genetic profiles can be created
making drug selection for personal patient treatment much more intensive and effective. This review aims to
demonstrate the advantage of the young medical science field, nanomedicine, for overcoming cancer drug
resistance.With the advanced design and alternativemechanisms of drug delivery known for different nanodrugs
including liposomes, polymer conjugates, micelles, dendrimers, carbon-based, and metallic nanoparticles,
overcoming various forms ofmulti-drug resistance looks promising and opens new horizons for cancer treatment.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
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1. Introduction

Resistance to antineoplastic chemotherapy is a combined
characteristic of the specific drug, the specific tumor, and the
specific host whereby the drug is ineffective in controlling the
tumor without excessive toxicity.

The problem for themedical oncologist is not simply tofind an agent
that is cytotoxic but to find one that selectively kills neoplastic cells
while preserving the essential host cells and their functions. Were it
not for the problem of resistance of human cancer to antineoplastic
agents or, conversely, the lack of selectivity of those agents, cancer
chemotherapy would have been similar to antibacterial chemotherapy
in which complete eradication of infection is regularly observed.

Natural (inherited) or acquired resistance is one of themain problems
associated with cancer treatment. Natural resistance refers to the initial
unresponsiveness of a tumor to a given drug, and acquired resistance
refers to the unresponsiveness that emerges after initial successful
treatment.

There are three basic categories of resistance to chemotherapy:
kinetic, biochemical, and pharmacologic. Cell kinetics and resistance is
a particular problem with many human tumors because certain cells
are in a plateau growth phase with a small growth fraction. Strategies
to overcome resistance due to cell kinetics include: reduction of the
bulk of tumors with surgery or radiotherapy; using combinations to
include drugs that affect resting populations (G0 cells); and scheduling
of drugs to prevent phase escape or to synchronize cell populations
and increase tumor cell elimination. How cells become resistant
biochemically is only partially understood. The major mechanisms of
biochemical resistance include the inability of a tumor to convert the
drug to its active form, the inactivation of a drug, and the upregulation
of the tumor enzymatic repair systems that counteract the tumoricidal
action. Cells in this resistance category can decrease drug uptake,
increase efflux, change the levels or structure of the intracellular target,
reduce intracellular activation, increase inactivation of the drug, or
increase the rate of repair of damaged DNA. Another example is
multidrug resistance (MDR), also called pleiotropic drug resistance,
which is a phenomenon whereby treatment with one agent confers
resistance not only to that drug andother(s) of its class but also to several
other unrelated agents. Pharmaceutical resistance can result from poor
tumor blood supply, poor or erratic absorption, increased excretion or
catabolism, and drug interactions, which all lead to inadequate blood
levels of the drug. One other example of pharmacologic resistance is
poor transport of agents into certain body tissues and tumor cells. For
instance, tumors of the central nervous system (CNS) or ones that
metastasize there should be treated with drugs that achieve effective
antitumor concentration in the brain tissue and are also effective against
the tumor cell type being treated.
Novel nanomedicines offering flexible and fast drug design and
production based on tumor genetic profiles can be created making
drug selection for personalized patient treatment much more rational
and effective. This review aims to demonstrate the advantages of
nanomedicine in overcoming cancer drug resistance.

2. Classes of nanodrugs used to treat cancer and their current
clinical status

Nanomedicines are being investigated for their use in anticancer
therapies to improve drug delivery, increase the efficacy of treatment,
reduce side effects, and overcome drug resistance. The number of
studies published under the research topics of “nanomedicine,”
“nanoscience,” and “nanotechnology” has increased exponentially
over the past decade with a slight decline in 2012, as shown in Fig. 1.
As more nanostructures were discovered and their potentials were
better understood, the number of publications increased and reached
its peak in 2011. Currently, the knowledge base of nanoparticles is still
expanding with an emphasis on safety and efficacy.

2.1. Lipid-based nanoparticles (liposomes)

Liposomes, as shown in Fig. 2A, are lipid based vesicles that have the
ability to carry payloads in either an aqueous compartment or
embedded in the lipid bilayer. The delivery of these liposomes to cancer
cells often relies on passive targeting and is based on the enhanced
permeability and retention (EPR) effect, for which a leaky tumor
vasculature is necessary [1]. A number of liposomes with the addition
of targeting ligands, such as the mAb 2C5 with Doxorubicin (Doxil®)
[2] and an anti-HER2 mAb with Paclitaxel [3], are in the preclinical
phase, whereas others are already undergoing clinical trials. Advances
to liposome design have also been made with the addition of
polyethylene glycol (PEG, known as stealth liposomes), which increases
circulation time, as well as strategies for a triggered release of the drug
once internalized, such as hyperthermia, as is used in ThermoDox®,
which is currently in Phase III trials [1,4,5].

2.2. Polymer-based nanoparticles and micelles

Polymeric nanoparticles, as shown in Fig. 2B, can either covalently
attach to or encapsulate therapeutic payloads. Biodegradable synthetic
and/or natural polymers are used. Through self-assembly after mixing
the drug with the polymers, capsules may be formed spontaneously
(micelles, Fig. 2C) or by emulsion techniques as nanosized droplets.
These nanospheres contain a solid core that is ideal for hydrophobic
drugs, are highly stable, have a relatively uniform size, and are capable
of controlled drug release. For water-soluble polymers, drugs can be
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Fig. 1. The number of references under the research topics of “nanomedicine,” “nanoscience,” and “nanotechnology” from 1996 to 2012. The number of publications peaked in 2011 with
7279 and saw a slight decline in 2012 with 7011 publications.
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covalently bound to increase circulation time and limit toxicity
to normal tissues [6–9]. Polymers have been refined with the addition
of PEG to avoid opsonization and increase circulation time, the use
of targeting ligands, and theuse of pH-sensitive or hypothermic polymer
conjugates. Currently, two polymers, polylactide (PLA) andpoly(lactide-
co-glycolide) (PLGA), are polymeric biodegradable nanoplatforms that
are used for synthesis of FDA-approved nanomedicines, whereas many
others are undergoing clinical trials [7].

2.3. Dendrimers

Dendrimers are well-defined globular structures of multi-branched
polymers that are characterized by a central core, branches of repeating
units, and an outer layer of multivalent functional groups, as shown in
Drug Targeting Agent Ima

D) Dendrimer E) Carbon Nan

B) Polymer-CoA) Liposome

Fig. 2. An illustrative representation of different classes of third-generation multiple functiona
imaging moieties.
Fig. 2D. These functional groups can electrostatically interact with
charged polar molecules, whereas the hydrophobic inner cavities can
encapsulate uncharged, non-polar molecules through a number of
interactions. The outer functional groups also allow for controlled
delivery of the drug by modifications that only release in a certain
pH or when encountered by specific enzymes; targeting molecules,
such as the RGD peptide or mAbs are also used. Further, covalent
attachment of hydrophobic drugs such as Doxorubicin and Paclitaxel
is frequently employed [6,7,10]. Dendrimers, such as poly(glutamic
acid)-b-poly(phenylalanine) copolymers, can also be self-assembled
into micelles to deliver drugs in their core. Multiple clinical trials are
ongoing using amphiphilic diblock copolymer forming micelles to
deliver Paclitaxel to treat breast, non-small cell lung cancer, and
advanced pancreatic cancer [11].
ging Agent Linker

otube

C) Micelle 

F) Gold Nanoparticle

njugate

l nanodrugs and their potential moieties for targeting, PEGylated for resistance and with
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2.4. Carbon-based nanoparticles

Carbon nanotubes have the ability to enter cells using “needle-like
penetration” and deliver molecules into the cytoplasm. These
nanoparticles are equipped with a large surface area providing for a
number of attachment sites for potential targeting ligands, as well as
an internal cavity that can contain either therapeutic or diagnostic
agents, as shown in Fig. 2E. These carbon nanotubes also have electrical
and thermal conductivity, whichmay prove to be useful in future cancer
therapy applications such as thermal ablations. The length and diameter
of these nanotubes can be crucial for avoiding an inflammogenic effect,
making smaller and thicker nanotubes more desirable and a focus on
biodegradability necessary. Current approaches to nanotubes include
the incorporation of drugs such as Doxorubicin and Paclitaxel, nucleic
acids including antisense oligonucleotides and short interfering RNAs
(siRNAs), [12] and the use of nanotubes as contrast agents for imaging.
To our knowledge, no clinical trials have begun using carbon nanotubes
for the treatment or diagnosis of cancer, mainly because of toxicity
concerns and their similarity to asbestos fibers [7].
2.5. Metallic and magnetic nanoparticles

Gold nanoparticles, as shown in Fig. 2F, can be used to deliver small
molecules such as proteins, DNA, or RNA. The gold core is considered to
be non-toxic and the therapeutic payload can be forced to be released
from the conjugate due to their photo-physical properties. Drugs can
easily be attached through ionic or covalent bonds, or through adhesion.
Like for many nanodrugs, PEG can be attached to the surface of metallic
nanoparticles to increase stability and circulation time, in addition to
other targeting agents [11]. Sodium citrate can also be used as a
reducing agent for gold formation, and a stabilizer to avoid aggregation
during synthesis [13]. Currently, one phase I clinical trial using tumor
necrosis factor α (TNFα) bound to colloidal gold is ongoing to treat
advanced solid tumors such as sarcomas and melanomas [14].
Superparamagnetic iron oxide (Fe3O4) nanoparticles are also under
development and require the use of local hyperthermia or oscillation
strategies to deliver conjugated drugs. Magnetic fields can also be
used to guide the drug to the intended target area within the body.
Unfortunately, their potential clinical use is not presently understood
due to the acute in vivo toxicity [15]. Moreover, this class of particles is
being thoroughly investigated for their use in imaging and theranostics
(diagnostics and therapy), but this is beyond the scope of the review.
ATP ADP

ABC transporters

Phospholipid bilayer

Chemotherapeutic drug

Fig. 3. Upregulation of ABC transporters on cancer cell membranes effectively removes
chemotherapeutic drugs and cytotoxic agents as a means of drug resistance.
3. Mechanisms of drug resistance

3.1. Multidrug resistance mechanisms

Multidrug resistance (MDR) is the term used to describe the
resistance of cancer to related and unrelated classes of chemotherapeutic
drugs and is currently one of the biggest challenges to overcome. Initially,
patientsmay have either a partial or complete response to the first line of
treatment but eventually exhibit cancer progression or recurrence. With
repeated treatment, tumors often become resistant not only to the
specific chemotherapeutic agent being employed, but cross-resistant to
both similar and structurally unrelated classes of cytotoxic drugs
[16–18].

3.1.1. Efflux pump-mediated MDR
The increased activity of drug efflux occurs primarily through the

ATP-binding cassette (ABC) superfamily. ABC transport molecules are
typically expressed on the plasma membrane and on the membrane
of cellular vesicles and are used to extrude toxins and other foreign
substances from the cell. The ABC transporters are transmembrane
proteins that use the energy from ATP hydrolysis to shuttle substrates
across the membrane. Thirteen of the 48 known ABC transporters
contribute to MDR [16]. The first discovery was the mdr 1 gene that
encodes the high molecular weight P-glycoprotein (P-gp/ABCB1),
which is amplified in drug-resistant cells and leads to a decrease in
drug accumulation [19]. Other proteins including multidrug resistance
proteins (MRPs/ABCC) and breast cancer resistance protein (BCRP/
ABCG2) are also upregulated in cancer cells and effectively remove
cytotoxic agents including Doxorubicin [20–23] and Paclitaxel [24–27]
greatly decreasing their concentration within tumor cells, as shown in
Fig. 3 [28].

3.1.2. Efflux pump-independent MDR
Additional mechanisms of MDR include decreased drug influx,

activation of DNA repair, metabolic modification and detoxification,
and altered expression of apoptosis-associated proteins and tumor
suppressors, namely mutations in p53 [16]. Normal cells have several
repair mechanisms including base excision repair for single strand
breaks, homologous recombination and non-homologous end joining
repair for double strand breaks, and nucleotide excision repair for
mismatches, insertions, and deletions. These mechanisms are used to
prevent the transmission of damaged DNA and to avoid malignant
transformation [29]. If any of these mechanisms fail, apoptosis is
activated to eliminate the damaged cells. However, DNA damage
response mutants predispose cells to becoming cancerous and affect
response to chemotherapy. Cell cycle arrest does not occur when
mutations, chromosomal rearrangements, and epigenetic changes are
present, even when induced by anticancer therapies that induce DNA
damage to cause cytotoxicity [30]. Further, the anti-apoptotic, pro-
survival regulator Bcl-2 [31] and nuclear factor kappa B (NF-κB), a
transcription factor that controls genes that suppress apoptotic
responses [32], are frequently overexpressed in cancer cells and lead
to increased survival.

3.2. Tumor cell heterogeneity, clonal selection and expansion as a potential
source of drug resistance

It is accepted at the current stage of cancer biology that tumors at the
same clinical grade and histological status are genetically heterogeneous
and contain subclonal populations [33]. A large-scale whole-exome
sequencing study of 160 chronic lymphocytic leukemia (CLL) patients
revealed 20 mutated genes and 5 cytogenetic alterations as driver
mutations that spanned 7 core signaling pathways. Clonal mutations
(drivers) were found in the majority of tumor cells and represent an
early event, whereas subclonal mutations were only found in a small
number of leukemic cells, representing a later transformation. In patients
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who had undergone chemotherapy, a significantly higher number of
subclonal (but not clonal) mutations were found indicating that
subclonal mutations are increased with treatment. This may be due to
the removal of dominant clones by cytotoxic treatment and a subsequent
expansion of subclones, as shown in Fig. 4A. Two time points of whole-
exome sequencing for 18 of these patients was also performed. In 10 of
the 12 patients that underwent treatment between time points, clonal
expansion was evident. Conversely, 5 of the 6 untreated individuals
remained at equilibrium between populations over several years. For
the treated patients that did exhibit subclonal evolution, the somatic
driver mutations that expanded were detectable at the first time point
and thus could potentially be anticipated in association with treatment
[34]. The emergence of resistant subclones following treatment may
allow for tumor expansion and recurrence. The ability to target multiple
clonal and subclonal mutations simultaneously is a promising strategy
for nanomedicine due to the number of attachment sites present
on certain classes of nanoplatforms, which are used in nanodrug
development.

3.3. Cancer stem cells (CSCs) and drug resistance

Cancer stem cells, also known as tumor initiating cells, are cells that
have the capacity to self-renew and to give rise to the heterogeneous
lineages that are found within a tumor [35]. Evidence for cancer stem
cells dates back to 1971 when it was shown that only 1 in 100 to 1 in
10,000 mouse myeloma cells were able to form colonies [36]. This was
confirmed 6 years later in humans when only 1 in 1000 to 1 in 5000
lung cancer, ovarian cancer, or neuroblastoma cells formed colonies in
soft agar [37]. However, a fundamental question on whether all cancer
cells had a low probability to behave as stem cells or if only a small
subset had the ability to proliferate rapidly and form tumors remained
[38]. One essential study to answer this question was performed in a
group of acute myeloid leukemia (AML) patients in 1997. Dick et al.
showed that only a very small subset of cells that were CD34+CD38−

had the ability to cause AML in NOD/SCID mice, indicating that
subpopulations of cells had differential abilities to proliferate and
transfer disease [39]. Tumor initiating cells were later isolated in breast
carcinomas, and itwas shown that only a subset of cells could be serially
passaged and gave rise to both phenotypically identical and diverse cells
consistent with those found in the initial tumor [40]. Cancer stem cells
have also been isolated from medulloblastoma, glioblastoma [41],
ependymoma [42], colon cancer [43,44], chronic and acute myeloid
Population 1

Population 2

Population 3

Population 4

A) Tumor heterogeneity B) T
       s

Fig. 4. Two alternate drug resistancemechanisms. A. A heterogeneous population of cancer cells
eliminatedwhile a subpopulation, Population 4, emerges as a dominant clone (bottom right). B.
left. After administration of treatment, only the resistant cancer stem cells are seen (top right
populations present before treatment (bottom right).
leukemia [45], pancreatic cancer [46], and head and neck squamous
cell carcinomas [47]. However, the origins of these CSCs, i.e. from
normal stem cells versus progenitor cells, is still not clear and may
vary from tumor to tumor or by tumor type [48]. One key feature of
CSCs is the role that they play in resistance to therapy and recurrence.
Because chemotherapeutic drugs typically affect frequently dividing
cells, CSCs, which are primarily quiescent and have active DNA repair
mechanisms, are not harmed. They also express high levels of specific
ABC drug transporters, namely ABCB1, ABCG2, and ABCC1, which are
known MDR genes in tumor cells, allowing for increased survival.
Whereas chemotherapy may be effective against committed tumor
cells, the resistant CSCs may survive and repopulate the tumor with
self-renewing cells and variably differentiated offspring, as shown in
Fig. 4B [49]. The ability to eradicate these CSCs with specific drugs is
crucial to prevent tumor repopulation and recurrence.
3.4. Activation of alternate receptors and pathways in cancer as a response
to treatment

Therapeutic approaches based on molecular pathways are currently
targeting commonly upregulated pathways in order to prevent
compensatory pathways. Small molecular inhibitors and monoclonal
antibodies show promise in clinical trials and during initial cancer
treatment, but resistance is inevitable. A number of intrinsic and
acquired resistance mechanisms have been well studied. The activation
of alternate receptors, such as c-met and insulin-like growth factor 1
receptor (IGF-1R), in response to anti-epidermal growth factor receptor
(EGFR) therapies, is a common adaptation that cancer cells exhibit.
The use of other tyrosine kinase receptors allows the cells to bypass
the effects of the drug and continue anti-apoptotic, proliferative
downstream signaling, in this case, the activation of the phospho-
inositide 3-kinase (PI3K) pathway. Antiangiogenic strategies based on
VEGFR modulation have also shown resistance through multiple
mechanisms. An initial response to anti-VEGF therapy often results in a
hypoxia-triggered upregulation of non-VEGF angiogenic factors, such
as those in the fibroblast growth factor (FGF) family, and a recurrence
of angiogenesis [50]. Thus, drugs that only target one pathway can lead
to the reinforcement of alternate pathways that are beneficial to
the tumor and may contribute to MDR. Designing nanomedicines that
can target multiple pathways at once is ideal for reducing this form of
MDR.
Cancer Stem Cells

Population 1

Population 2

Population 3

umor heterogeneity with cancer 
tem cells

is shown in the top left. Following administration of treatment, Population 3 is completely
A heterogeneous population of cancer cells, including cancer stem cells, is shown in the top
). After time, the cancer stem cells are able to repopulate the tumor with all previous cell
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3.5. Intrinsic and acquired mutations

Intrinsic mutations have been shown to have a large impact on
response to therapy. Somatic mutations resulting in a gain-of-
function activation of the tyrosine kinase domain of EGFR in a cohort
of non-small cell lung cancer (NSCLC) were discovered in 35% of the
enrolled patients and were shown to significantly impact response
rates to gefitinib (55%) [51]. In-frame deletions in exon 19 and single
missense mutations account for approximately 90% of the EGFR
mutations, and result in an increased sensitivity to both small
molecule inhibitors, gefitinib and erlotinib [52–54]. Nearly 70% of
patients with a mutation (found in 10–25% of all NSCLC patients)
respond to therapy compared to only a 10% response rate when no
mutations are present [55,56]. However, acquired resistance to
therapy is associated with a secondary mutation in exon 20 that
leads to substitution of methionine for threonine at position 790M
(T790M) in the kinase domain, preventing the binding of erlotinib
[57]. Subsequent studies of different patients with acquired T790M
mutations revealed that this mutation was not present in untreated
tumor samples. Further, the resistance was not found to be
associated with KRAS mutations that can cause primary resistance
and transfection of cells in vitro conferred resistance to gefitinib
and erlotinib in normally sensitive cells [58]. An acquired mutation,
S492R, in the EGFR ectodomain has also been identified in colorectal
cancer patients following treatment with cetuximab that prevents
the binding of the antibody. Interestingly, it does not affect the
binding ability of a different anti-EGFR mAb, panitumumab [59].
Together, these mutations, whether intrinsic or acquired, allow
these cancer cells to avoid the effects of cytotoxic agents and to
survive. Thus, nanodrugs designed to knockdown both wild-type
and mutated genes are necessary to overcome these compensatory
mechanisms. Antisense oligonucleotides attached to polymalic acid
biopolymer that block wild-type EGFR and mutated EGFRvIII
receptor synthesis have been successfully used to treat triple
negative breast cancer [60] employing a strategy based on acquired
mutations by the MDA-MB-468 breast cancer cell line.

3.6. Tumor microenvironment and its contribution to MDR

Solid tumors are found within a microenvironment that is
comprised of cancer cells and stromal cells (including fibroblasts and
immune cells), embedded in an extracellular matrix. This stroma can
affect malignant transformation, plays a role in tumor cell invasion
andmetastasis, and has an impact on drug sensitivity. The tumor stroma
has an increased number of fibroblasts (and also myofibroblasts) that
synthesize growth factors, chemokines, and adhesion molecules. A
representative figure of the complexity of this microenvironment is
shown in Fig. 5. The interactions between the cancer cells and these
factors can affect the sensitivity of the cells to apoptosis and their
response to chemotherapy, and is known as cell adhesion-mediated
drug resistance (CAM-DR) [61]. Adhesion of myeloma cells to
fibronectin throughβ1 integrins,whose activation is known to influence
apoptosis and cell growth, results in CAM-DR. The adhesion leads to a G1
arrest associated with increased p27kip1 expression and inhibition of
cyclin A and E kinase activity; disruption of this interaction returns the
tumor cells to a drug-sensitive state [62]. Tumor cells also form
polarized, three-dimensional structures through interactions with the
basement membrane and ligation of β4 integrins, which regulate
polarity and NF-κB activation. These cells become resistant to
apoptosis-inducing agents, likely due to the effects on NF-κB [63]. The
pH of the tumor microenvironment can also influence the effectiveness
of cytotoxic drugs and may inhibit the active transport of some
therapeutics [61,64]. The extracellular pH in tumors is acidic and the
intracellular pH is neutral to basic. Thus, weakly basic drugs, such as
Doxorubicin, are protonated and have reduced cellular uptake [65].
Weakly acidic drugs, such as cyclophosphamide, tend to concentrate in
neutral extracellular space [66]. Drug distribution is also affected by
the composition and organization of the extracellular matrix [67].
Tumors with a well-organized collagen network prevent some high-
molecular weight drugs from penetrating when compared to a poorly
organized collagen structure [68]. Further, the tumormicroenvironment
can create hypoxic situations in which tumor tissue has a diminished
oxygen supply that can contribute to MDR [69]. These areas result
from abnormal angiogenesis or from the compression/closing of blood
vessels by cancer cells [70]. This reduced blood flow may lower
concentrations of chemotherapeutics in hypoxic cells [71]. In addition,
hypoxia can lead to the activation of genes associatedwith angiogenesis,
survival, and glycolysis through the transcription factor hypoxia-
inducible factor 1 (HIF-1) and may contribute to a drug-resistant
phenotype [61,72]. HIF-1 transcriptional activity also enhances
metabolism, proliferation, invasion, and metastasis by the tumor cells.
These hypoxic cells often revert to aerobic metabolism for the
production of ATP (the Warburg effect) [73,74] to maintain enough
energy to continue to thrive. Interleukin IL-17 is the major effector
cytokine of TH17 cells, a subtype of adaptive immunity cells. Tumors
resistant to treatment with antibodies to VEGF were rendered sensitive
in IL-17 receptor (IL-17R)-knockout hosts deficient in TH17 effector
function. Furthermore, pharmacological blockade of TH17 cell function
sensitized resistant tumors to therapy with antibodies to VEGF. These
findings indicate that IL-17 promotes tumor resistance to VEGF
inhibition, suggesting that immunomodulatory strategies could improve
the efficacy of anti-angiogenic therapy [75].

Overall, the tumor microenvironment can often provide a physical
and chemical network to allow the cancer cells to survive, proliferate,
and avoid cytotoxic agents. Thus, the blockage of cancer specific
extracellular matrix protein synthesis may lead to physiological
normalization of tumor tissue structure (vascular supply) and potential
reduction of resistance to conventional chemotherapy [76,77].
Modulation of various aspects of the tumor microenvironment may
prove to be an effective strategy in the destruction of the tumor support
system that allows cancer cells to survive.

4. Evaluation of nano-drug deliverymechanisms and their potential
moieties to treat MDR cancers

4.1. Passive transport and enhanced permeability and retention (EPR) effect

A number of different nanoparticles rely on the characteristics of the
tumor for drug accumulation and thus are considered to be passively
targeted. During tumor formation, rapid and imperfect angiogenesis
occurs, creating leaky blood vessels. Further, these tumors have
dysfunctional lymphatic drainage, which also results in drug
accumulation [78]. Nanoparticles take advantage of this EPR effect,
which allows these drug carriers to accumulate inside of the tumor.
However, it has been shown that there are inconsistencies in vascular
pore size both within a tumor and between different tumor types.
This can lead to an unpredictable accumulation of the drug in only
certain areas of the tumor, or possibly not at all. The EPR effect is
also influenced by the surrounding stroma, the location and size of
the tumor, the amount of infiltration by macrophages (which can
internalize liposomes resulting in macrophage toxicity), patient
characteristics such as age and gender, and additional medications.
Currently, the available clinical data relate to passively targeted
liposomes, but a number of actively targeting nanoparticles are also in
clinical development [79]. Due to the unpredictability of the EPR effect
and the ineffectiveness against non-solid tumors such as leukemia, a
greater focus on targeted therapy may be necessary in the future.
Despite the fact that the EPR-based targeting is only passive and may
be unpredictable, nanodrugs consistently have a better accumulation
within a tumor than free drugs including Paclitaxel [80], rapamycin
[81], thiostrepton [8], Doxorubicin [82], and Salinomycin [83], among
countless others.
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4.2. The addition of polyethylene glycol (PEG) to increase blood circulation
time

The conjugation of polyethylene glycol (PEG) to nanoparticles has
been shown to increase circulation time in vivo. A number of potential
mechanisms have been proposed to explain this observation although it
is still not completely understood. These mechanisms include: reduced
opsonization, promotion of the adsorption of proteins which may mask
the particle (dysopsonization), aggregation prevention, steric hindrance
to block the binding of reticuloendothelial system (RES) cells, which are
responsible for the clearance of nanoparticles, and stabilization of lipid
layers. Recently, Gottstein et al. used a mathematical model combined
with high throughput flow cytometry and quantitative confocal
microscopy to confirm a general trend of reduced internalization by RES
cells [84]. Since chemotherapeutic agents are typically low in molecular
weight, they are rapidly cleared from the body and often suffer from a
short half-life in blood. The need to improve drug accumulation in the
tumor site during treatment, especially for resistant tumors, relies heavily
on the stability of the drug in plasma, which is greatly increased with
nanomedicines. The first PEGylated nanoparticle approved in the United
States and Europe is liposomal Doxorubicin (Doxil®/Caelyx® [PLD]) for
the treatment of Kaposi's sarcoma [85], recurrent ovarian cancer [86]
and multiple myeloma [87], with additional clinical trials ongoing for
metastatic breast [88], and hormone refractory prostate cancer [89]. The
conjugation of PEG to liposomes [1,90], polymer-based nanoparticles
and micelles [7,91], dendrimers [92], gold nanoparticles [11,13], and
superparamagnetic iron oxide [93] is now a common practice to improve
circulation time and avoid clearance. However, it is important to note that
there are still possible negative side effects including an immunological
response through complement activation, toxicity of side products, and
possible accumulation of PEG due to its non-biodegradability [94].

4.3. Active targeting agents to increase drug accumulation and overcome
MDR

4.3.1. Antibodies and their fragments specifically target cancer cells
A number of mAbs have been approved for the treatment of various

cancers including rituximab (Rituxan) for non-Hodgkin's lymphoma
[95], the anti-HER2 trastuzumab (Herceptin) [96], the anti-VEGF
bevacizumab (Avastin) to inhibit angiogenesis [97], and the anti-EGFR
cetuximab [98], along with many others that are either already
approved or are undergoing clinical trials. These therapeutic antibodies,
as well as targeting antibodies such as 2C5 [2] and anti-transferrin
receptor mAbs [99–101], can be conjugated to various nanoparticles
to improve efficacy and increase binding affinity to the cancer cells.
The increased specificity results in a higher accumulation of drugwithin
the tumor rather than other vital organs, reducing toxicity and making
the drug better equipped to overcome MDR. The use of whole
antibodies is considered advantageous due to the presence of two
binding sites and increased stability during long-term storage.
However, the intact Fc domain may also bind to the Fc receptors on
normal cells causing an activated signaling cascade that may result in
increased immunogenicity [102]. Thus, the specificity of the targeting/
therapeutic antibody is crucial to avoid toxicity to normal tissue.

4.3.2. Nucleic acid aptamers (single strandedDNA or RNA oligonucleotides)
Aptamers are nucleic acid ligands that can bind with high affinity

and specificity. Strategies have been developed to isolate and enrich
cancer cell-specific internalizing aptamers, and they have been
successfully conjugated to a number of different nanoparticles. They
are considered to have high affinity and low immunogenicity but
some drawbacks include lack of flexibility, length (typically 75–100
nucleotides), and in vivo nuclease stability. Currently, all nanoparticles
using aptamers as target agents are still in the preclinical phase [103].

4.3.3. Receptor ligands (peptides) as non-immunogenic targeting agents
The conjugation of peptides as targeting agents is favorable due to

their small size, the ease of synthesis, and their typical non-
immunogenicity. Tumor homing peptides include those with an RGD
sequence motif, i.e. a binding motif for integrins, such as αvβ3, which
is specifically expressed on tumor endothelia [104], and those that
have a form of aminopeptidase N (CD13) that binds peptides with the
NGR motif. Delivery of TNFα using both RGD and NGR peptides has
shown to decrease the effective dose by up to 1000-fold [105] and an
NGR-hTNF peptide is currently in phase III clinical trials [106]. Further,
these peptides may not only play a role in homing but in tumor-
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penetration, as is the case with iRGD, because they allow for the exit
from blood vessels and can activate a tissue-specific transport pathway
[105], which is a big advantage in treating resistant tumors. Despite
their potential, it is important to note that peptides such as RGD can
bind to other integrins on normal tissue making specificity of the
peptide a crucial consideration [102]. Moreover, most peptides on
nanoconjugates rely on polyvalency to achieve optimal cell binding.
Polyvalency depends on geometry and density of targeted receptors
that are, however, difficult to mirror on nanoparticles [87].

4.4. Enhanced endosomal escape to improve efficacy of the drug once
internalized

Nanoparticles have been shown to be internalized through clathrin-
dependent and clathrin-independent endocytosis depending on the cell
type and the composition of the cell surface. The addition of antibodies
and targeting ligands is aimed at increasing receptor-mediated
endocytosis. However, once inside the cell, these nanoparticles may
either fuse with lysosomes or be recycled back to the cell surface,
making endosome escape a key limitation [107]. To overcome this
barrier, Pittella et al. synthesized a nanocarrier system composed of
calciumphosphate and comprising PEG and charge-conversion polymer
(CCP) to deliver siRNA. The PEG-CCP is an endosomal escape unit that
induces endosomal membrane destabilization by producing polycation
through degradation of the flanking cis-aconitylamide of CCD in the
acidic endosome environment. Rapid endosomal escape was confirmed
using confocal laser scanning microscopy, and ~80% VEGF mRNA
knockdown in pancreatic cancer cells was achieved [108]. Ding et al.
also took advantage of the acidic endosome environment and
conjugated H2N-Leu-Leu-Leu-OH (LLL) to our polymalic acid based
nanopolymer (P/LLL). At physiological pH 7.4, the P/LLL conjugates
were inactive but at pH 5–5.5 (the range of acidification in late
endosomes and lysosomes), activity was upregulated and membrane
disruption allowed for endosomal escape of the nanoconjugate [76].
Biological activity of nanoparticles often relies heavily on the ability to
escape the endosome and enter the cytosol, making endosome escape
units an area not to be overlooked.

5. Specific resistance mechanisms overcome by nanomedicine

5.1. Evasion and down-regulation of drug efflux pumps to treat MDR
tumors

It is agreed that chemotherapeutics bound as nanoconjugates or
encapsulated into nanoparticles evade the capture of ABC drug efflux
pumps. This is so because the chemically bound or encapsulated drugs
are not physically recognized as substrates by the ABC efflux systems.
After crossing the efflux containing membranes on endosomal delivery
pathway, the free chemotherapeutics are released into the perinuclear
region of the cytoplasm and can unfold their activities. Alternate
methods of entry into the target cell uses virus-derived TAT peptides,
non-specific cell penetrating peptides that interact strongly with
phosphate head groups of phospholipids at both sides of the lipid
bilayer, followed by insertion of charged side chains that form a
transient pore, which allows the translocation of the TAT peptides.
Small molecules attached to peptides can be internalized through this
mechanism, whereas TAT-polymer conjugate can be taken up through
energy-dependent endocytosis or macropinocytosis [18]. A novel
polymericmicelle consisting of Doxorubicin and two block copolymers,
one conjugated to TAT, has been produced. The micelle surface hides
the TAT during circulation and only exposes it at a slightly acidic
tumor extracellular pH to allow for TAT-induced internalization into
cancerous cells. The micelle core then disintegrates in the early
endosomal pHof the cells to release Doxorubicin. Further, the ionization
of the block copolymers aids in disrupting the endosomal membrane,
allowing the drug to accumulate in the cytosol. Regression of tumors
was apparent in xenograft models of human ovarian tumor drug-
resistant A2780/AD, human breast tumor MCF-7, human lung tumor
A549, and human epidermoid tumor KB using this drug as a non-
specific targeting agent [109]. Human gliomas are also known to have
enhanced activity of drug efflux pumps. The multidrug-resistance-
associated protein (MRP), an ABC membrane transporter not
dependent on P-glycoprotein, is highly expressed in the severely drug
resistant glioma cell line T98G (4.5 fold higher than drug-sensitive
U87MG) [110]. Currently, the most effective strategy to treat glial cells
is temozolomide (TMZ), a pro-drug releasing a DNA alkylating agent,
combinedwith radiation. However, TMZ is toxic, has severe side effects,
and frequently encounters tumor drug resistance. Free TMZ, which has
a short half-life of 1.8 h, proved to be ineffective in vitro against the
resistant T98G cell line, as well as two human breast cancer lines
MDA-MB-231 and MDA-MB-468, although U87MG was sensitive. A
multifunctional targetable nanoconjugate of TMZ hydrazide was
synthesized using a poly (β-L-malic acid) platform conjugated with
the targeting mAb to human transferrin receptor (TfR) for receptor-
mediated endocytosis, LLL for pH-dependent endosomal membrane
disruption, and PEG for protection. The conjugated TMZ had an
increased half-life of 5–7 h. Delivery of PMLA-TMZ conjugate to T98G,
MDA-MB-231, and MDA-MB-468 was able to effectively overcome the
resistance of free TMZ and significantly reduced cell viability as shown
in Fig. 6. The greater drug accumulation was due to the avoidance of
the drug efflux pump mechanism via receptor-mediated endocytosis
[111]. In addition to T98G, the human glioblastoma cell line U251 is
known to have MDR due to the high expression of P-glycoprotein and
other ABC transporters. Another version of PMLA containing PEG, with
Doxorubicin conjugated via pH-sensitive hydrazone linkage, was able
to effectively inhibit growth of U251 more than Doxorubicin alone
due to the modified drug uptake mechanism that evaded drug efflux
pumps [112].

Direct targeting of the upregulated P-glycoprotein while simul-
taneously treating with anti-cancer therapeutics is yet another strategy
that nanomedicine can employ. The use of P-glycoproteins inhibitors is
an attractivefield but has unfortunately resulted in numerous failures in
the clinic to date. Inhibitors including verapamil, a calcium channel
blocker, and cyclosporine, an immunosuppressant, are actually substrates
for P-glycoprotein and compete for efflux with the chemotherapeutic
drugs. Their lack of specificity requires a large dose to achieve clinical
inhibition and thus results in toxicity. Numerous modifications of these
inhibitors have appeared as promising candidates, but clinical trials
continue to fail [113]. However, the use of these molecules in relation
to nanomedicines is still an attractive strategy due to increased targeting
and accumulation. For example, Wu et al. used a liposome co-
encapsulating Doxorubicin and verapamil and conjugated to transferrin,
to effectively overcome MDR in K562 leukemia cells [114]. Another
group encapsulated curcumin, known as P-glycoprotein pump inhibitor,
and Paclitaxel in a nanoemulsion of flaxseed oil to effectively treat wild-
type and drug resistant SKOV3 ovarian tumor cells [115]. Further,
liposomal anti-MRP-1 and anti-Bcl2 siRNA in combination with
Doxorubicin were used to suppress pump and non-pump mediated
cellular resistance and to cause death in MDR lung cancer cells [116].
Finally, stealth liposomes containing PSC 833 (Valspodar, a cyclosporin
A analog that is more effective) and Doxorubicin were able to reverse
MDR in the Doxorubicin-resistant human breast cancer cell line T47D/
TAMR-6 [117].

5.2. Targeting cancer stem cells to overcome MDR and prevent recurrence

Cancer stem cells are more resistant to treatment and conventional
chemotherapeutics often fail to destroy them. CSC resistance is
achieved through increased Wnt/β-catenin and Notch signaling, high
levels of ATP cassette reporters, altered DNA repair mechanisms, and
slow proliferation rate [118]. A study of osteosarcoma cell lines showed
that an anti-cancer drug Salinomycin could suppress tumor cells in vitro
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and in vivo by targeting CSC, potentially through the Wnt/β-catenin
signaling pathway [119]. Zhang et al. loaded Salinomycin on PEGylated
polymeric micelles to effectively target CSC (CD44+/CD24−) isolated
from breast cancer cell line MCF-7, and these micelles were more
effective than Salinomycin alone in vivo. A combination treatment
with octreotide-modified-Paclitaxel-PEG polymeric micelles was
shown to enhance the binding to somatostatin receptors, which
are enhanced in many cancers, to eradicate both tumor cells and
CSC in vivo via receptor-mediated endocytosis [83]. The knockdown of
other CSC related pathways including tissue transglutaminase (TG2)
by gene silencing using liposomal anti-TG2 siRNA combined with
gemcitabine to treat Panc-28 pancreatic cancer cells was efficacious in
reducing tumor growth and preventing metastasis [120]. Additional
stem cell markers including CD44 [38,121] and CD133 [121] have
been associated with drug resistance andmay serve as potential targets
for future nanodrugs to eliminate CSCs and prevent recurrence.

5.3. Preventing the cross talk of cancer cells and their microenvironment

Prevention of the cross talk between cancer cells and supporting
stroma and vasculature, which promotes cell growth and prevents
apoptosis, is an attractive strategy for overcoming resistance to
therapy. Mature B-cell malignancies are known to interact via CXCR4
signaling, a G-coupled protein receptor, found on hematopoietic and
epithelial cancer cells. Stromal cells located in the bone marrow
microenvironment secrete stromal cell-derived factor 1 (SDF-1/
CXCL12), the ligand for CXCR4. This signaling recruits the cancer cells to
the bone marrow where they receive additional growth and drug
resistance signals. Antagonists of CXCR4 can disrupt these interactions,
forcing the leukemia cells back into circulation where they are more
susceptible to chemotherapeutic drugs [122], and may serve as crucial
additions on nanodrugs. Attempts to actually target and destroy tumor
stromal cells have also been performed to prevent their contribution to
tumor growth. Tumor-related stromal cells express high levels of
platelet-derived growth factor receptor-β (PDGFR-β). A unique
nanocarrier was made using albumin and a PDGFR-β recognizing cyclin
peptide conjugated to Doxorubicin through an acid-sensitive hydrazone
linkage. In vivo, the drug rapidly accumulated in PDGFR-β expressing
cells in C26murine colon cancer and significantly reduced tumor growth;
free Doxorubicin was not as effective and resulted in loss of body weight
[123]. Interfering with the signaling of the microenvironment or even
potentially eliminating key stromal contributors of anti-apoptotic, pro-
growth, and pro-angiogenesis signals using a targeted nanotherapy are
promising approaches.

5.4. Modifying the immune response to improve treatment of MDR cancers

Immune response modification can occur either through inhibition
or enhancement. Several groups have used siRNA, frequently in cationic
liposomes, to downregulate essential immune transcription factors,
proinflammatory cytokine production, especially TNF-α, or cellular
receptors to prevent cell activation. Both siRNA and various
nanoparticles can elicit an interferon-mediated immune response.
Therefore, it is not only the inhibitory effect of the siRNA, but also the
immunostimulatory effect of the treatment that leads to a reduction in
tumor size [124]. Using siRNAs to elicit an antitumor effect have
shown to be effective. Pertinent examples include using Bcl2-specific
siRNA with 5′-triphosphate ends against melanoma to silence Bcl2
and enhance activity of natural killer cells and interferon through innate
cell activation via Rig-1 [125]; using a toll-like receptor (TLR)9 agonist,
Stat3, siRNA synthetically linked to a CpG oligonucleotide to inhibit
expression in dendritic cells, macrophages and B cells, leading to the
activation of tumor-associated immune cells and an anti-tumor
immune response to mouse melanoma and colon cancer [126]; and
using a bifunctional siRNA complexed with PEGylated liposomes to
inhibit HPV16 E6/E7 mRNA and to activate immune response cells via
TLR7 to effectively inhibit TC-1 tumors in vivo [127]. In addition to the
use of siRNAs, other nanomedicine approaches for altering immune
response have been explored. An antibody cytokine fusion protein
consisting of the immunostimulatory cytokine interleukin-2 (IL-2)
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genetically fused to an antibody specific for human HER2/neu was
covalently attached to a polymalic acid (PMLA) backbone. The drug
also contained antisense oligonucleotides against α4 and β1 chains of
vascular tumor protein laminin-411 to block angiogenesis. Treatment
of immunocompetent mice bearing murine mammary tumors
expressing human HER2/neu resulted in significant increases of IgG1
and IgG2a, indicative of a humoral (TH2) and cell-mediated (TH1)
immune response, as well as decreased tumor growth and longer
survival [128]. With the increase of resistance to a number of
therapeutics, the use of immunostimulatory drugs may prove to be
advantageous in avoiding and overcoming drug resistance in the future.
Table 1
Recent progress in overcoming tumor drug resistance by using nanomedicines.

Tumor type Nanomedicines Ac

Docetaxel (DTX)-resistant human
ovarian A2780/T.
In vitro model

D-α-Tocopheryl polyethylene glycol
1000-block-poly(β-amino ester)
containing micellar nanoparticle

D-
-p
do

H460/TaxR human non-small cell
lung cancer overexpressing P-gp
In vitro model

D-α-Tocopheryl polyethylene glycol
1000 succinate containing micellar
nanoparticle

D-
po
su
(P

Human MCF7/ADR tumor on BALB/c
nude mice.
In vivo breast cancer model

Poly[bis(2-hydroxylethyl)-disulfide-
diacrylate-β-tetraethylenepentamine]–
polycaprolactone copolymer (PBD–PCL)
containing micelle nanoparticles

sh
PB

CD138− CD34− cells isolated from a
human U266 multiple myeloma cell line
inoculated in mice with
non-obese diabetic/severe combined
immunodeficiency
(NOD/SCID).
In vivo model

Polyoxypropylene chain and oleic acid
coated iron oxide NPs

An
PT

Human lung adenocarcinoma A549-Bcl-2 cells
In vitro model

Micelleplexes siR

CAL27 cisplatin-resistant human oral cancer
cells (CAR cells),
In vitro model

PLGA nanoparticles Cu

Human breast cancer MDA-MB-231 cells
inoculated into BALB/c nu/nu mice.
Xenogeneic in vivomodel

PLGA nanoparticles conjugated to
Anti-CD133

An

GS5 glioblastoma multiforme cells (obtained
from human U87GM cells enriched by stem
cells) injected intracranially in rats.
In vivo model

PGLA nanoparticles
Treatment by convection-enhanced
delivery (CED)

Di

Rat F98 glioblastoma inoculated on Fischer
344 rats.
Orthotopic syngeneic in vivo model

PGLA-chitosan Ca
O(

Chemotherapy- and
antiandrogen-resistant mAR+/GPRC6A+
DU-145 human prostate carcinoma cells.
In vivo model

Gold nanoparticles M
an

Human breast MDA-MB-231 and
MDA-MB-468 cell lines, and brain cancer
cell lines U87MG and T98G
In vitro model

Polymer–drug conjugate based on poly
(β-L-malic-acid) platform

Te

Human Lewis lung carcinoma A549 cells
subcutaneously inoculated into
C57BL/6N mice,
In vivo model

Nanoliposomes in combination with
radiation therapy

Ci
Ra

Human SW480 Colorectal cancer.
In vitro model

Human serum albumin-based
anti-Survivin siRNA delivery in
combination with radiation therapy

An
Ra

Human melanoma cells HMV-II; Radiation
resistance under hypoxic conditions.
In vitro model

Liposomes in combination with
radiation therapy

Pi
Ra

Human U251 glioblastoma intracranially
grown in Nu/Nu rats.
In vivo model

Magnetic ferric oxide NP in combination
with radiation therapy

TR
tra
ho
(T
Ga

HMLER (shE-cadherin) human breast cancer
stem cells (BCSCs) inoculated into mice to
treat triple-negative breast cancer.
In vivo model

Multiwalled carbon nanotubes
(MWCNTs) in combination with
photothermal (laser) treatment.

Na
ta
pe
Ph
6. Recent progress in overcoming tumor resistance by
using nanomedicines

Engineering of multifunctional nanodrugs demonstrates new
possibilities to overcoming drug resistance that were not possible
with conventional therapy or combination of different current cancer
treatments. Recent experimental progress in overcoming resistance by
using nanomedicines in vitro and in vivo is summarized in Table 1.
Nanocarriers can display their own anti-drug resistance activity aside
from actions by their cargo. This has been shown for α-tocopheryl
PEG1000 succinate [129,130] and poly[bis(2-hydroxylethyl)-disulfide-
tive groups Action mechanism Ref.

α-Tocopheryl
olyethylene glycol,
cetaxel

Inhibition of P-gp to decrease DTX efflux;
DTX Inhibition of cell division

[133]

α-Tocopheryl
lyethylene glycol 1000
ccinate; paclitaxel
TX), fluorouracil (5-FU)

Inhibition of P-glycoprotein by Tocopheryl
polyethylene glycol 1000 succinate; Inhibition of
cell division by PTX; irreversible inhibition of
thymidylate synthase; synergism of PTX/5-FU.

[140]

RNA to Survivin,
D–PCL, Doxorubicin

Inhibition of: P-glycoprotein; inhibition of
glutathione S-transferase, intercalation into DNA

[137]

ti-ABCG2 antibody,
X

Antibody blocking of ABCG2 to inhibit PTX
resistance; PTX inhibition of cell division

[138,144]

NA to BCl-2, PTX Downregulation of Bcl-2; PTX Inhibition of
cell division

[129]

rcumin, cisplatin Pt-DNA crosslinks;
MDR-1 suppression;
Triggering of Apoptosis

[131]

ti-CD133, PTX Targeting tumor initiating cells CD133+; PTX
inhibition of cell division

[134]

thiazanine iodide (DI) DI displays toxicity towards brain cancer
stem cells

[135,145]

rmustine (BCNU),
6)-benzylguanine (BG)

BCNU for DNA alkylating and crosslinking;
BG for inhibition of O(6)-methylguanine-DNA-
methyl transferase (MGMT)

[130]

ultiple α-Bic- and β-Bic
tiandrogens

Multivalent binding to androgen receptor and to
G-protein coupled receptor (GPRC6A); The
antiandrogens inhibit binding of androgen

[143,146]

mozolomide (TMZ) TMX is a DNA alkylating agent preventing cell
division

[110]

splatin (CDDP),
diation therapy

Cisplatin alkylating and crosslinking DNA;
Sensation to radiation lesions

[136]

ti-Survivin siRNA;
diation therapy

Knocking down of Survivin promotes apoptosis [141]

monidazole (Pmz);
diation therapy

DNA fragmentation and crosslinking sensitizes for
radiation damage

[142]

IAL, a type-II
nsmembrane
motrimeric protein
NF gene superfamily)
mma irradiation

Radiation sensitizes for TRAIL induced apoptosis;
Sensitization of TRIAL by conjugation to the ferric
oxide nanoparticle

[139]

notubes without active
rgeting but with specific
rmeation into BCSCs;
otothermal treatment.

Thermal therapy promotes rapid MWCNT
membrane permeabilization resulting in necrosis
of BCSCs and differentiated cancer cells.

[132,147]
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diacrylate-β-tetraethylenepentamine]-polycaprolactone copolymer
[131] for the inhibition of efflux-dependent mechanisms or carbon
nanotubes for membrane permeabilization and sensitization to photo
thermal therapy [132]. Drug efflux systems [129–131,133–136],
resistance due to presence of CSC [132,137–139], DNA damage/repair
[136,140–142], apoptosis signaling pathways [139,141,143], resistance
against radiation therapy [136,139,141,142], and resistance against
thermal treatment [142] are being studied in vitro and in vivo as
targets for nanomedicines in order to develop the best treatment
regimens. Diverse functions and multiple effects are typical for the
composition and design of multifunctional nanomedicines. Active
cargo, such as siRNA, and antibodies specifically inhibit synthesis or
function of proteins, which are key players in resistance mechanisms
[134,135,137]. Various chemotherapeutic drugs when delivered as a
nanoparticle cargo can bypass drug resistance resulting in higher
toxicity for tumor cells with lower toxicity to normal tissues. Examples
of the drugs used as part of nanoparticles and nanoconjugates include
taxanes [129,130,134,135,137], 5-fluorouracil [140], dithiazanine
iodide [135], carmustin, cisplatin, pimonidazole [130,136,142], effectors
of enzyme activity [130,140] and signaling, such as antiandrogens and
TRAIL [139,143]. Nanoparticles and their cargoes have been found to
be sensitizers for killing of differentiated cancer cells and CSCs by
radiation therapy [136,139,141,142] and laser hyperthermal therapy
[132]. It can be hypothesized that cancer therapy using nanodrugs
alone or in combination with radiation/hyperthermia can overcome
resistance by delivery of one or several nonrelated therapeutic agents,
and modern nanomedicines can afford to deliver all these moieties
into the cancer cells.

7. Conclusion and future direction

The lifetime probability of developing cancer for men (45%) and
women (38%) is startlingly high and accounts for 1 in 4 deaths in the
United States [148]. Despite our vast expanse of knowledge regarding
the disease, it continues to progress faster than we can keep up with. A
number of underlying mechanisms regarding progression, metastasis,
and invasion have been elucidated at both cellular and molecular levels,
which serve as promising traits to focus on for nanodrug therapy when
surgery, radiation, and chemotherapy are insufficient. Despite these
advances that target signaling mechanisms and upregulated genes and
proteins, drug resistance remains a key feature of cancer cells and is
often acquired even after an initial positive response. Nanomedicines
that have increased circulation time, precise multiple targeting
mechanisms, enhanced drug accumulation at the tumor site, delivered
into the cytoplasm and/or nuclei of cancer cells, and have the ability to
carry combinations of therapeutic payloads are attractive treatment
options in overcoming MDR. Numerous unique nanodrugs have
been created and researched extensively, and are already in clinical
development. As additional discoveries and optimizations are achieved,
the superiority of nanomedicines over current treatment options and
free drugs will continue to increase for the efficient eradication of
drug-resistant cancers.

References

[1] F. Perche, V.P. Torchilin, Recent trends in multifunctional liposomal nanocarriers
for enhanced tumor targeting, J. Drug Deliv. 2013 (2013) 705265.

[2] V.P. Torchilin, Antinuclear antibodies with nucleosome-restricted specificity for
targeted delivery of chemotherapeutic agents, Ther. Deliv. 1 (2010) 257–272.

[3] T. Yang, M.K. Choi, F.D. Cui, S.J. Lee, S.J. Chung, C.K. Shim, D.D. Kim, Antitumor effect
of paclitaxel-loaded pegylated immunoliposomes against human breast cancer
cells, Pharm. Res. 24 (2007) 2402–2411.

[4] T.M. Allen, P.R. Cullis, Liposomal drug delivery systems: from concept to clinical
applications, Adv. Drug Deliv. Rev. 65 (2013) 36–48.

[5] D. Needham, G. Anyarambhatla, G. Kong, M.W. Dewhirst, A new temperature-
sensitive liposome for use with mild hyperthermia: characterization and testing
in a human tumor xenograft model, Cancer Res. 60 (2000) 1197–1201.

[6] C.M. Hu, L. Zhang, Nanoparticle-based combination therapy toward overcoming
drug resistance in cancer, Biochem. Pharmacol. 83 (2012) 1104–1111.
[7] G. Mattheolabakis, B. Rigas, P.P. Constantinides, Nanodelivery strategies in
cancer chemotherapy: biological rationale and pharmaceutical perspectives,
Nanomedicine (Lond.) 7 (2012) 1577–1590.

[8] K. Cho, X. Wang, S. Nie, Z.G. Chen, D.M. Shin, Therapeutic nanoparticles for drug
delivery in cancer, Clin. Cancer Res. 14 (2008) 1310–1316.

[9] T. Minko, Soluble polymer conjugates for drug delivery, Drug Discov. Today
Technol. 2 (2005) 15–20.

[10] J. Lim, E.E. Simanek, Triazine dendrimers as drug delivery systems: from synthesis
to therapy, Adv. Drug Deliv. Rev. 64 (2012) 826–835.

[11] D.M.Webster, P. Sundaram, M.E. Byrne, Injectable nanomaterials for drug delivery:
carriers, targeting moieties, and therapeutics, Eur. J. Pharm. Biopharm. 84 (2013)
1–20.

[12] C. Fabbro, H. Ali-Boucetta, T. Da Ros, K. Kostarelos, A. Bianco, M. Prato, Targeting
carbon nanotubes against cancer, Chem. Commun. (Camb.) 48 (2012) 3911–3926.

[13] R. Arvizo, R. Bhattacharya, P. Mukherjee, Gold nanoparticles: opportunities and
challenges in nanomedicine, Expert Opin. Drug Deliv. 7 (2010) 753–763.

[14] S.K. Libutti, G.F. Paciotti, A.A. Byrnes, H.R. Alexander, W.E. Gannon, M. Walker, G.D.
Seidel, N. Yuldasheva, L. Tamarkin, Phase I and pharmacokinetic studies of
CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine, Clin. Cancer
Res. 16 (2010) 6139–6149.

[15] S. Bhattacharyya, R.A. Kudgus, R. Bhattacharya, P. Mukherjee, Inorganic
nanoparticles in cancer therapy, Pharm. Res. 28 (2011) 237–259.

[16] X. Xue, X.J. Liang, Overcoming drug efflux-based multidrug resistance in cancer
with nanotechnology, Chin. J. Cancer 31 (2012) 100–109.

[17] X. Dong, R.J. Mumper, Nanomedicinal strategies to treat multidrug-resistant
tumors: current progress, Nanomedicine (Lond.) 5 (2010) 597–615.

[18] A. Shapira, Y.D. Livney, H.J. Broxterman, Y.G. Assaraf, Nanomedicine for targeted
cancer therapy: towards the overcoming of drug resistance, Drug Resist. Updat.
14 (2011) 150–163.

[19] C.J. Chen, J.E. Chin, K. Ueda, D.P. Clark, I. Pastan, M.M. Gottesman, I.B. Roninson,
Internal duplication and homology with bacterial transport proteins in the mdr1
(P-glycoprotein) gene from multidrug-resistant human cells, Cell 47 (1986)
381–389.

[20] J. van Asperen, O. van Tellingen, F. Tijssen, A.H. Schinkel, J.H. Beijnen, Increased
accumulation of doxorubicin and doxorubicinol in cardiac tissue of mice lacking
mdr1a P-glycoprotein, Br. J. Cancer 79 (1999) 108–113.

[21] N. Shiraki, A. Hamada, T. Ohmura, J. Tokunaga, N. Oyama, M. Nakano, Increase in
doxorubicin cytotoxicity by inhibition of P-glycoprotein activity with lomerizine,
Biol. Pharm. Bull. 24 (2001) 555–557.

[22] S. Ye, D.P. MacEachran, J.W. Hamilton, G.A. O'Toole, B.A. Stanton, Chemotoxicity of
doxorubicin and surface expression of P-glycoprotein (MDR1) is regulated by the
Pseudomonas aeruginosa toxin Cif, Am. J. Physiol. Cell Physiol. 295 (2008)
C807–C818.

[23] J. Wang, H. Wang, L. Zhao, S. Fan, Z. Yang, F. Gao, L. Chen, G.G. Xiao, J. Molnár, Q.
Wang, Down-regulation of P-glycoprotein is associated with resistance to cisplatin
and VP-16 in human lung cancer cell lines, Anticancer Res 30 (2010) 3593–3598.

[24] S.H. Jang, M.G. Wientjes, J.L. Au, Kinetics of P-glycoprotein-mediated efflux of
paclitaxel, J. Pharmacol. Exp. Ther. 298 (2001) 1236–1242.

[25] E.M. Kemper, A.E. van Zandbergen, C. Cleypool, H.A. Mos, W. Boogerd, J.H. Beijnen,
O. van Tellingen, Increased penetration of paclitaxel into the brain by inhibition of
P-glycoprotein, Clin. Cancer Res. 9 (2003) 2849–2855.

[26] H. Enokida, T. Gotanda, S. Oku, Y. Imazono, H. Kubo, T. Hanada, S. Suzuki, K.
Inomata, T. Kishiye, Y. Tahara, K. Nishiyama, M. Nakagawa, Reversal of
P-glycoprotein-mediated paclitaxel resistance by new synthetic isoprenoids in
human bladder cancer cell line, Jpn. J. Cancer Res. 93 (2002) 1037–1046.

[27] M.M. Pires, D. Emmert, C.A. Hrycyna, J. Chmielewski, Inhibition of
P-glycoprotein-mediated paclitaxel resistance by reversibly linked quinine
homodimers, Mol. Pharmacol. 75 (2009) 92–100.

[28] M.M. Gottesman, T. Fojo, S.E. Bates, Multidrug resistance in cancer: role of
ATP-dependent transporters, Nat. Rev. Cancer 2 (2002) 48–58.

[29] C.J. Lord, A. Ashworth, The DNA damage response and cancer therapy, Nature 481
(2012) 287–294.

[30] M. Rebucci, C. Michiels, Molecular aspects of cancer cell resistance to
chemotherapy, Biochem. Pharmacol. 85 (2013) 1219–1226.

[31] V. Kirkin, S. Joos, M. Zörnig, The role of bcl-2 family members in tumorigenesis,
Biochim. Biophys. Acta 1644 (2004) 229–249.

[32] M. Bentires-Alj, V. Barbu, M. Fillet, A. Chariot, B. Relic, N. Jacobs, J. Gielen, M.P.
Merville, V. Bours, NF-κB transcription factor induces drug resistance through
MDR1 expression in cancer cells, Oncogene 22 (2003) 90–97.

[33] M. Gerlinger, A.J. Rowan, S. Horswell, J. Larkin, D. Endesfelder, E. Gronroos, P.
Martinez, N. Matthews, A. Stewart, P. Tarpey, I. Varela, B. Phillimore, S. Begum,
N.Q. McDonald, A. Butler, D. Jones, K. Raine, C. Latimer, C.R. Santos, M. Nohadani,
A.C. Eklund, B. Spencer-Dene, G. Clark, L. Pickering, G. Stamp, M. Gore, Z. Szallasi,
J. Downward, P.A. Futreal, C. Swanton, Intratumor heterogeneity and branched
evolution revealed by multiregion sequencing, N. Engl. J. Med. 366 (2012)
883–892.

[34] D.A. Landau, S.L. Carter, P. Stojanov, A. McKenna, K. Stevenson, M.S. Lawrence, C.
Sougnez, C. Stewart, A. Sivachenko, L. Wang, Y. Wan, W. Zhang, S.A. Shukla, A.
Vartanov, S.M. Fernandes, G. Saksena, K. Cibulskis, B. Tesar, S. Gabriel, N.
Hacohen, M. Meyerson, E.S. Lander, D. Neuberg, J.R. Brown, G. Getz, C.J. Wu,
Evolution and impact of subclonal mutations in chronic lymphocytic leukemia,
Cell 152 (2013) 714–726.

[35] M.F. Clarke, J.E. Dick, P.B. Dirks, C.J. Eaves, C.H. Jamieson, D.L. Jones, J. Visvader, I.L.
Weissman, G.M. Wahl, Cancer stem cells — perspectives on current status and
future directions: AACR workshop on cancer stem cells, Cancer Res. 66 (2006)
9339–9344.

http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0005
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0005
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0010
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0010
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0015
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0015
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0015
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0020
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0020
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0025
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0025
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0025
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0030
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0030
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0035
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0035
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0035
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0040
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0040
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0045
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0045
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0050
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0050
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0055
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0055
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0055
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0060
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0060
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0065
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0065
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0070
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0070
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0070
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0070
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0075
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0075
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0080
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0080
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0085
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0085
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0090
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0090
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0090
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0095
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0095
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0095
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0095
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0100
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0100
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0100
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0105
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0105
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0105
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0110
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0110
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0110
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0110
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0115
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0115
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0115
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0120
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0120
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0125
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0125
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0125
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0130
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0130
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0130
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0130
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0135
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0135
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0135
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0140
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0140
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0145
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0145
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0150
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0150
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0155
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0155
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0160
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0160
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0160
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0165
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0165
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0165
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0165
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0165
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0165
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0165
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0170
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0170
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0170
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0170
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0170
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0170
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0175
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0175
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0175
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0175


1877J.L. Markman et al. / Advanced Drug Delivery Reviews 65 (2013) 1866–1879
[36] C.H. Park, D.E. Bergsagel, E.A. McCulloch, Mouse myeloma tumor stem cells: a
primary cell culture assay, J. Natl. Cancer Inst. 46 (1971) 411–422.

[37] A.W. Hamburger, S.E. Salmon, Primary bioassay of human tumor stem cells,
Science 197 (1977) 461–463.

[38] T. Reya, S.J. Morrison, M.F. Clarke, I.L. Weissman, Stem cells, cancer, and cancer
stem cells, Nature 414 (2001) 105–111.

[39] D. Bonnet, J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy
that originates from a primitive hematopoietic cell, Nat. Med. 3 (1997) 730–737.

[40] M. Al-Hajj, M.S. Wicha, A. Benito-Hernandez, S.J. Morrison, M.F. Clarke, Prospective
identification of tumorigenic breast cancer cells, Proc. Natl. Acad. Sci. U. S. A. 100
(2003) 3983–3988.

[41] S.K. Singh, C. Hawkins, I.D. Clarke, J.A. Squire, J. Bayani, T. Hide, R.M. Henkelman,
M.D. Cusimano, P.B. Dirks, Identification of human brain tumour initiating cells,
Nature 432 (2004) 396–401.

[42] M.D. Taylor, H. Poppleton, C. Fuller, X. Su, Y. Liu, P. Jensen, S. Magdaleno, J. Dalton,
C. Calabrese, J. Board, T. Macdonald, J. Rutka, A. Guha, A. Gajjar, T. Curran, R.J.
Gilbertson, Radial glia cells are candidate stem cells of ependymoma, Cancer Cell
8 (2005) 323–335.

[43] C.A. O'Brien, A. Pollett, S. Gallinger, J.E. Dick, A human colon cancer cell capable of
initiating tumour growth in immunodeficient mice, Nature 445 (2007) 106–110.

[44] L. Ricci-Vitiani, D.G. Lombardi, E. Pilozzi, M. Biffoni, M. Todaro, C. Peschle, R. De
Maria, Identification and expansion of human colon-cancer-initiating cells, Nature
445 (2007) 111–115.

[45] K.J. Hope, L. Jin, J.E. Dick, Acute myeloid leukemia originates from a hierarchy of
leukemic stem cell classes that differ in self-renewal capacity, Nat. Immunol. 5
(2004) 738–743.

[46] C. Li, D.G. Heidt, P. Dalerba, C.F. Burant, L. Zhang, V. Adsay, M. Wicha, M.F. Clarke,
D.M. Simeone, Identification of pancreatic cancer stem cells, Cancer Res. 67
(2007) 1030–1037.

[47] M.E. Prince, R. Sivanandan, A. Kaczorowski, G.T. Wolf, M.J. Kaplan, P. Dalerba, I.L.
Weissman, M.F. Clarke, L.E. Ailles, Identification of a subpopulation of cells with
cancer stem cell properties in head and neck squamous cell carcinoma, Proc.
Natl. Acad. Sci. U. S. A. 104 (2007) 973–978.

[48] D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation, Cell 144
(2011) 646–674.

[49] M. Dean, T. Fojo, S. Bates, Tumour stem cells and drug resistance, Nat. Rev. Cancer 5
(2005) 275–284.

[50] W.C. Dempke, V. Heinemann, Resistance to EGF-R (erbB-1) and VEGF-R
modulating agents, Eur. J. Cancer 45 (2009) 1117–1128.

[51] L.V. Sequist, R.G. Martins, D. Spigel, S.M. Grunberg, A. Spira, P.A. Jänne, V.A. Joshi, D.
McCollum, T.L. Evans, A. Muzikansky, G.L. Kuhlmann, M. Han, J.S. Goldberg, J.
Settleman, A.J. Iafrate, J.A. Engelman, D.A. Haber, B.E. Johnson, T.J. Lynch,
First-line gefitinib in patients with advanced non-small-cell lung cancer harboring
somatic EGFR mutations, J. Clin. Oncol. 26 (2008) 2442–2449.

[52] T.J. Lynch, D.W. Bell, R. Sordella, S. Gurubhagavatula, R.A. Okimoto, B.W. Brannigan,
P.L. Harris, S.M. Haserlat, J.G. Supko, F.G. Haluska, D.N. Louis, D.C. Christiani, J.
Settleman, D.A. Haber, Activating mutations in the epidermal growth factor
receptor underlying responsiveness of non-small-cell lung cancer to gefitinib, N.
Engl. J. Med. 350 (2004) 2129–2139.

[53] W. Pao, V. Miller, M. Zakowski, J. Doherty, K. Politi, I. Sarkaria, B. Singh, R. Heelan, V.
Rusch, L. Fulton, E. Mardis, D. Kupfer, R. Wilson, M. Kris, H. Varmus, EGF receptor
gene mutations are common in lung cancers from “never smokers” and are
associated with sensitivity of tumors to gefitinib and erlotinib, Proc. Natl. Acad.
Sci. U. S. A. 101 (2004) 13306–13311.

[54] J.G. Paez, P.A. Jänne, J.C. Lee, S. Tracy, H. Greulich, S. Gabriel, P. Herman, F.J. Kaye, N.
Lindeman, T.J. Boggon, K. Naoki, H. Sasaki, Y. Fujii, M.J. Eck, W.R. Sellers, B.E.
Johnson, M. Meyerson, EGFR mutations in lung cancer: correlation with clinical
response to gefitinib therapy, Science 304 (2004) 1497–1500.

[55] T. Fukui, T. Mitsudomi, Mutations in the epidermal growth factor receptor gene
and effects of EGFR-tyrosine kinase inhibitors on lung cancers, Gen. Thorac.
Cardiovasc. Surg. 56 (2008) 97–103.

[56] W. Pao, V.A. Miller, Epidermal growth factor receptor mutations, small-molecule
kinase inhibitors, and non-small-cell lung cancer: current knowledge and future
directions, J. Clin. Oncol. 23 (2005) 2556–2568.

[57] S. Kobayashi, T.J. Boggon, T. Dayaram, P.A. Jänne, O. Kocher, M. Meyerson, B.E.
Johnson, M.J. Eck, D.G. Tenen, B. Halmos, EGFR mutation and resistance of
non-small-cell lung cancer to gefitinib, N. Engl. J. Med. 352 (2005) 786–792.

[58] W. Pao, V.A. Miller, K.A. Politi, G.J. Riely, R. Somwar, M.F. Zakowski, M.G. Kris, H.
Varmus, Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is
associated with a second mutation in the EGFR kinase domain, PLoS Med. 2
(2005) e73.

[59] C.Montagut, A. Dalmases, B. Bellosillo, M. Crespo, S. Pairet, M. Iglesias, M. Salido, M.
Gallen, S. Marsters, S.P. Tsai, A. Minoche, S. Seshagiri, S. Somasekar, S. Serrano, H.
Himmelbauer, J. Bellmunt, A. Rovira, J. Settleman, F. Bosch, J. Albanell, Identification
of a mutation in the extracellular domain of the epidermal growth factor receptor
conferring cetuximab resistance in colorectal cancer, Nat.Med. 18 (2012) 221–223.

[60] J.Y. Ljubimova, J. Portilla-Arias, R. Patil, H. Ding, S. Inoue, J.L. Markman, A.
Rekechenetskiy, B. Konda, P.R. Gangalum, A. Chesnokova, A.V. Ljubimov, K.L.
Black, E. Holler, Toxicity and efficacy evaluation of multiple targeted polymalic
acid conjugates for triple negative breast cancer treatment, J. Drug Target.
(2013)(in press).

[61] O. Trédan, C.M. Galmarini, K. Patel, I.F. Tannock, Drug resistance and the solid
tumor microenvironment, J. Natl. Cancer Inst. 99 (2007) 1441–1454.

[62] L.A. Hazlehurst, W.S. Dalton, Mechanisms associated with cell adhesion mediated
drug resistance (CAM-DR) in hematopoietic malignancies, Cancer Metastasis Rev.
20 (2001) 43–50.
[63] V.M. Weaver, S. Lelièvre, J.N. Lakins, M.A. Chrenek, J.C. Jones, F. Giancotti, Z. Werb,
M.J. Bissell, β4 integrin-dependent formation of polarized three-dimensional
architecture confers resistance to apoptosis in normal and malignant mammary
epithelium, Cancer Cell 2 (2002) 205–216.

[64] D.S. Cowan, I.F. Tannock, Factors that influence the penetration of methotrexate
through solid tissue, Int. J. Cancer 91 (2001) 120–125.

[65] N. Raghunand, B.P. Mahoney, R.J. Gillies, Tumor acidity, ion trapping and
chemotherapeutics. II. pH-dependent partition coefficients predict importance of
ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents,
Biochem. Pharmacol. 66 (2003) 1219–1229.

[66] B.P. Mahoney, N. Raghunand, B. Baggett, R.J. Gillies, Tumor acidity, ion trapping and
chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents
in vitro, Biochem. Pharmacol. 66 (2003) 1207–1218.

[67] CeL Davies, D.A. Berk, A. Pluen, R.K. Jain, Comparison of IgG diffusion and
extracellular matrix composition in rhabdomyosarcomas grown in mice versus
in vitro as spheroids reveals the role of host stromal cells, Br. J. Cancer 86 (2002)
1639–1644.

[68] P.A. Netti, D.A. Berk, M.A. Swartz, A.J. Grodzinsky, R.K. Jain, Role of extracellular
matrix assembly in interstitial transport in solid tumors, Cancer Res. 60 (2000)
2497–2503.

[69] S. Vinogradov, X. Wei, Cancer stem cells and drug resistance: the potential of
nanomedicine, Nanomedicine (Lond.) 7 (2012) 597–615.

[70] T.P. Padera, B.R. Stoll, J.B. Tooredman, D. Capen, E. di Tomaso, R.K. Jain, Pathology:
cancer cells compress intratumour vessels, Nature 427 (2004) 695.

[71] K.M. Comerford, T.J. Wallace, J. Karhausen, N.A. Louis, M.C. Montalto, S.P. Colgan,
Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance
(MDR1) gene, Cancer Res. 62 (2002) 3387–3394.

[72] G.L. Wang, G.L. Semenza, Purification and characterization of hypoxia-inducible
factor 1, J. Biol. Chem. 270 (1995) 1230–1237.

[73] G.L. Semenza, Hypoxia, clonal selection, and the role of HIF-1 in tumor progression,
Crit. Rev. Biochem. Mol. Biol. 35 (2000) 71–103.

[74] L. Milane, S. Ganesh, S. Shah, Z.F. Duan, M. Amiji, Multi-modal strategies for
overcoming tumor drug resistance: hypoxia, the Warburg effect, stem cells, and
multifunctional nanotechnology, J. Control. Release 155 (2011) 237–247.

[75] A.S. Chung, X. Wu, G. Zhuang, H. Ngu, I. Kasman, J. Zhang, J.M. Vernes, Z. Jiang, Y.G.
Meng, F.V. Peale, W. Ouyang, N. Ferrara, An interleukin-17-mediated paracrine
network promotes tumor resistance to anti-angiogenic therapy, Nat. Med. 19
(2013) 1114–1123.

[76] H. Ding, S. Inoue, A.V. Ljubimov, R. Patil, J. Portilla-Arias, J. Hu, B. Konda, K.A.
Wawrowsky, M. Fujita, N. Karabalin, T. Sasaki, K.L. Black, E. Holler, J.Y. Ljubimova,
Inhibition of brain tumor growth by intravenous poly (β-L-malic acid)
nanobioconjugate with ph-dependent drug release [corrected], Proc. Natl. Acad.
Sci. U. S. A. 107 (2010) 18143–18148.

[77] Y. Huang, S. Goel, D.G. Duda, D. Fukumura, R.K. Jain, Vascular normalization as an
emerging strategy to enhance cancer immunotherapy, Cancer Res. 73 (2013)
2943–2948.

[78] M. Wang, M. Thanou, Targeting nanoparticles to cancer, Pharmacol. Res. 62 (2010)
90–99.

[79] U. Prabhakar, H. Maeda, R.K. Jain, E.M. Sevick-Muraca, W. Zamboni, O.C. Farokhzad,
S.T. Barry, A. Gabizon, P. Grodzinski, D.C. Blakey, Challenges and key considerations
of the enhanced permeability and retention effect for nanomedicine drug delivery
in oncology, Cancer Res. 73 (2013) 2412–2417.

[80] J.M. Koziara, T.R. Whisman, M.T. Tseng, R.J. Mumper, In-vivo efficacy of novel
paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors, J. Control.
Release 112 (2006) 312–319.

[81] M.A. Rouf, I. Vural, J.M. Renoir, A.A. Hincal, Development and characterization of
liposomal formulations for rapamycin delivery and investigation of their
antiproliferative effect on MCF7 cells, J. Liposome Res. 19 (2009) 322–331.

[82] A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra, R. Cohen, F. Martin, A. Huang,
Y. Barenholz, Prolonged circulation time and enhanced accumulation in malignant
exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes,
Cancer Res. 54 (1994) 987–992.

[83] Y. Zhang, H. Zhang, X. Wang, J. Wang, X. Zhang, Q. Zhang, The eradication of breast
cancer and cancer stem cells using octreotide modified paclitaxel active targeting
micelles and salinomycin passive targetingmicelles, Biomaterials 33 (2012) 679–691.

[84] C. Gottstein, G. Wu, B.J. Wong, J.A. Zasadzinski, Precise quantification of
nanoparticle internalization, ACS Nano 7 (6) (2013) 4933–4945.

[85] S.E. Krown, D.W. Northfelt, D. Osoba, J.S. Stewart, Use of liposomal anthracyclines
in Kaposi's sarcoma, Semin. Oncol. 31 (2004) 36–52.

[86] P.G. Rose, Pegylated liposomal doxorubicin: optimizing the dosing schedule in
ovarian cancer, Oncologist 10 (2005) 205–214.

[87] P. Sonneveld, R. Hajek, A. Nagler, A. Spencer, J. Bladé, T. Robak, S.H. Zhuang, J.L.
Harousseau, R.Z. Orlowski, DOXIL-MMY-3001 Study Investigators, Combined
pegylated liposomal doxorubicin and bortezomib is highly effective in
patients with recurrent or refractory multiple myeloma who received prior
thalidomide/lenalidomide therapy, Cancer 112 (2008) 1529–1537.

[88] R.P. Collea, F.W. Kruter, J.E. Cantrell, T.K. George, S. Kruger, A.M. Favret, D.L.
Lindquist, A.M. Melnyk, R.E. Pluenneke, S.H. Shao, M.W. Crockett, L. Asmar, J.
O'Shaughnessy, Pegylated liposomal doxorubicin plus carboplatin in patients
with metastatic breast cancer: a phase II study, Ann. Oncol. 23 (2012) 2599–2605.

[89] M. Montanari, F. Fabbri, E. Rondini, G.L. Frassineti, R. Mattioli, S. Carloni, E. Scarpi,
W. Zoli, D. Amadori, G. Cruciani, Phase II trial of non-pegylated liposomal
doxorubicin and low-dose prednisone in second-line chemotherapy for
hormone-refractory prostate cancer, Tumori 98 (2012) 696–701.

[90] R. Wang, R. Xiao, Z. Zeng, L. Xu, J. Wang, Application of poly(ethylene
glycol)-distearoylphosphatidylethanolamine (PEG-DSPE) block copolymers and

http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0180
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0180
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0185
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0185
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0190
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0190
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0195
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0195
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0200
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0200
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0200
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0205
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0205
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0205
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0210
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0210
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0210
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0210
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0215
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0215
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0220
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0220
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0220
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0225
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0225
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0225
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0230
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0230
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0230
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0235
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0235
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0235
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0235
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0240
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0240
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0245
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0245
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0250
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0250
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0255
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0255
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0255
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0255
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0255
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0260
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0260
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0260
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0260
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0260
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0265
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0265
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0265
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0265
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0265
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0270
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0270
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0270
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0270
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0275
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0275
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0275
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0280
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0280
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0280
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0285
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0285
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0285
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0290
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0290
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0290
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0290
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0295
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0295
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0295
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0295
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0295
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0715
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0715
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0715
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0715
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0715
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0300
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0300
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0305
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0305
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0305
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0310
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0310
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0310
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0310
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0315
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0315
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0320
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0320
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0320
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0320
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0325
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0325
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0325
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0330
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0330
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0330
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0330
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0335
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0335
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0335
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0340
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0340
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0345
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0345
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0350
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0350
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0350
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0355
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0355
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0360
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0360
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0365
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0365
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0365
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0720
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0720
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0720
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0720
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0370
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0370
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0370
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0370
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0370
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0375
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0375
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0375
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0380
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0380
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0385
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0385
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0385
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0385
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0390
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0390
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0390
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0395
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0395
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0395
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0400
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0400
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0400
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0400
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0405
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0405
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0405
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0725
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0725
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0415
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0415
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0420
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0420
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0425
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0425
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0425
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0425
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0425
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0430
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0430
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0430
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0430
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0435
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0435
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0435
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0435
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0440
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0440


1878 J.L. Markman et al. / Advanced Drug Delivery Reviews 65 (2013) 1866–1879
their derivatives as nanomaterials in drug delivery, Int. J. Nanomedicine 7 (2012)
4185–4198.

[91] M.R. Vijayakumar, M.S. Muthu, S. Singh, Copolymers of poly(lactic acid) and
D-α-tocopheryl polyethylene glycol 1000 succinate-based nanomedicines:
versatile multifunctional platforms for cancer diagnosis and therapy, Expert
Opin. Drug Deliv. 10 (2013) 529–543.

[92] L.M. Kaminskas, C.J. Porter, Targeting the lymphatics using dendritic polymers
(dendrimers), Adv. Drug Deliv. Rev. 63 (2011) 890–900.

[93] O. Taratula, O. Garbuzenko, R. Savla, Y.A. Wang, H. He, T. Minko, Multifunctional
nanomedicine platform for cancer specific delivery of siRNA by superparamagnetic
iron oxide nanoparticles-dendrimer complexes, Curr. Drug Deliv. 8 (2011) 59–69.

[94] K. Knop, R. Hoogenboom, D. Fischer, U.S. Schubert, Poly(ethylene glycol) in drug
delivery: pros and cons as well as potential alternatives, Angew. Chem. Int. Ed.
Engl. 49 (2010) 6288–6308.

[95] G.A. Leget, M.S. Czuczman, Use of rituximab, the new FDA-approved antibody,
Curr. Opin. Oncol. 10 (1998) 548–551.

[96] T.L. Brenner, V.R. Adams, First MAb approved for treatment of metastatic breast
cancer, J. Am. Pharm. Assoc. (Wash) 39 (1999) 236–238.

[97] L. Goodman, Persistence–luck–avastin, J. Clin. Invest. 113 (2004) 934.
[98] Y. Humblet, Cetuximab: an IgG(1) monoclonal antibody for the treatment

of epidermal growth factor receptor-expressing tumours, Expert Opin.
Pharmacother. 5 (2004) 1621–1633.

[99] P. Zhang, L. Hu, Q. Yin, L. Feng, Y. Li, Transferrin-modified c[RGDfK]-paclitaxel
loaded hybrid micelle for sequential blood–brain barrier penetration and glioma
targeting therapy, Mol. Pharm. 9 (2012) 1590–1598.

[100] W. Wang, F. Zhou, L. Ge, X. Liu, F. Kong, Transferrin-PEG-PE modified
dexamethasone conjugated cationic lipid carrier mediated gene delivery system
for tumor-targeted transfection, Int. J. Nanomedicine 7 (2012) 2513–2522.

[101] T.R. Daniels, E. Bernabeu, J.A. Rodríguez, S. Patel, M. Kozman, D.A. Chiappetta, E.
Holler, J.Y. Ljubimova, G. Helguera, M.L. Penichet, The transferrin receptor and
the targeted delivery of therapeutic agents against cancer, Biochim. Biophys. Acta
2012 (1820) 291–317.

[102] D. Peer, J.M. Karp, S. Hong, O.C. Farokhzad, R. Margalit, R. Langer, Nanocarriers as an
emerging platform for cancer therapy, Nat. Nanotechnol. 2 (2007) 751–760.

[103] Z. Xiao, O.C. Farokhzad, Aptamer-functionalized nanoparticles for medical
applications: challenges and opportunities, ACS Nano 6 (2012) 3670–3676.

[104] S.M.Weis, D.A. Cheresh,αV integrins in angiogenesis and cancer, Cold Spring Harb.
Perspect. Med. 1 (2011) a006478.

[105] E. Ruoslahti, Peptides as targeting elements and tissue penetration devices for
nanoparticles, Adv. Mater. 24 (2012) 3747–3756.

[106] V. Gregorc, G. Citterio, G. Vitali, A. Spreafico, P. Scifo, A. Borri, G. Donadoni, G.
Rossoni, A. Corti, F. Caligaris-Cappio, A. Del Maschio, A. Esposito, F. De Cobelli, F.
Dell'Acqua, A. Troysi, P. Bruzzi, A. Lambiase, C. Bordignon, Defining the optimal
biological dose of NGR-hTNF, a selective vascular targeting agent, in advanced
solid tumours, Eur. J. Cancer 46 (2010) 198–206.

[107] C. Pichon, L. Billiet, P. Midoux, Chemical vectors for gene delivery: uptake and
intracellular trafficking, Curr. Opin. Biotechnol. 21 (2010) 640–645.

[108] F. Pittella, M. Zhang, Y. Lee, H.J. Kim, T. Tockary, K. Osada, T. Ishii, K. Miyata, N.
Nishiyama, K. Kataoka, Enhanced endosomal escape of siRNA-incorporating hybrid
nanoparticles from calcium phosphate and peg-block charge-conversional
polymer for efficient gene knockdown with negligible cytotoxicity, Biomaterials
32 (2011) 3106–3114.

[109] E.S. Lee, Z. Gao, D. Kim, K. Park, I.C. Kwon, Y.H. Bae, Super pH-sensitive
multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and
multidrug resistance, J. Control. Release 129 (2008) 228–236.

[110] M. Mohri, H. Nitta, J. Yamashita, Expression of multidrug resistance-associated
protein (MRP) in human gliomas, J. Neurooncol. 49 (2000) 105–115.

[111] R. Patil, J. Portilla-Arias, H. Ding, S. Inoue, B. Konda, J. Hu, K.A. Wawrowsky, P.K.
Shin, K.L. Black, E. Holler, J.Y. Ljubimova, Temozolomide delivery to tumor cells
by a multifunctional nano vehicle based on poly(β-L-malic acid), Pharm. Res. 27
(2010) 2317–2329.

[112] R. Patil, J. Portilla-Arias, H. Ding, B. Konda, A. Rekechenetskiy, S. Inoue, K.L. Black, E.
Holler, J.Y. Ljubimova, Cellular delivery of doxorubicin via pH-controlled
hydrazone linkage using multifunctional nano vehicle based on poly(β-L-malic
acid), Int. J. Mol. Sci. 13 (2012) 11681–11693.

[113] H. Yuan, X. Li, J. Wu, J. Li, X. Qu, W. Xu, W. Tang, Strategies to overcome or
circumvent P-glycoprotein mediated multidrug resistance, Curr. Med. Chem. 15
(2008) 470–476.

[114] J. Wu, Y. Lu, A. Lee, X. Pan, X. Yang, X. Zhao, R.J. Lee, Reversal of multidrug
resistance by transferrin-conjugated liposomes co-encapsulating doxorubicin and
verapamil, J. Pharm. Pharm. Sci. 10 (2007) 350–357.

[115] S. Ganta, M. Amiji, Coadministration of paclitaxel and curcumin in nanoemulsion
formulations to overcome multidrug resistance in tumor cells, Mol. Pharm. 6
(2009) 928–939.

[116] M. Saad, O.B. Garbuzenko, T.Minko, Co-delivery of siRNA and an anticancer drug for
treatment of multidrug-resistant cancer, Nanomedicine (Lond.) 3 (2008) 761–776.

[117] E. Bajelan, A. Haeri, A.M. Vali, S.N. Ostad, S. Dadashzadeh, Co-delivery of
doxorubicin and PSC 833 (Valspodar) by stealth nanoliposomes for efficient
overcoming of multidrug resistance, J. Pharm. Pharm. Sci. 15 (2012) 568–582.

[118] K. Wang, X. Wu, J. Wang, J. Huang, Cancer stem cell theory: therapeutic
implications for nanomedicine, Int. J. Nanomedicine 8 (2013) 899–908.

[119] Q.L. Tang, Z.Q. Zhao, J.C. Li, Y. Liang, J.Q. Yin, C.Y. Zou, X.B. Xie, Y.X. Zeng, J.N. Shen, T.
Kang, J.Wang, Salinomycin inhibits osteosarcoma by targeting its tumor stem cells,
Cancer Lett. 311 (2011) 113–121.

[120] A. Verma, S. Guha, P. Diagaradjane, A.B. Kunnumakkara, A.M. Sanguino, G.
Lopez-Berestein, A.K. Sood, B.B. Aggarwal, S. Krishnan, J.G. Gelovani, K. Mehta,
Therapeutic significance of elevated tissue transglutaminase expression in
pancreatic cancer, Clin. Cancer Res. 14 (2008) 2476–2483.

[121] J.E. Visvader, G.J. Lindeman, Cancer stem cells in solid tumours: accumulating
evidence and unresolved questions, Nat. Rev. Cancer 8 (2008) 755–768.

[122] J.A. Burger, A. Peled, CXCR4 antagonists: targeting the microenvironment in
leukemia and other cancers, Leukemia 23 (2009) 43–52.

[123] J. Prakash, E. de Jong, E. Post, A.S. Gouw, L. Beljaars, K. Poelstra, A novel approach to
deliver anticancer drugs to key cell types in tumors using a PDGF receptor-binding
cyclic peptide containing carrier, J. Control. Release 145 (2010) 91–101.

[124] M. Goldsmith, S. Mizrahy, D. Peer, Grand challenges in modulating the immune
response with RNAi nanomedicines, Nanomedicine (Lond.) 6 (2011) 1771–1785.

[125] H. Poeck, R. Besch, C. Maihoefer, M. Renn, D. Tormo, S.S. Morskaya, S. Kirschnek, E.
Gaffal, J. Landsberg, J. Hellmuth, A. Schmidt, D. Anz, M. Bscheider, T. Schwerd, C.
Berking, C. Bourquin, U. Kalinke, E. Kremmer, H. Kato, S. Akira, R. Meyers, G.
Häcker, M. Neuenhahn, D. Busch, J. Ruland, S. Rothenfusser, M. Prinz, V. Hornung,
S. Endres, T. Tüting, G. Hartmann, 5′-triphosphate-siRNA: turning gene silencing
and Rig-I activation against melanoma, Nat. Med. 14 (2008) 1256–1263.

[126] M. Kortylewski, P. Swiderski, A. Herrmann, L. Wang, C. Kowolik, M. Kujawski, H.
Lee, A. Scuto, Y. Liu, C. Yang, J. Deng, H.S. Soifer, A. Raubitschek, S. Forman, J.J.
Rossi, D.M. Pardoll, R. Jove, H. Yu, In vivo delivery of siRNA to immune cells by
conjugation to a TLR9 agonist enhances antitumor immune responses, Nat.
Biotechnol. 27 (2009) 925–932.

[127] N. Khairuddin, M.P. Gantier, S.J. Blake, S.Y. Wu, M.A. Behlke, B.R. Williams, N.A.
McMillan, siRNA-induced immunostimulation through TLR7 promotes
antitumoral activity against HPV-driven tumors in vivo, Immunol. Cell
Biol. 90 (2012) 187–196.

[128] H. Ding, G. Helguera, J.A. Rodríguez, J. Markman, R. Luria-Pérez, P. Gangalum, J.
Portilla-Arias, S. Inoue, T.R. Daniels-Wells, K. Black, E. Holler, M.L. Penichet, J.Y.
Ljubimova, Polymalic acid nanobioconjugate for simultaneous inhibition of
tumor growth and immunostimulation in HER2/neu-positive breast cancer, J.
Control. Release 171 (3) (2013 Nov 10) 322–329.

[129] H. Yu, Z. Xu, X. Chen, L. Xu, Q. Yin, Z. Zhang, Y. Li, Reversal of lung cancer multidrug
resistance by pH-responsive micelleplexes mediating co-delivery of siRNA and
paclitaxel, Macromol. Biosci. (2013)(in press).

[130] L. Qian, J. Zheng, K.Wang, Y. Tang, X. Zhang,H. Zhang, F. Huang, Y. Pei, Y. Jiang, Cationic
core-shell nanoparticles with carmustine contained within o(6)-benzylguanine shell
for glioma therapy, Biomaterials 34 (2013) 8968–8978.

[131] P.Y. Chang, S.F. Peng, C.Y. Lee, C.C. Lu, S.C. Tsai, T.M. Shieh, T.S. Wu, M.G. Tu, M.Y.
Chen, J.S. Yang, Curcumin-loaded nanoparticles induce apoptotic cell death
through regulation of the function of MDR1 and reactive oxygen species in
cisplatin-resistant CAR human oral cancer cells, Int. J. Oncol. 43 (2013) 1141–1150.

[132] A.R. Burke, R.N. Singh, D.L. Carroll, J.C. Wood, R.B. D'Agostino, P.M. Ajayan, F.M.
Torti, S.V. Torti, The resistance of breast cancer stem cells to conventional
hyperthermia and their sensitivity to nanoparticle-mediated photothermal
therapy, Biomaterials 33 (2012) 2961–2970.

[133] S. Zhao, S. Tan, Y. Guo, J. Huang,M. Chu, H. Liu, Z. Zhang, Ph-sensitive docetaxel-loaded
D-α-tocopheryl polyethylene glycol succinate-poly(β-amino ester) copolymer
nanoparticles for overcoming multidrug resistance, Biomacromolecules 14 (2013)
2636–2646.

[134] S.K. Swaminathan, E. Roger, U. Toti, L. Niu, J.R. Ohlfest, J. Panyam, CD133-targeted
paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast
cancer, J. Control. Release 171 (3) (2013 Nov 10) 280–287.

[135] J. Zhou, T.R. Patel, R.W. Sirianni, G. Strohbehn, M.Q. Zheng, N. Duong, T. Schafbauer,
A.J. Huttner, Y. Huang, R.E. Carson, Y. Zhang, D.J. Sullivan, J.M. Piepmeier, W.M.
Saltzman, Highly penetrative, drug-loaded nanocarriers improve treatment of
glioblastoma, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 11751–11756.

[136] X. Zhang, H. Yang, K. Gu, J. Chen, M. Rui, G.L. Jiang, In vitro and in vivo study of a
nanoliposomal cisplatin as a radiosensitizer, Int. J. Nanomedicine 6 (2011)
437–444.

[137] Q. Yin, J. Shen, Z. Zhang, H. Yu, L. Chen, W. Gu, Y. Li, Multifunctional nanoparticles
improve therapeutic effect for breast cancer by simultaneously antagonizing
multiple mechanisms of multidrug resistance, Biomacromolecules 14 (2013)
2242–2252.

[138] C. Yang, F. Xiong, J. Wang, J. Dou, J. Chen, D. Chen, Y. Zhang, S. Luo, N. Gu,
Anti-ABCG2 monoclonal antibody in combination with paclitaxel nanoparticles
against cancer stem-like cell activity in multiple myeloma, Nanomedicine (Lond.)
(2013)(in press).

[139] B. Perlstein, S.A. Finniss, C. Miller, H. Okhrimenko, G. Kazimirsky, S. Cazacu, H.K.
Lee, N. Lemke, S. Brodie, F. Umansky, S.A. Rempel, M. Rosenblum, T. Mikklesen, S.
Margel, C. Brodie, TRAIL conjugated to nanoparticles exhibits increased
anti-tumor activities in glioma cells and glioma stem cells in vitro and in vivo,
Neuro Oncol. 15 (2013) 29–40.

[140] D. Wang, J. Tang, Y. Wang, S. Ramishetti, Q. Fu, K. Racette, F. Liu, Multifunctional
nanoparticles based on a single-molecule modification for the treatment of
drug-resistant cancer, Mol. Pharm. 10 (2013) 1465–1469.

[141] S. Gaca, S. Reichert, C. Rödel, F. Rödel, J. Kreuter, Survivin-miRNA-loaded
nanoparticles as auxiliary tools for radiation therapy: preparation, characterisation,
drug release, cytotoxicity and therapeutic effect on colorectal cancer cells, J.
Microencapsul. 29 (2012) 685–694.

[142] S. Kato, M. Kimura, K. Kageyama, H. Tanaka, N. Miwa, Enhanced radiosensitization
by liposome-encapsulated pimonidazole for anticancer effects on human
melanoma cells, J. Nanosci. Nanotechnol. 12 (2012) 4472–4477.

[143] E.C. Dreaden, B.E. Gryder, L.A. Austin, B.A. Tene Defo, S.C. Hayden, M. Pi, L.D.
Quarles, A.K. Oyelere, M.A. El-Sayed, Antiandrogen gold nanoparticles dual-target
and overcome treatment resistance in hormone-insensitive prostate cancer cells,
Bioconjug. Chem. 23 (2012) 1507–1512.

http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0440
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0440
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0445
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0445
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0445
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0445
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0450
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0450
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0455
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0455
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0455
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0460
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0460
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0460
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0465
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0465
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0470
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0470
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0475
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0480
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0480
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0480
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0485
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0485
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0485
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0490
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0490
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0490
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0495
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0495
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0495
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0495
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0500
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0500
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0505
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0505
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0510
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0510
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0515
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0515
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0520
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0520
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0520
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0520
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0520
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0525
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0525
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0530
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0530
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0530
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0530
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0530
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0730
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0730
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0730
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0540
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0540
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0545
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0545
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0545
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0545
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0550
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0550
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0550
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0550
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0555
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0555
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0555
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0560
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0560
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0560
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0565
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0565
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0565
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0570
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0570
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0575
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0575
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0575
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0580
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0580
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0585
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0585
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0585
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0590
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0590
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0590
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0590
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0595
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0595
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0600
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0600
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0605
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0605
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0605
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0610
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0610
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0615
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0615
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0615
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0615
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0615
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0615
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0620
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0620
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0620
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0620
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0620
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0625
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0625
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0625
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0625
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0735
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0735
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0735
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0735
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0735
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0740
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0740
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0740
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0630
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0630
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0630
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0635
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0635
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0635
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0635
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0640
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0640
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0640
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0640
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0645
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0645
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0645
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0645
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0745
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0745
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0745
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0650
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0650
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0650
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0650
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0655
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0655
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0655
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0660
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0660
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0660
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0660
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0750
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0750
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0750
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0750
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0665
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0665
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0665
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0665
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0665
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0670
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0670
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0670
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0675
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0675
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0675
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0675
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0680
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0680
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0680
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0685
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0685
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0685
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0685


1879J.L. Markman et al. / Advanced Drug Delivery Reviews 65 (2013) 1866–1879
[144] C. Yang, J. Wang, D. Chen, J. Chen, F. Xiong, H. Zhang, Y. Zhang, N. Gu, J. Dou,
Paclitaxel-Fe3O4 nanoparticles inhibit growth of CD138(−) CD34(−) tumor
stem-like cells in multiple myeloma-bearing mice, Int. J. Nanomedicine 8 (2013)
1439–1449.

[145] H.S. Günther, N.O. Schmidt, H.S. Phillips, D. Kemming, S. Kharbanda, R. Soriano, Z.
Modrusan, H. Meissner, M. Westphal, K. Lamszus, Glioblastoma-derived stem
cell-enriched cultures form distinct subgroups according to molecular and
phenotypic criteria, Oncogene 27 (2008) 2897–2909.
[146] N. Borsellino, A. Belldegrun, B. Bonavida, Endogenous interleukin 6 is a resistance
factor for cis-diamminedichloroplatinum and etoposide-mediated cytotoxicity of
human prostate carcinoma cell lines, Cancer Res. 55 (1995) 4633–4639.

[147] P.B. Gupta, T.T. Onder, G. Jiang, K. Tao, C. Kuperwasser, R.A. Weinberg, E.S. Lander,
Identification of selective inhibitors of cancer stem cells by high-throughput
screening, Cell 138 (2009) 645–659.

[148] R. Siegel, D. Naishadham, A. Jemal, Cancer statistics, 2013, CA Cancer J. Clin. 63
(2013) 11–30.

http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0690
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0690
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0690
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0690
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0690
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0690
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0695
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0695
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0695
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0695
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0700
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0700
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0700
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0705
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0705
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0705
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0710
http://refhub.elsevier.com/S0169-409X(13)00232-9/rf0710

	Nanomedicine therapeutic approaches to overcome cancer drug resistance
	1. Introduction
	2. Classes of nanodrugs used to treat cancer and their current clinical status
	2.1. Lipid-based nanoparticles (liposomes)
	2.2. Polymer-based nanoparticles and micelles
	2.3. Dendrimers
	2.4. Carbon-based nanoparticles
	2.5. Metallic and magnetic nanoparticles

	3. Mechanisms of drug resistance
	3.1. Multidrug resistance mechanisms
	3.1.1. Efflux pump-mediated MDR
	3.1.2. Efflux pump-independent MDR

	3.2. Tumor cell heterogeneity, clonal selection and expansion as a potential source of drug resistance
	3.3. Cancer stem cells (CSCs) and drug resistance
	3.4. Activation of alternate receptors and pathways in cancer as a response to treatment
	3.5. Intrinsic and acquired mutations
	3.6. Tumor microenvironment and its contribution to MDR

	4. Evaluation of nano-drug delivery mechanisms and their potential moieties to treat MDR cancers
	4.1. Passive transport and enhanced permeability and retention (EPR) effect
	4.2. The addition of polyethylene glycol (PEG) to increase blood circulation time
	4.3. Active targeting agents to increase drug accumulation and overcome MDR
	4.3.1. Antibodies and their fragments specifically target cancer cells
	4.3.2. Nucleic acid aptamers (single stranded DNA or RNA oligonucleotides)
	4.3.3. Receptor ligands (peptides) as non-immunogenic targeting agents

	4.4. Enhanced endosomal escape to improve efficacy of the drug once internalized

	5. Specific resistance mechanisms overcome by nanomedicine
	5.1. Evasion and down-regulation of drug efflux pumps to treat MDR tumors
	5.2. Targeting cancer stem cells to overcome MDR and prevent recurrence
	5.3. Preventing the cross talk of cancer cells and their microenvironment
	5.4. Modifying the immune response to improve treatment of MDR cancers

	6. Recent progress in overcoming tumor resistance by using nanomedicines
	7. Conclusion and future direction
	References


