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Abstract

We consider block thresholding wavelet-based density estimators with randomly right-censored data
and investigate their asymptotic convergence rates. Unlike for the complete data case, the empirical wavelet
coefficients are constructed through the Kaplan–Meier estimators of the distribution functions in the
censored data case. On the basis of a result of Stute [W. Stute, The central limit theorem under random
censorship, Ann. Statist. 23 (1995) 422–439] that approximates the Kaplan–Meier integrals as averages
of i.i.d. random variables with a certain rate in probability, we can show that these wavelet empirical
coefficients can be approximated by averages of i.i.d. random variables with a certain error rate in L2.
Therefore we can show that these estimators, based on block thresholding of empirical wavelet coefficients,
achieve optimal convergence rates over a large range of Besov function classes Bs

p,q , s > 1/p, p ≥ 2,
q ≥ 1 and nearly optimal convergence rates when 1 ≤ p < 2. We also show that these estimators
achieve optimal convergence rates over a large class of functions that involve many irregularities of a wide
variety of types, including chirp and Doppler functions, and jump discontinuities. Therefore, in the presence
of random censoring, wavelet estimators still provide extensive adaptivity to many irregularities of large
function classes. The performance of the estimators is tested via a modest simulation study.
c© 2008 Elsevier Inc. All rights reserved.

MSC: primary 62G07; secondary 62G20

Keywords: Adaptive estimation; Besov spaces; Block thresholding; Censored data; Density estimation; Minimax
estimation; Nonlinear wavelet-based estimator; Rates of convergence

1. Introduction

It is well known that in medical follow-up research, industrial life-testing and other studies,
the observation on the survival time of a patient or a testing subject is often incomplete due to
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right censoring. Classical examples of the causes of this type of censoring are that the patient
was alive at the termination of the study, that the patient withdrew alive during the study, or
that the patient died from causes other than those under study. In those cases only part of the
observations are real death times. Our goal is to estimate nonparametrically the density functions
of the survival times from censored data and investigate their asymptotic properties.

Formally, let X1, X2, . . . , Xn be independent identically distributed (i.i.d.) survival times with
a common distribution function F and a density function f . Also let Y1, Y2, . . . , Yn be i.i.d.
censoring times with a common distribution function G. It is assumed that Xm is independent of
Ym for every m. Rather than observing X1, X2, . . . , Xn , the variables of interest, in the randomly
right-censored models, one observes Zm = min(Xm, Ym) = Xm ∧ Ym and δm = I (Xm ≤ Ym),
m = 1, 2, . . . , n, where I (A) denotes the indicator function of the set A. We are interested in
estimating f based on bivariate data (Zm, δm), m = 1, 2, . . . , n.

There is a huge literature on how to estimate density function or hazard rate function based
on censored data; for example, nonparametric kernel estimators are typically used. However it
is usually assumed that the underlying density function is a fixed smooth function. In this paper,
we consider that the underlying density functions to be estimated belong to a large function
class. We propose block thresholding wavelet estimators with censored data and investigate their
asymptotic convergence rates over that large class of functions.

Nonparametric regression estimation by wavelets is developed in a series of works of Donoho
and Johnstone [7–9] and Donoho et al. [10]. The recent monograph by Härdle et al. [15]
and the book by Vidakovic [23] provide excellent systematic discussions on wavelets and
their applications in statistics. Because wavelets are localized in both time and frequency and
have remarkable approximation properties, wavelet estimators automatically adapt to these
varying degrees of regularity (discontinuities, cusps, sharp spikes, etc.) of the underlying curves.
Therefore, wavelet estimators typically achieve optimal convergence rates over a large class of
functions with unknown degree of smoothness.

Most of nonlinear wavelet estimators are constructed through term-by-term thresholding of
the empirical wavelet coefficients. These estimators usually achieve nearly optimal convergence
rates within a logarithmic term. Hall et al. [13,14] introduce block thresholding wavelet
estimators for density and regression respectively by shrinking wavelet coefficients in groups
rather than individually. They show that block thresholded estimators achieve optimal global
convergence rates without a logarithm term. Cai [2,3] study block thresholding via the approach
of ideal adaptation with an oracle. On the basis of an oracle inequality, he investigates the
asymptotic global and local rates of convergence and numerical properties of a class of block
thresholding estimators for regression functions. It is shown that these estimators have excellent
performance over a large range of Besov classes. However, all above estimators are constructed
for the complete data case.

For randomly right-censored data, Antoniadis, Grégoire and Nason [1] describe a wavelet
method for estimation of a single density and a single hazard rate function. They obtain the
estimator’s asymptotic normality and asymptotic mean integrated squared error (MISE). Li [16]
considers a nonlinear wavelet estimator of a single density function with randomly censored data
and derives its mean integrated squared error.

The objective of this paper is to propose block thresholding wavelet estimators with censored
data for the density functions which belong to a large function class and investigate their
asymptotic convergence rates. We show that these estimators attain optimal and nearly optimal
rates of convergence over a wide range of Besov function classes. These results are analogous to
those in [13] and [4] for density estimation in the complete data case.
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In the next section, we give the elements of Besov spaces and wavelet transform, and provide
block thresholding wavelet density estimators. The main results are described in Section 3.
Section 4 contains a modest simulation study. The proofs of main results appear in Section 5
and Appendix.

2. Block thresholding wavelet estimators

This section contains some facts about wavelets that will be used in the sequel. Let φ(x) and
ψ(x) be father and mother wavelets, having the properties: φ and ψ are bounded and compactly
supported, and

∫
φ = 1. We call a wavelet ψr -regular if ψ has r vanishing moments and r

continuous derivatives. Let

φi0 j (x) = 2i0/2φ(2i0 x − j), ψi j (x) = 2i/2ψ(2i x − j), x ∈ R, i0, i ∈ Z;

then, the collection {φi0 j , ψi j , i ≥ i0, j ∈ Z} is an orthonormal basis (ONB) of L2(R).
Therefore, for all f ∈ L2(R),

f (x) =

∑
j∈Z

αi0 jφi0 j (x)+

∑
i≥i0

∑
j∈Z

βi jψi j (x),

where

αi0 j =

∫
f (x)φi0 j (x)dx, βi j =

∫
f (x)ψi j (x) dx .

The orthogonality properties of φ and ψ imply∫
φi0 j1φi0 j2 = δ j1 j2 ,

∫
ψi1 j1ψi2 j2 = δi1i2δ j1 j2 ,

∫
φi0 j1ψi j2 = 0, ∀i0 ≤ i,

where δi j denotes the Kronecker delta, i.e., δi j = 1, if i = j ; and δi j = 0, otherwise. For more
on the wavelets see [6].

As is done in the wavelet literature, we investigate wavelet-based estimators’ asymptotic
convergence rates over a large range of Besov function classes Bs

p,q , s > 0, 1 ≤ p, q ≤ ∞.
Parameter s is an index of regularity or smoothness and parameters p and q are used to specify
the type of norm. Besov spaces contain many traditional function spaces, in particular, the
well-known Sobolev and Hölder spaces of smooth functions Hm and Cs (Bm

2,2 and Bs
∞,∞

respectively). Besov spaces also include significant spatial inhomogeneity function classes, such
as the bump algebra and bounded variations classes. For a more detailed study we refer the reader
to [22].

For a given r -regular mother wavelet ψ with r > s, define the sequence norm of the wavelet
coefficients of a function f ∈ Bs

p,q by

| f |Bs
p,q

=

(∑
j

|αi0 j |
p

)1/p

+

 ∞∑
i=i0

2iσ

(∑
j

|βi j |
p

)1/p
q

1/q

, (2.1)

where σ = s + 1/2 − 1/p. [19] shows that the Besov function norm ‖ f ‖Bs
p,q

is equivalent to
the sequence norm | f |Bs

p,q
of the wavelet coefficients of f . Therefore we will use the sequence

norm to calculate the Besov norm ‖ f ‖Bs
p,q

in the sequel. We consider a subset of Besov space
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Bs
p,q such that s > 1/p, p, q ∈ [1, ∞]. The spaces of densities that we consider in this paper

are defined by

F s
p,q(M, L) =

{
f :

∫
f = 1, f ≥ 0, f ∈ Bs

p,q , ‖ f ‖Bs
p,q

≤ M, supp f ⊂ [−L , L]

}
,

i.e., F s
p,q(M, L) is a subset of densities with fixed compact support and bounded in the norm

of one of the Besov spaces Bs
p,q . Moreover, s > 1/p implies that F s

p,q(M, L) is a subset of
the space of bounded continuous functions. Hence, we shall consider the intersection of this set
F s

p,q(M, L) with B∞(A), where B∞(A) is the space of all functions f such that ‖ f ‖∞ ≤ A.
In order to demonstrate the optimality of block thresholding wavelet estimators, following

the notation of [13], let’s consider another function space Ṽs1(F
s
2,∞(M, L)). This function space

basically includes functions which may be written as a sum of a regular function in F s
2,∞(M, L)

and an irregular function in F s1
τ,∞(M, L) with τ = (s + 1/2)−1. From embedding properties of

Besov spaces ([15], p.124), we have F s1
τ,∞ ⊆ Bs1−s

2,∞ . But whenever s1 < s +
1
2 (i.e., s1 − s < 1

2 ),
space F s1

τ,∞ can be a very large function space which can include discontinues functions. For
more discussion on this function space, see Remark 3.4 in the next section.

In our random censorship model, we observe Zm = min(Xm, Ym), and δm = I (Xm ≤ Ym),
m = 1, 2, . . . , n. Let T < τH be a fixed constant, where τH = inf{x : H(x) = 1} ≤ ∞ is
the least upper bound for the support of H , the distribution function of Z1. We estimate fT (x),
i.e., the density function f (x) for x ∈ [−L , T ] (for the reason, see the following Remark 3.4).
We can select wavelets φ and ψ as those in [5] such that they form an orthonormal basis of
L2

[−L , T ]. Hence, in the following, we also assume that φi0 j and ψi j are compactly supported
in [−L , T ] and form a complete orthonormal basis of L2

[−L , T ].
The wavelet expansion of fT (x) is

fT (x) =

∑
j∈Z

αi0 jφi0 j (x)+

∑
i≥i0

∑
j∈Z

βi jψi j (x),

where

αi0 j =

∫
fT (x)φi0 j (x) dx, βi j =

∫
fT (x)ψi j (x) dx .

We will use the same notation as in [13], consider i0 = 0 and write φ j for φ0 j , α j for α0 j , etc.,
we have

fT (x) =

∑
j

α jφ j (x)+

∞∑
i=0

∑
j

βi jψi j (x).

Let K (x, y) =
∑

j φ(x − j)φ(y − j) be the wavelet projection kernel. Then there exists a

compactly supported Q ∈ L2 such that |K (x, y)| ≤ Q(x − y) for all x and y. Similarly,
define Ki (x, y) = 2i K (2i x, 2i y), i = 0, 1, 2, . . . , and Ki f (x) =

∫
Ki (x, y) f (y)dy. Then

Di f (x) =
∫

Di (x, y) f (y)dy, where Di (x, y) =
∑

j ψi j (x)ψi j (y) = Ki+1(x, y) − Ki (x, y).
These Di (x, y) are called innovation kernels. In terms of the above notation, we have

fT (x) = K0 f (x)+

∞∑
i=0

Di f (x). (2.2)
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Without loss of generality, we can assume that there is a common compactly supported Q, such
that

|K (x, y)| ≤ Q(x − y) and |D0(x, y)| ≤ Q(x − y) for all x and y. (2.3)

[6] shows that above conditions are met for certain compactly supported wavelets.
The above representation suggests the following estimators for Ki f (x) and Di f (x):

K̂i (x) =
1
n

n∑
m=1

Ki (x, Xm), D̂i (x) =
1
n

n∑
m=1

Di (x, Xm). (2.4)

The term-by-term hard thresholded wavelet estimator of fT (see [16, p.37]) is

f̃T (x) =

∑
j

α̂ jφ j (x)+

q∑
i=0

∑
j

β̂i j I (|β̂i j | > λ)ψi j (x), (2.5)

where q is a smoothing parameter, λ is a threshold and the empirical wavelet coefficients are

α̂ j =

∫
φ j (x)I (x ≤ T ) dF̂n(x) =

1
n

n∑
m=1

δm I (Zm ≤ T )φ j (Zm)

1 − Ĝn(Zm−)
,

β̂i j =

∫
ψi j (x)I (x ≤ T ) dF̂n(x) =

1
n

n∑
m=1

δi I (Zm ≤ T )ψi j (Zm)

1 − Ĝn(Zm−)
.

(2.6)

Here F̂n and Ĝn denote the Kaplan–Meier estimators of distribution functions F and G,
respectively, i.e.,

F̂n(x) = 1 −

n∏
m=1

[
1 −

δ(m)

n − m + 1

]I (Z(m)≤x)

,

Ĝn(x) = 1 −

n∏
m=1

[
1 −

1 − δ(m)

n − m + 1

]I (Z(m)≤x)

,

where Z(m) is the m-th ordered Z -value and δ(m) is the concomitant of the m-th-order Z statistic,
i.e., δ(m) = δk if Z(m) = Zk . Note that δm/n(1 − Ĝn(Zm−)) is the jump of the Kaplan–Meier
estimator F̂n at Zm .

The above term-by-term thresholded estimators (2.5) which are also considered in [17] don’t
attain the optimal convergence rates of n−2s/(1+2s), but do attain the rate (n−1 log2 n)2s/(1+2s),
which involves a logarithmic penalty. The reason is that a coefficient is more likely to contain a
signal if neighboring coefficients do also. Therefore, incorporating information on neighboring
coefficients will improve the estimation accuracy. But for a term-by-term thresholded estimator,
other coefficients have no influence on the treatment of a particular coefficient.

A block thresholding estimator is to threshold empirical wavelet coefficients in groups rather
than individually. It is constructed as follows. At each resolution level i , the integers j are
divided among consecutive, nonoverlapping blocks of length l, say Γik = { j : (k − 1)l +

1 ≤ j ≤ kl},−∞ < k < ∞. Within this block Γik , the average estimated squared bias
l−1∑

j∈B(k) β̂
2
i j (=: B̂ik)will be compared to the threshold. Here, B(k) refers to the set of indices

j in block Γik . If the average squared bias is larger than the threshold, all coefficients in the block
will be kept. Otherwise, all coefficients will be discarded. For additional details, see [2–4].
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Let Bik = l−1∑
j∈B(k) β

2
i j and estimating this with B̂ik(= l−1∑

j∈B(k) β̂
2
i j ), the block

thresholding wavelet estimator of fT becomes

f̂T (x) =

∑
j

α̂ jφ j (x)+

R∑
i=0

∑
k

∑
j∈B(k)

β̂i jψi j (x) I (B̂ik > C0n−1)

=: K̂0(x)+

R∑
i=0

∑
k

D̂ik(x)I (x ∈ Jik) I (B̂ik > C0n−1), (2.7)

where the last line defines K̂0(x) and D̂ik(x). The smoothing parameter R corresponds to the
highest detail resolution level, parameter l is the block length and C0 is a threshold constant.
Notice that D̂ik(x) is an estimate of Dik f (x) =

∑
j∈B(k) βi jψi j (x), and

Jik =

⋃
j∈B(k)

{
x : ψi j (x) 6= 0

}
=

⋃
j∈B(k)

{
suppψi j

}
.

Note that if the support of ψ is of length v, then the length of Jik is (l + v − 1)/2i
≤ 2l/2i ,

and these intervals overlap each other at either end by (v − 1)2−i . Therefore, without loss of
generality, we assume that the length of the support of ψ is 1; then these intervals Jik are
nonoverlapping.

Remark 2.1. We can define the wavelet estimator of f (x) (i.e., on the whole support [−L , L] of
f without truncation at T ), say f̂ (x), instead of fT (x), similarly to (2.5) and (2.6) in this paper.
However, in this case, the finiteness of the MISE, i.e. E

∫
( f̂ − f )2 < ∞, cannot be ensured,

because of the endpoint effect. This treatment is analogous to that of the MISE with kernel
estimation, which includes a nonnegative bounded and compactly supported weight function
w. Its role for w is to eliminate the endpoint effect [18, p.1523]. Thus we typically consider∫
( f̂T − fT )

2 to eliminate the endpoint effect. See also [16, p.38].

Remark 2.2. Although here we consider survival time setting, the random variables X and Y
need not necessarily be positive. Suppose that there is no censoring, i.e., G ≡ 0 on (−∞,∞).
Then δm ≡ 1, for all m = 1, 2, . . . , n, and upon taking T = τH = τF , we see that fT ≡ f and
the above estimator f̂T is analogous to those of [13].

3. Main results

The following theorems show that the wavelet-based estimators, based on block thresholding
of the empirical wavelet coefficients, attain optimal and nearly optimal convergence rates over a
large range of Besov function classes and behave themselves as if they know in advance in which
class the functions lie.

Theorem 3.1. Let f̂T be the block thresholding wavelet density estimator (2.7) with the block
length l = log n, R = blog2(nl−2)c and the threshold constant C0 given as

C0 = 112.5 A [1 − H(T )]−2
[1 − G(T )]−2(C2‖Q‖2 +

√
2‖Q‖1C−1/2

1 )2,

where C1 and C2 are the universal constants from Talagrand (1994) given in the Appendix.
Suppose that the wavelets φ and ψ are r-regular. Then, there exists a constant C such that for
all M, L ∈ (0,∞), 1/p < s < r, q ∈ [1,∞]:
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1. If p ∈ [2, ∞],

sup
f ∈Fs

p,q (M,L)∩B∞(A)
E
∫ (

f̂T − fT

)2
≤ C n−2s/(1+2s).

2. If p ∈ [1, 2),

sup
f ∈Fs

p,q (M,L)∩B∞(A)
E
∫ (

f̂T − fT

)2
≤ C

(
log2 n

) 2−p
p(1+2s) n−2s/(1+2s).

Remark 3.1. The above block thresholding wavelet estimators defined as in (2.7) are adaptive
in the sense that they don’t depend on unknown parameters s, p and q. When p ≥ 2, minimax
theory indicates that the best convergence rates over F s

p,q(M, L) are at n−2s/(1+2s). Thus, the
above estimators achieve exact optimal convergence rates, without one knowing the smoothness
parameters. This result is analogous to that for the complete data case. In the case 1 ≤ p < 2, the
above convergence rates are the same as those of the BlockJS estimators given in [2]. From [8,9],
the traditional linear estimators (including the kernel estimator with a fixed bandwidth) cannot
achieve the rates stated in Theorem 3.1. Hence using our above block thresholding estimators
has advantages over the traditional linear method.

Remark 3.2. Our block length l = log n is different from that, l = (log n)2, in [13]. From [2,3],
this block length l = log n is optimal both for the global error measure and estimating functions
at a point simultaneously. Our threshold constant C0 with censored data is analogous to that in
the complete data case, but it depends on the censoring distribution G also.

Theorem 3.2. Let f̂T be the block thresholding wavelet density estimator (2.7) with the block
length l = log n, R = blog2(nl−2)c and the threshold constant C0 given as

C0 = 112.5 A [1 − H(T )]−2
[1 − G(T )]−2(C2‖Q‖2 +

√
2‖Q‖1C−1/2

1 )2,

where C1 and C2 are the universal constants from [24] given in the Appendix. Suppose that the
wavelet ψ is r-regular with r > s1 and s/(1 + 2s) < s1 − s. Then, there exists a constant C such
that for all M, L ∈ (0,∞), 1/2 < s,

sup
f ∈Ṽs1 (F

s
2,∞(M,L))∩B∞(A)

E
∫ (

f̂T − fT

)2
≤ C n−2s/(1+2s).

Remark 3.3. The above result, in Theorem 3.2, is analogous to those in [13,4] for the complete
data case.

Remark 3.4. From the characterization of Besov spaces, it can be verified that a function which
has a finite number of jumps and the “regularity” ν elsewhere belongs to class Fν

ν−1,∞
(see

[15, p. 114]). Now from embedding properties of Besov spaces [15, p. 124], it can be shown
that F s+1/2

τ,∞ (= Fν
ν−1,∞

with ν = s + 1/2) is included in F s1
τ,∞ from s + 1/2 > s1. Therefore

F s1
τ,∞ can be a much larger space than the regular space F s

2,∞, since it can contain discontinuous

functions whenever s1 < s + 1/2 or s1 < τ−1, where τ = (s + 1/2)−1. In Theorem 3.2, we
only require s/(1 + 2s) < s1 − s, which may include the case s/(1 + 2s) < s1 − s < 1/2 or
s1 < s +1/2. Therefore, function space F s1

τ,∞ can contain discontinuous functions. For the kernel
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estimators with fixed bandwidth, the convergence rates could not achieve rates at n−2s/(1+2s) over
Ṽs1(F

s
2,∞(M, L)) if the underlying functions to be estimated are discontinuous. Minimax theory

indicates that the best convergence rates over F s
2,∞ are at n−2s/(1+2s). Thus, Theorem 3.2 shows

that wavelet estimators attain optimal convergence rates over a large class of functions which
include discontinuous functions.

4. Simulation results

To investigate the performance of the proposed wavelet estimator, we present a modest
simulation study. However, the proposed estimators in Theorems 3.1 and 3.2 are of purely
theoretical interest; they reduce the mean integrated squared error based on variance–bias
tradeoff. They are not practical for implementation, since the threshold constant C0 depends on
unknown constants A, C1, C2 and unknown distributions F and G. In this simulation study, we
determine the threshold C0 by cross-validation, which minimizes the prediction error generated
by comparing a prediction, based on half of the data, to the other half of the data. For details on
cross-validation, see [20]. In order to compare our wavelet estimators to the existing competitors,
we choose the [12] local linear regression smoother for comparison. Although the estimators are
devised for nonparametric regression settings, one can use a proper definition of binned values to
convert a density problem into a standard regression problem (we are aware that there is a certain
approximating error from the effect of binning). Therefore, for convenience of comparison, we
consider the regression settings in the simulation study and use the same function as in [12], i.e.,

Yi = 4.5 − 64X2
i (1 − X i )

2
− 16(X i − 0.5)2 + 0.25εi , εi ∼ i.i.d. N (0, 1).

For convenience of the discrete wavelet transform, we let X i = i/n, i = 1, 2, . . . , n, where
n is the sample size. We consider three different sample sizes: n = 256, 512 and 1024. The
censoring time Ti is conditionally independent of the survival time Yi given X i and is distributed
as (Ti |X i = x) ∼ exp(t (x)), where t (x) is the mean conditional censoring time given by

t (x) =

{
3(1.25 − |4x − 1|), if 0 ≤ x ≤ 0.5;

3(1.25 − |4x − 3|), if 0.5 < x ≤ 1.

For the above censoring variable, approximately 40% of the data are censored. We also consider
another censoring variable (Ti |X i = x) ∼ exp(2.2 ∗ t (x)) which results in approximately 20%
of data are censored. Fan and Gijbels [12] use the explicit local average transformation to replace
the censored observation Zi with Y ∗

i , which is a weighted average of all uncensored responses
which are larger than Zi within a small neighborhood of X i , i.e.,

Y ∗

i =

∑
j :Z j>Zi

Z j K
(

X i −X j
(X i+k−X i−k )/2

)
δ j

∑
j :Z j>Zi

K
(

X i −X j
(X i+k−X i−k )/2

)
δ j

,

where K is a nonnegative kernel function and k plays the role of the bandwidth. The value of
k can be determined by cross-validation. For numerical comparisons we consider the average
norm (ANorm) of the estimators at the sample points

ANorm =
1
N

N∑
l=1

(
n∑

i=1

(
f̂l(xi )− f (xi )

)2
)1/2

,
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Table 1
Average norm from N = 100 replications

20% censored 40% censored

n = 256 n = 512 n = 1024 n = 256 n = 512 n = 1024
Local linear 3.844 5.549 7.886 3.869 5.497 7.860
Wavelet 3.867 5.519 7.774 3.850 5.463 7.780

Table 2
Average norm from N = 100 replications

20% censored 40% censored

n = 256 n = 512 n = 256 n = 512
Local linear 7.691 9.199 8.540 10.721
Wavelet 7.332 8.941 9.421 11.851

where f̂l is the estimate of f in the l-th replication and N is the total number of replications.
Since different wavelets yield very similar results, we only use Daubechies’ compactly supported
wavelet Symmlet 8. We find that our wavelet estimators based on cross-validation are very close to
the Stein unbiased risk estimator [8] in terms of the mean integrated squared error. The simulation
results for different sample sizes and different censoring proportion are summarized in Table 1.
On the basis of these results, we see that our wavelet estimator has a very similar average norm
which is usually slightly smaller than that of the local linear regression smoother.

The second example that we considered is the following model: Yi = g(X i ) + εi , where
εi ∼ i.i.d. N (0, 1), i = 1, . . . , n (n = 256 and 512), and g(x) is a piecewise HeaviSine
function:

g(x) =

4 sin(4πx)+ 20, if 0 ≤ x < 0.3;

4 sin(4πx)+ 18, if 0.3 ≤ x < 0.7;

4 sin(4πx)+ 20, if 0.7 ≤ x ≤ 1.

We also consider the censoring time Ti to be conditionally independent of the survival time
Yi given X i and to be distributed as (Ti |X i = x) ∼ exp(t (x)), where t (x) = 4g(x) results
in approximately 40% censoring and t (x) = 2g(x) results in approximately 20% censoring.
The average norms for two estimators for different sample sizes and censorings are summarized
in Table 2. On the basis of the above simulation results, we found that for light censoring
(approximately 20%) and moderate sample sizes, our wavelet estimator does slightly better than
Fan and Gijbels’ local linear estimator. However, for heavier censoring, this advantage is lost.

Remark 4.1. It is well known that wavelet methods are very effective in estimating functions
which have locally varying (heterogeneous) degree of smoothing (inhomogeneity), i.e., these
functions are quite smooth on one part of the domain but much less regular on another part,
whereas kernel estimators with fixed bandwidth are an appropriate tool for estimating functions
with homogeneous degree of smoothness (regular functions). Typically, kernel methods ask for
a certain degree of smoothness for the underlying functions, while wavelet methods can deal
with functions which belong to a quite general function space. Therefore, wavelet methods do
very well in estimating the peaks and valleys of the underlying curves, but they are not very well
satisfied over the smooth portion. Wavelet methods are also very suitable in estimating the sudden
changes, such as discontinuities. It is evident that, because of the adaptability of the wavelet
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estimators to many different types of nonsmoothness, a price will be paid on the estimation of
a truly smooth curve. Of course, wavelet methods can’t replace the other smoothing methods,
but they do complement each other. From this small simulation study, we see that wavelet
estimators are very comparable to the [12] local linear regression smoother, which involves a
variable bandwidth.

5. Proofs

The overall proofs for the above theorems follow along the lines of [13] and [11] for density
estimation in the complete data case. But moving from complete data to censored data involves
a significant change in complexity. For complete data, the empirical wavelet coefficients would
be defined as averages of i.i.d. random variables. In this case, it is relatively easy to investigate
the large deviation behavior of the empirical wavelet coefficients. For the censored data case,
the empirical wavelet coefficients are constructed through the Kaplan–Meier estimators of the
distribution functions as in (2.6). Hence they are no longer sums of i.i.d. random variables. Li [17]
considers term-by-term thresholded estimators with censored data which don’t attain the optimal
convergence rates as in this paper. The proof for the block thresholding estimators is significantly
different from that for the term-by-term thresholded estimator in [17]. For the block thresholding
estimators, we will use a result from Talagrand (1994) to deal with large deviation behavior of
the empirical wavelet coefficients, instead of the standard Bernstein inequality.

The key part of the proof is approximating the empirical wavelet coefficients with averages
of i.i.d. random variables with a sufficiently small error rate. In the complete data case, we may
write empirical wavelet coefficients as integrals with respect to an empirical distribution function.
Naturally, in the random censored data case, we may write empirical wavelet coefficients as
integrals with respect to the Kaplan–Meier estimator. In this case, they are no longer sums of
i.i.d. random variables. Stute [21] approximates the Kaplan–Meier integrals as averages of i.i.d.
random variables with a certain rate in probability. Nevertheless we are able to show that these
empirical wavelet coefficients can be approximated by averages of i.i.d. random variables with
a certain error rate in L2 also, since the MISE considers L2 error (for details see the following
Lemma 5.1).

The proof of the above theorems can be broken into several parts. In view of (2.2) and (2.7),
we have

E‖ f̂T − fT ‖
2
2 ≤ 4(I1 + I2 + I3 + I4),

where

I1 = E
∥∥∥K̂0 − K0 f

∥∥∥2

2
,

I2 = E

∥∥∥∥∥ is∑
i=0

[∑
k

D̂ik I (Jik)I (B̂ik > C0n−1)− Di f

]∥∥∥∥∥
2

2

,

I3 = E

∥∥∥∥∥ R∑
i=is+1

[∑
k

D̂ik I (Jik)I (B̂ik > C0n−1)− Di f

]∥∥∥∥∥
2

2

,

I4 =

∥∥∥∥∥ ∞∑
i=R+1

Di f

∥∥∥∥∥
2

2

,

(5.1)
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where is be the integer such that 2is ' n1/(2s+1) (i.e., 2is ≤ n1/(2s+1) < 2is+1) for p ≥ 2 and

2is ' (log2 n)
2−p

p(1+2s) n1/(2s+1) for 1 ≤ p < 2. In order to prove the above theorems, it suffices to
bound each term I1, I2, I3 and I4 separately, which is done in the following Lemmas 5.4–5.7
respectively.

In order to prove Lemmas 5.4–5.7, we need some preparations. We begin with some lemmas.
The following first lemma is completely analogous to Lemma 4.1 of [16] with different notation
(α̂ j , ᾱ j , β̂i j and β̄i j here play the roles of b̂ j , b̃ j , b̂i j and b̃i j there with p = 1, and similarly
for U , V and W ). The second and third lemmas concern inequalities which will be used in the
sequel. All proofs of these lemmas are omitted. For proofs, see [16,13,2].

Lemma 5.1. Let α̂ j and β̂i j be defined as in Eq. (2.6). Also, let

ϕ j (x) = φ j (x)I (x ≤ T ), j = 0,±1,±2, . . . ,

ϕi j (x) = ψi j (x)I (x ≤ T ), i = 0, 1, . . . , R; j = 0,±1,±2, . . . ,

ᾱ j =
1
n

n∑
m=1

δmϕ j (Zm)

1 − G(Zm)
, j = 0,±1,±2, . . . ,

β̄i j =
1
n

n∑
m=1

δmϕi j (Zm)

1 − G(Zm)
, i = 0, 1, . . . , R; j = 0,±1,±2, . . . .

Then the following equations hold:

α̂ j = ᾱ j + W j + Rn, j , E(R2
n, j ) = O

(
1

n2

)∫
ϕ2

j dF,

β̂i j = β̄i j + W i j + Rn,i j , E(R2
n,i j ) = O

(
1

n2

)∫
ϕ2

i j dF,

where

W j (Zm) = U j (Zm)− V j (Zm), Wi j (Zm) = Ui j (Zm)− Vi j (Zm),

W j =
1
n

n∑
m=1

W j (Zm), W i j =
1
n

n∑
m=1

Wi j (Zm),

and

U j (Zm) =
1 − δm

1 − H(Zm)

∫ τH

Zm

ϕ j (w) F(dw),

Ui j (Zm) =
1 − δm

1 − H(Zm)

∫ τH

Zm

ϕi j (w) F(dw),

V j (Zm) =

∫ τH

−L

∫ τH

−L

ϕi j (w)I (v < Zm ∧ w)

[1 − H(v)][1 − G(v)]
G(dv)F(dw),

Vi j (Zm) =

∫ τH

−L

∫ τH

−L

ϕi j (w)I (v < Zm ∧ w)

[1 − H(v)][1 − G(v)]
G(dv)F(dw).

Remark 5.1. This lemma shows that empirical wavelet coefficients β̂i j (or α̂ j ) can be
approximated by averages of i.i.d. random variables β̄i j (or ᾱ j ) and W i j (or W j ) with a
sufficiently small term Rn,i j (or Rn, j ). Through the detailed calculation in [16], we are able
to show that W i j (or W j ) is negligible compared to the main term β̄i j (or ᾱ j ). Hence,
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asymptotically, empirical wavelet coefficients β̂i j (or α̂ j ) with censored data are equivalent to
empirical wavelet coefficients β̄i j (or ᾱ j ) for the complete data case.

The following lemma is very useful when one calculates the sequence norm of a function for
different values of p.

Lemma 5.2. Let u ∈ Rn , ‖u‖p = (
∑

i |ui |
p)1/p, and 0 < p1 ≤ p2 ≤ ∞. Then the following

inequalities hold:

‖u‖p2 ≤ ‖u‖p1 ≤ n
1
p1

−
1
p2 ‖u‖p2 .

Lemma 5.3. Let Di f and D̂i be defined as in (2.2) and (2.4). Then

E

∥∥∥∥∥ J∑
i=I

(
D̂i − Di f

)∥∥∥∥∥
2

2

≤

{
J∑

i=I

[
E
∫ (

D̂i − Di f
)2
]1/2

}2

.

Lemma 5.4. Suppose that the assumptions of Theorem 3.1 hold. Then

I1 = E
∥∥∥K̂0 − K0 f

∥∥∥2

2
= o

(
n−2s/(1+2s)

)
.

Proof. On the basis of the orthogonality of wavelets φ, we have

I1 =

∑
j

E
(
α̂ j − α j

)2
.

From Lemma 5.1,

I1 ≤ 3

{∑
j

E(ᾱ j − α j )
2
+

∑
j

EW
2
j0k +

∑
j

E R2
n, j

}
=: 3(I11 + I12 + I13).

Apply the same arguments as in Lemma 4.2 in [16, pp. 42, 43] and notice that when p = 1
in [16], we have

I11 = O(n−1 p) = O(n−1), I12 = o(n−1 p) = o(n−1), I13 = O(n−2 p) = O(n−2).

Hence, Lemma 5.4 is proved. �

In the proofs below, C represents a generic finite constant, the concrete value of which may
change from line to line in the sequel.

Lemma 5.5. Suppose that the assumptions of Theorem 3.1 hold. Then

I4 =

∥∥∥∥∥ ∞∑
i=R+1

Di f

∥∥∥∥∥
2

2

= o
(

n−2s/(1+2s)
)
.

Proof. On the basis of the orthogonality of wavelets ψ , we have

I4 =

∞∑
i=R+1

∑
j

β2
i j .
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From the wavelet expansion of fT in (2.2), the wavelet coefficients βi j =
∫

fT (x)ψi j (x)dx .
Because of supp fT ⊂ [−L , T ] and suppψ ⊂ [−v, v], we have, for any level i , that there are at
most C2i nonzero coefficients βi j .

First, let’s consider p < 2. From Lemma 5.2 and (2.1), we have ‖βi.‖2 ≤ ‖βi.‖p ≤ M2−iσ .
Thus

∑
j β

2
i j ≤ M22−2iσ . Since sp > 1 and σ > 1/2, we have I4 ≤

∑
∞

i=R+1 M22−2iσ
=

M22−2Rσ2−2σ (1 − 2−2σ )−1
≤ M22−2Rσ . On the basis of our choice R with 2R

' n(log2 n)−2

and 2σ = 1 + 2(s − 1/p) > 2s/(2s + 1), we obtain I4 = o
(
n−2s/(1+2s)

)
.

For p ≥ 2, from Lemma 5.2, we have ‖βi.‖2 ≤ (C2i )
1
2 −

1
p ‖βi.‖p ≤ C2−is . Thus, we have

I4 ≤ C
∞∑

R+1

2−2is
= C2−2Rs2−2s(1 − 2−2s)−1

≤ C2−2Rs .

Again, on the basis of our choice of R and s > 0, we have I4 = o
(
n−2s/(1+2s)

)
.

Taken together with p < 2, this completes the proof of the lemma. �

Lemma 5.6. Suppose that the assumptions of Theorem 3.1 hold with p ≥ 2 and 2is ' n1/(2s+1).
Then

I2 = E

∥∥∥∥∥ is∑
i=0

[∑
k

D̂ik I (Jik)I (B̂ik > C0n−1)− Di f

]∥∥∥∥∥
2

2

≤ Cn−2s/(1+2s).

Suppose that the assumptions of Theorem 3.2 hold with 1 ≤ p < 2 and 2is '

(log2 n)
2−p

p(1+2s) n1/(2s+1). Then

I2 = E

∥∥∥∥∥ is∑
i=0

[∑
k

D̂ik I (Jik)I (B̂ik > C0n−1)− Di f

]∥∥∥∥∥
2

2

≤ C
(
log2 n

) 2−p
p(1+2s) n−2s/(1+2s).

Proof. From Lemma 5.3, we have

I2 ≤


is∑

i=0

E
∫ (∑

k

D̂ik(x)I (x ∈ Jik)I (B̂ik > C0n−1)− Di f (x)

)2

dx

1/2


2

.

Writing Di f (x) =
∑

j βi jψi j (x) =
∑

k
∑

j∈B(k) βi jψi j (x) =:
∑

k Dik f (x), we have for the
term in brackets

E
∫ (∑

k

D̂ik(x)I (x ∈ Jik)I (B̂ik > C0n−1)− Di f (x)

)2

dx

≤ 3

E
∫ [∑

k

(
D̂ik(x)− Dik f (x)

)
I (x ∈ Jik)I (B̂ik > C0n−1)

]2

dx

+ E
∫ [∑

k

Dik f (x)I (B̂ik ≤ C0n−1)I (Bik ≤ 2C0n−1)

]2

dx

+ E
∫ [∑

k

Dik f (x)I (B̂ik ≤ C0n−1)I (Bik > 2C0n−1)

]2

dx


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≤ 3

{
E
∫ (

D̂i (x)− Di f (x)
)2

dx

+ E
∑

k

∫
Jik

(Dik f (x))2dx I (Bik ≤ 2C0n−1)

+ E
∑

k

∫
Jik

(Dik f (x))2dx I (B̂ik ≤ C0n−1)I (Bik > 2C0n−1)

}
=: 3 (I21 + I22 + I23) ,

where the last inequality follows from the orthogonality of ψ and D̂i (x) :=
∑

j β̂i jψi j (x).
As to the first term I21, from Lemma 5.1, we have

I21 =

∑
j

E(β̂i j − βi j )
2

≤ 3

{∑
j

E(β̄i j − βi j )
2
+

∑
j

EW
2
i j +

∑
j

E R2
n,i j

}
=: 3(I211 + I212 + I213).

Through direct calculation as in term I1 (see also (4.15) and (4.16) in [16, p. 43]), we can get

I211 = O(n−12i ), I212 = o(n−12i ), I213 = O(n−22i ).

Thus, we have I21 ≤ C2i n−1.
As to the term I22, from the definition of Bik , we have

∫
Jik
(Dik f (x))2dx =

∑
j∈B(k) β

2
i j =

l Bik . Since there are at most l−12i terms in
∑

k for each i , we have I22 =
∑

k l2C0n−1
≤

C2i n−1.
The term I23 involves large deviation behavior and will be considered separately in the next

section. Assume that I23 ≤ Cn−1 for all i for the time being; we obtain

I2 ≤

{
is∑

i=0

[
C2i n−1

+ C2i n−1
+ Cn−1

]1/2
}2

≤ C

{
is∑

i=0

[
(2i n−1)1/2 + n−1/2

]}2

≤ C
(

2is n−1
+ i2

s n−1
)
.

Now, if is satisfies 2is ' n1/(2s+1), then I2 ≤ Cn−2s/(1+2s). If is satisfies 2is '

(log2 n)
2−p

p(1+2s) n1/(2s+1), then I2 ≤ C
(
log2 n

) 2−p
p(1+2s) n−2s/(1+2s), which completes the proof of

the lemma. �

Lemma 5.7. Suppose that the assumptions of Theorem 3.1 hold with p ≥ 2 and 2is ' n1/(2s+1).
Then

I3 = E

∥∥∥∥∥ R∑
i=is+1

[∑
k

D̂ik I (Jik)I (B̂ik > C0n−1)− Di f

]∥∥∥∥∥
2

2

≤ C n−2s/(1+2s).
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Suppose that the assumptions of Theorem 3.2 hold with 1 ≤ p < 2 and 2is '

(log2 n)
2−p

p(1+2s) n1/(2s+1). Then

I3 = E

∥∥∥∥∥ R∑
i=is+1

[∑
k

D̂ik I (Jik)I (B̂ik > C0n−1)− Di f

]∥∥∥∥∥
2

2

≤ C
(
log2 n

) 2−p
p(1+2s) n−2s/(1+2s).

Proof. From Lemma 5.3, we have

I3 ≤


R∑

i=is+1

E
∫ (∑

k

D̂ik I (Jik)I (B̂ik > C0n−1)− Di f (x)

)2

dx

1/2


2

.

Applying the same argument as in I2, we can write the term in brackets as

E
∫ (∑

k

D̂ik I (Jik)I (B̂ik > C0n−1)− Di f (x)

)2

dx

≤ E
∑

k

∫
Jik

(
D̂ik(x)− Dik f (x)

)2
dx I (B̂ik > C0n−1)I (Bik > C0(2n)−1)

+ E
∑

k

∫
Jik

(
D̂ik(x)− Dik f (x)

)2
dx I (B̂ik > C0n−1)I (Bik ≤ C0(2n)−1)

+ E
∑

k

∫
Jik

(Dik f (x))2 dx I (B̂ik ≤ C0n−1)I (Bik ≤ 2C0n−1)

+ E
∑

k

∫
Jik

(Dik f (x))2 dx I (B̂ik ≤ C0n−1)I (Bik > 2C0n−1)

=: I31 + I32 + I33 + I34.

The terms I32 and I34 involve large deviation behavior and will be considered separately in
the next section. Assume that I32 ≤ Cn−1 and I34 ≤ Cn−1 for all i for the time being.

Let’s consider the first part of the lemma with p ≥ 2 and 2is ' n1/(2s+1). For the first term
I31, noticing BikC−1

0 2n ≥ 1 and E(β̂i j − βi j )
2

≤ Cn−1 for all i and j , we have

I31 ≤

∑
k

E
∫

Jik

(
D̂ik(x)− Dik f (x)

)2
dx · BikC−1

0 2n

≤ C
∑

k

∑
j∈B(k)

E(β̂i j − βi j )
2
· l−1

∑
j∈B(k)

β2
i j n

≤ C
∑

k

l n−1
· l−1

∑
j∈B(k)

β2
i j n = C

∑
j

β2
i j .

When p ≥ 2, as in Lemma 5.5, we have
∑

j β
2
i j ≤ C2−2si . Hence I31 ≤ C2−2si .

Similarly, when p ≥ 2,

I33 ≤

∑
k

∫
Jik

(Dik f (x))2 dx · I (Bik ≤ 2C0n−1)
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≤ C
∑

j

β2
i j ≤ C2−2si .

Combine these four terms together; we have, for p ≥ 2,

I3 ≤

[
R∑

i=is+1

(
C2−2si

+ Cn−1
+ C2−2si

+ Cn−1
)1/2

]2

≤ C

[
R∑

i=is+1

(
2−si

+ n−1/2
)]2

≤ C
(

2−2sis + R2n−1
)

≤ Cn−2s/(1+2s).

Now let’s consider the second part of the lemma with 1 ≤ p < 2 and 2is '

(log2 n)
2−p

p(1+2s) n1/(2s+1). Since C−1
0 2nBik > 1 in I31, we have

I31 ≤ E
∑

k

∫
Jik

(
D̂ik(x)− Dik f (x)

)2
dx · I (Bik > C0(2n)−1)

≤ C
∑

k

ln−1
· n

p
2 B

p
2

ik

≤ Cln−1+
p
2
∑

k

(
l−1

∑
j∈B(k)

β2
i j

) p
2

≤ Cl1−
p
2 n−1+

p
2
∑

k

( ∑
j∈B(k)

β2
i j

) p
2

.

From Lemma 5.2, when p < 2, we have ‖βi ·‖2 ≤ ‖βi ·‖p, thus
(∑

j∈B(k) β
2
i j

)p/2
≤∑

j∈B(k) β
p
i j . Hence,

I31 ≤ Cl1−
p
2 n−1+

p
2
∑

j

β
p
i j ≤ Cl1−

p
2 n−1+

p
2 M p2−iσ p,

and the last inequality follows from Lemma 5.5 when p < 2.
As to the term I33, for p < 2, noticing that 2C0n−1 B−1

ik ≥ 1, we have

I33 ≤

∑
k

∫
Jik

(Dik f (x))2 dx · I (Bik ≤ 2C0n−1)

≤

∑
k

l Bik ·

(
2C0n−1 B−1

ik

)1−
p
2

= Cln−1+
p
2
∑

k

B
p
2

ik

≤ Cl1−
p
2 n−1+

p
2 M p2−iσ p,

and the last step follows from that of I31.
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Therefore, when 1 ≤ p < 2, we have

I3 ≤

{
R∑

i=is+1

[
C(n−1l)1−

p
2 2−iσ p

+ Cn−1
+ C(n−1l)1−

p
2 2−iσ p

+ Cn−1
]1/2

}2

≤ C

{
R∑

i=is+1

[
(n−1l)

1
2 −

p
4 2−iσ p/2

+ Cn−
1
2

]}2

≤ C
(
(n−1l)1−

p
2 2−isσ p

+ R2n−1
)

≤ C
(
log2 n

) 2−p
p(1+2s) n−2s/(1+2s),

which proves the second part of the lemma. �

We are now in a position to give the proofs of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. The proof follows from Lemmas 5.4–5.7 and the fact that

E‖ f̂T − fT ‖
2
2 ≤ 4(I1 + I2 + I3 + I4). �

Proof of Theorem 3.2. The proof is similar to that of Theorem 3.1 and is simpler, since we only
need to consider the p ≥ 2 case. Notice that the large deviation results for empirical wavelet
coefficients and the proofs for term I1 in Lemma 5.4 and term I2 in Lemma 5.6 still hold for
the new function space Ṽs1(F

s
2,∞(M, L)), since these results do not depend on the smoothness

parameter s. Hence in order to prove Theorem 3.2, it suffices to prove Lemmas 5.5 and 5.7.
Let’s consider Lemma 5.5 first. In the sequel, for the sake of convenience, we write f as fT ,

suppressing T . Recall that for all f ∈ Ṽs1(F
s
2,∞(M, L)) f may be written as f = f1 + f2 where

f1 ∈ F s
2,∞(M, L) and f2 ∈ F s1

τ,∞(M, L). Then, from Lemma 5.5, we have I4 ≤ 2(I4,1 + I4,2),

where I4,1 =
∑

∞

i=R+1
∑

j β
2
i j,1, I4,2 =

∑
∞

i=R+1
∑

j β
2
i j,2, βi j,1 =

∫
f1ψi j and βi j,2 =

∫
f2ψi j .

Since f1 ∈ F s
2,∞(M, L), from Lemma 5.5 we have I4,1 = o

(
n−2s/(1+2s)

)
. As to I4,2,

using the inclusion properties of Besov spaces, we have f2 ∈ F s1
τ,∞(M, L) ⊆ Bs1−s

2,∞ (M, L).
Applying the norm equivalence between the Besov norm of a function and the sequence norm
of wavelet coefficients of a function in (2.1), we have

∑
j β

2
i j,2 = ‖βi.,2‖

2
≤ M2−2i(s1−s).

Hence, I4,2 ≤ M
∑

∞

i=R+1 2−2i(s1−s)
= M

(
n−1(log2 n)2

)2(s1−s)
. From the additional condition

s/(1 + 2s) < s1 − s stated in Theorem 3.2, we finally obtain I4,2 = o(n−2s/(1+2s)). Combining
this with I4,1, we complete the proof of Lemma 5.5.

For the term I3, the proof can be derived in the same spirit as in I4. We can treat I3,1 and
I3,2 separately. The proof of I3,1 is the same as that in Lemma 5.7, while the proof for I3,2 can
be derived by Besov space embedding properties. Since the proof is similar to that in [13, p.
940–941] and the step by step details are long, we omit them here. �
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Appendix

In order to obtain the bounds on the terms I23, I32 and I34 in Lemmas 5.6 and 5.7, we need
the following theorem from Talagrand (1994) as stated in [13, p. 937].

Theorem A.1. Let U1,U2, . . . ,Un be independent and identically distributed random variables.
Let ε1, ε2, . . . , εn be independent Rademacher random variables that are also independent of the
Ui . Let F be a class of functions uniformly bounded by M. If there exists v, H > 0 such that for
all n,

sup
h∈F

var h(U ) ≤ v, E sup
h∈F

n∑
m=1

εmh(Um) ≤ nH,

then there exist universal constants C1 and C2 such that for all λ > 0,

P

{
sup
h∈F

[
1
n

n∑
m=1

h(Um)− Eh(U )

]
≥ λ+ C2 H

}
≤ e

−nC1

[
λ2
v

∧
λ
M

]
.

The following lemma will also be needed in the sequel. For the proof, see [13, p. 939].

Lemma A.1. If
∫

Jik
(Dik f (x))2dx ≤ 2−1lC0n−1, then{∫

Jik

(D̂ik(x))
2dx ≥ lC0n−1

}
⊆

{∫
Jik

(D̂ik(x)− Dik f (x))2dx ≥ 0.08lC0n−1
}
.

If
∫

Jik
(Dik f (x))2dx > 2lC0n−1, then{∫

Jik

(D̂ik(x))
2dx ≤ lC0n−1

}
⊆

{∫
Jik

(D̂ik(x)− Dik f (x))2dx ≥ 0.16lC0n−1
}
.

Lemma A.2. Suppose that the assumptions of Theorem 3.1 hold. Then

I23 = E
∑

k

∫
Jik

(Dik f (x))2dx I (B̂ik ≤ C0n−1)I (Bik > 2C0n−1) = O
(

n−1
)
.

Proof. From Lemma A.1, we have

I23 ≤ E
∑

k

∫
Jik

(Dik f (x))2dx · I

(∫
Jik

(
D̂ik(x)− Dik f (x)

)2
dx ≥ 0.16lC0n−1

)
.

From Lemma 5.1, we may write

D̂ik(x) =

∑
j∈B(k)

β̂i jψi j (x)

=

∑
j∈B(k)

(β̄i j + W i j )ψi j (x)+

∑
j∈B(k)

Rn,i jψi j (x)

=: Dik(x)+ Rn,ik(x),
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where

Dik(x) =
1
n

n∑
m=1

[
δm I (Zm ≤ T )

1 − G(Zm)

∑
j∈B(k)

ψi j (Zm)ψi j (x)

+
1 − δm

1 − H(Zm)

∫ τH

Zm

∑
j∈B(k)

ψi j (w)ψi j (x)I (w ≤ T ) F(dw)

−

∫ τH

−L

∫ τH

−L

I (v < Zm ∧ w)

[1 − H(v)][1 − G(v)]

∑
j∈B(k)

ψi j (w)ψi j (x)G(dv)F(dw)

]

=:
1
n

n∑
m=1

[
δm I (Zm ≤ T )

1 − G(Zm)
Dik(x, Zm)

+
1 − δm

1 − H(Zm)

∫ τH

Zm

Dik(x, w)I (w ≤ T ) F(dw)

−

∫ τH

−L

∫ τH

−L

I (v < Zm ∧ w)

[1 − H(v)][1 − G(v)]
Dik(x, w)G(dv)F(dw)

]
=:

1
n

n∑
m=1

Tik(x, Zm).

The second equality defines Dik(x, y) =
∑

j∈B(k) ψi j (x)ψi j (y) and the last equality defines
Tik(x, Zm).

From Lemma 5.1 and applying the triangle inequality, we have

I23 ≤ E
∑

k

∫
Jik

(Dik f (x))2dx · I

(∫
Jik

(
Dik(x)− Dik f (x)

)2
dx ≥ 0.08αlC0n−1

)
+ E

∑
k

∫
Jik

(Dik f (x))2dx · I

(∫
Jik

(
Rn,ik(x)

)2 dx ≥ 0.08βlC0n−1
)

=: I231 + I232,

where α and β are any positive numbers such that α + β = 1.
Let’s consider the term I232 first. From the orthogonality of ψ and applying the Markov

inequality, we have

I232 ≤

∑
k

∫
Jik

(Dik f (x))2dx ·

∑
j∈B(k)

E(R2
n,i j )(0.08βlC0n−1)−1

≤

∑
k

∑
j∈B(k)

β2
i j · C(ln)−1

∑
j∈B(k)

∫
ψ2

i j dF

≤ Cn−1
∑

j

β2
i j ,

where the second inequality follows from Lemma 5.1 and the last inequality follows from there
being l terms in the sums

∑
j∈B(k) and

∫
ψ2

i j dF ≤ ‖ f ‖∞ for all i and j . As in Lemma 5.5,∑
j β

2
i j ≤ M22−2iσ when p < 2 and

∑
j β

2
i j ≤ C2−is when p ≥ 2. Hence I232 ≤ Cn−1 for any

value of p.
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As to the first term I231, we can apply the above Talagrand Theorem A.1. Write{∫
Jik

(
Dik(x)− Dik f (x)

)2
dx ≥ 0.08αlC0n−1

}
=

{[∫
Jik

(
Dik(x)− Dik f (x)

)2
dx

]1/2

≥

√
0.08αlC0n−1

}

=

{
sup

‖g‖2≤1

∫
Jik

(
Dik(x)− Dik f (x)

)
g(x) dx ≥

√
0.08αlC0n−1

}

=

{
sup

‖g‖2≤1

[
1
n

n∑
m=1

∫
Jik

Tik(x, Zm)g(x) dx − E
∫

Jik

Tik(x, Zm)g(x)dx

]

≥

√
0.08αlC0n−1

}

=:

{
sup
h∈F

[
1
n

n∑
m=1

h(Zm)− Eh(Z)

]
≥

√
0.08αlC0n−1

}
,

where F = {
∫

Jik
Tik(x, ·)I ( j ∈ B(k))g(x)dx : ‖g‖2 ≤ 1} and the third equality follows from

ETik(x, Z) = Dik f (x).
In order to apply the Talagrand Theorem, we need to compute these constants M, v, H and

λ.

M = sup
y

∣∣∣∣∫
Jik

g(x)Tik(x, y)dx

∣∣∣∣ ≤ sup
y

‖g‖
2
2

{∫
Jik

T 2
ik(x, y)dx

}1/2

.

Recall that

Tik(x, Zm) =
δm I (Zm ≤ T )

1 − G(Zm)
Dik(x, Zm)

+
1 − δm

1 − H(Zm)

∫ τH

Zm

Dik(x, w)I (w ≤ T ) F(dw)

−

∫ τH

−L

∫ τH

−L

I (v < Zm ∧ w)

[1 − H(v)][1 − G(v)]
Dik(x, w)G(dv)F(dw).

=: Tik,1(x, Zm)+ Tik,2(x, Zm)+ Tik,3(x, Zm).

Thus

M ≤ sup
y

{
3
∫

Jik

T 2
ik,1(x, y)dx + 3

∫
Jik

T 2
ik,2(x, y)dx + 3

∫
Jik

T 2
ik,3(x, y)dx

}1/2

.

Since ∫
Jik

T 2
ik,1(x, y)dx ≤

1

[1 − G(T )]2

∫
Jik

D2
ik(x, y)dx

≤
1

[1 − G(T )]2

∫
Jik

22i Q2(2i (x − y))dx,
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we have

sup
y

∫
Jik

T 2
ik,1(x, y)dx ≤

2i
‖Q‖

2
2

[1 − G(T )]2 .

Similarly, we can have

sup
y

∫
Jik

T 2
ik,2(x, y)dx ≤

2i
‖Q‖

2
2

[1 − H(T )]2 ,

sup
y

∫
Jik

T 2
ik,3(x, y)dx ≤

2i
‖Q‖

2
2

[1 − G(T )]2[1 − H(T )]2 .

Thus, we have

M ≤

{
3

[1 − G(T )]2 +
3

[1 − H(T )]2 +
3

[1 − G(T )]2[1 − H(T )]2

}1/2

2i/2
‖Q‖2

≤
3

[1 − G(T )][1 − H(T )]
2i/2

‖Q‖2.

Through similar direct calculation, we can obtain that

v ≤ sup
‖g‖2≤1

E

{∫
Jik

Tik(x, Z)g(x)dx

}2

≤ 3 sup
‖g‖2≤1

E

{∫
Jik

Tik,1(x, Z)g(x)dx

}2

+ 3 sup
‖g‖2≤1

E

{∫
Jik

Tik,2(x, Z)g(x)dx

}2

+ 3 sup
‖g‖2≤1

E

{∫
Jik

Tik,3(x, Z)g(x)dx

}2

.

As to the first term, we have

E

{∫
Jik

Tik,1(t, Z)g(t)dt

}2

=

∫∫
x<y

{∫
Jik

I (x ≤ T )

1 − G(x)
Dik(t, x)g(t)dt

}2

dF(x)dG(y)

≤

∫ {∫
Jik

Dik(t, x)g(t)dt

}2 I (x ≤ T )

1 − G(x)
dF(x)

≤
1

1 − G(T )

∫ {∫
Jik

Dik(t, x)g(t)dt

}2

f (x)dx .

From the exact same argument as in [13, p. 938], we can get

sup
‖g‖2≤1

E

{∫
Jik

Tik,1(x, Z)g(x)dx

}2

≤
1

1 − G(T )
‖ f ‖∞‖Q‖

2
1.

Similarly, we can obtain

sup
‖g‖2≤1

E

{∫
Jik

Tik,2(x, Z)g(x)dx

}2

≤
1

[1 − G(T )][1 − H(T )]
‖ f ‖∞‖Q‖

2
1,

sup
‖g‖2≤1

E

{∫
Jik

Tik,3(x, Z)g(x)dx

}2

≤
1

[1 − G(T )]2[1 − H(T )]2 ‖ f ‖∞‖Q‖
2
1.
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Combining above terms together, we finally obtain

v ≤
9

[1 − G(T )]2[1 − H(T )]2 ‖ f ‖∞‖Q‖
2
1.

At last, from [13, p. 939], we have

nH = E

{
sup

‖g‖2≤1

n∑
m=1

∫
Jik

Tik(x, Zm)g(x)dx · εm

}

≤ n1/2
{∫

Jik

E T 2
ik(x, Z)dx

}1/2

.

Through direct calculation, we have

ET 2
ik,1(t, Z) =

∫∫
x<y

I (x ≤ T )

[1 − G(x)]2 D2
ik(t, x)dF(x)dG(y)

≤
1

1 − G(T )
‖ f ‖∞2i

‖Q‖
2
2,

for all the values of t . Since the length of Jik is l2−i , we have∫
Jik

E T 2
ik,1(x, Z)dx ≤

1
1 − G(T )

l‖ f ‖∞‖Q‖
2
2.

Like in the above calculation, we obtain∫
Jik

E T 2
ik,2(x, Z)dx ≤

1

[1 − H(T )]2 l‖ f ‖∞‖Q‖
2
2,∫

Jik

E T 2
ik,3(x, Z)dx ≤

1

[1 − G(T )]2[1 − H(T )]2 l‖ f ‖∞‖Q‖
2
2.

Thus, we obtain

nH ≤
3

[1 − G(T )][1 − H(T )]

(
nl‖ f ‖∞‖Q‖

2
2

)1/2
.

Now applying Theorem A.1 with the above constants M , v, H and

λ =

√
0.08αC0ln−1 − 3C2[1 − H(T )]−1

[1 − G(T )]−1
√

‖ f ‖∞‖Q‖
2
2ln−1,

we have

P

(∫
Jik

(
Dik(x)− Dik f (x)

)2
≥ 0.08αlC0n−1

)
≤ exp

{
−nC1

(
λ2

v
∧
λ

M

)}
.

On the basis of our choice of R such that 2R
' n(log n)−2, we have λ2v−1

≤ λM−1. Thus we
have

P

(∫
Jik

(
Dik(x)− Dik f (x)

)2
≥ 0.08αlC0n−1

)
≤ exp

{
−nC1

(
λ2

9[1 − H(T )]−2[1 − G(T )]−2‖ f ‖∞‖Q‖
2
1

)}
.



1540 L. Li / Journal of Multivariate Analysis 99 (2008) 1518–1543

In order to make

P

(∫
Jik

(
Dik(x)− Dik f (x)

)2
≥ 0.08αlC0n−1

)
≤ n−1, (A.1)

through direct calculation we only need that the threshold constant C0 in λ satisfies

C0 ≥
9‖ f ‖∞

0.08α[1 − H(T )]2[1 − G(T )]2 (C2‖Q‖2)
2.

But, based on our choice C0 as in Theorem 3.1, let α be close to 1; C0 is greater than the above
constant.

Thus, I231 ≤ n−1∑
j β

2
i j ≤ Cn−1. Combining another term, I232, we prove the lemma. �

Lemma A.3. Suppose that the assumptions of Theorem 3.1 hold. Then

I32 = E
∑

k

∫
Jik

(
D̂ik(x)− Dik f (x)

)2
dx I (B̂ik > C0n−1)I (Bik ≤ C0(2n)−1)

= O
(

n−1
)
.

Proof. Applying the triangle inequality and Lemma 5.1, we have

I32 ≤ 2E
∑

k

∫
Jik

(
Dik(x)− Dik f (x)

)2
dx I (B̂ik > C0n−1)I (Bik ≤ C0(2n)−1)

+ 2E
∑

k

∫
Jik

R2
n,ik(x)dx

=: 2(I321 + I322).

As to the second term I322, using Lemma 5.1, we have

I322 ≤ E
∑

k

∑
j∈B(k)

R2
n,i j = O

(
1

n2

)∑
j

∫
ψ2

i j dF ≤
C

n2 2i
‖ f ‖∞ ≤ Cn−1,

where the last two inequalities follow from there being at most C2i terms in the sum
∑

j and
2i

≤ n for all i . As to the first term, write

I321 ≤ E
∑

k

∫
Jik

(
Dik(x)− Dik f (x)

)2
dx · I

×

(∫
Jik

(
D̂ik(x)− Dik f (x)

)2
dx ≥ 0.16lC0n−1

)
≤ E

∑
k

∫
Jik

(
Dik(x)− Dik f (x)

)2
dx · I

×

(∫
Jik

(
Dik(x)− Dik f (x)

)2
dx ≥ 0.08lC0n−1

)
+ E

∑
k

∫
Jik

(
Dik(x)− Dik f (x)

)2
dx · I

(∫
Jik

R2
n,ik(x)dx ≥ 0.08lC0n−1

)
=: I3211 + I3212.
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As to the first term I3211, we need the following identity:

E[Y 2 I (Y > a)] = a2 P(Y > a)+

∫
∞

a
2y P(Y > y)dy,

with Y 2
=
∫

Jik

(
Dik(x)− Dik f (x)

)2
dx and a =

√
0.08lC0n−1. Therefore

I3211 =

∑
k

a2 P(Y > a)+

∑
k

∫
∞

a
2y P(Y > y)dy =: L1 + L2. (A.2)

From (A.1), we have

L1 ≤

∑
k

(0.08)C0ln−1n−1
≤

∑
k

Cln−2
≤ Cn−1,

and the last inequality follows from there being at most Cl−12i terms in the sum
∑

k and
2i

≤ 2R
≤ n for all i .

As to the probability P(Y > y) in the term L2, applying the Talagrand Theorem A.1 with
λ = y − C2 H , we have

P(Y > y) = P (Y > (y − C2 H)+ C2 H)

≤ exp

{
−nC1

(
(y − C2 H)2

9[1 − H(T )]−2[1 − G(T )]−2‖ f ‖∞‖Q‖
2
1

∧

∧
y − C2 H

3[1 − H(T )]−1[1 − G(T )]−12i/2‖Q‖2

)}
.

Let y0 satisfy

(y − C2 H)2

9[1 − H(T )]−2[1 − G(T )]−2‖ f ‖∞‖Q‖
2
1

=
y − C2 H

3[1 − H(T )]−1[1 − G(T )]−12i/2‖Q‖2
,

which results in y0 =
3

[1−H(T )][1−G(T )]
‖ f ‖∞‖Q‖

2
1

2i/2‖Q‖2
− C2 H > 0. Therefore, we have∫

∞

a
2y P(Y > y)dy =

∫ y0

a
2y exp

{
−nC3(y − C2 H)2

}
dy

+

∫
∞

y0

2y exp {−nC4(y − C2 H)} dy

=: L21 + L22,

where C3 = 9−1C−1
1 [1 − H(T )]2

[1 − G(T )]2
‖ f ‖

−1
∞ ‖Q‖

−2
1 and C4 = 3−1C−1

1 [1 − H(T )][1 −

G(T )]2−i/2
‖Q‖

−1
2 . Through the change of variable u = y − C2 H , we have

L21 ≤

∫
∞

a−C2 H
2ue−C3nu2

du + 2C2 H
∫

∞

a−C2 H
e−C3nu2

du =: L211 + L212.

Through direct calculation, we get L211 ≤ (C3n)−1e−C3n
√

a−C2 H . In order to make L211 ≤

Cn−2, it suffices to require e−C3n
√

a−C2 H
≤ n−1, which is equivalent to

C0 ≥
9‖ f ‖∞

0.08[1 − H(T )]2[1 − G(T )]2 (C2‖Q‖2 + ‖Q‖1C−1/2
1 )2,

which is satisfied from our choice of C0 as in Theorem 3.1.



1542 L. Li / Journal of Multivariate Analysis 99 (2008) 1518–1543

Apply inequality
∫

∞

x e−t2/2dt ≤ x−1e−x2/2; through simple algebra, we have

L212 =
2C2 H

√
2C3n(a − C2 H)

e−C3n(a−C2 H)2 .

In order to make L212 ≤ Cn−2, we only need e−C3n(a−C2 H)2
≤ Cn−2, which is equivalent to

asking that

C0 ≥
9‖ f ‖∞

0.08[1 − H(T )]2[1 − G(T )]2 (C2‖Q‖2 +
√

2‖Q‖1C−1/2
1 )2.

Thus, we have L21 ≤ Cn−2.
Let’s turn back to the second term L22. Through integration by parts, we have

L22 =
2y0

C4n2i/2 e−C4n2−i/2(y0−C2 H)
+

2 2i/2

C4n

∫
∞

y0

e−C4n2−i/2(y−C2 H) dy

=: L221 + L222.

Through direct calculation, we can obtain that L221 ≤ C2−i n−1 and L222 ≤ C2i n−3. Thus

L22 ≤
C

n2i +
C2i

n3 .

Now, combining this with the term L21 ≤ Cn−2 and noticing that there are at most Cl−12i terms
in the sum

∑
k and 2i

≤ 2R
≤ n for all i , we have L2 ≤

∑
k L21 +

∑
k L22 ≤ Cn−1 for all i .

Combining this with L1 ≤ Cn−1, we prove I3211 ≤ Cn−1.
In order to prove the lemma, we only need to show that I3212 ≤ Cn−1 also. Let E =

{
∫

Jik
(Dik(x)− Dik f (x))2dx ≥ 0.08lC0n−1

}; thus

I3212 = E
∑

k

∫
Jik

(
Dik(x)− Dik f (x)

)2
dx · I

(∫
Jik

R2
n,ik(x)dx ≥ 0.08lC0n−1

)
IEc

+ E
∑

k

∫
Jik

(
Dik(x)− Dik f (x)

)2
dx · I

(∫
Jik

R2
n,ik(x)dx ≥ 0.08lC0n−1

)
IE

≤

∑
k

(
0.08lC0n−1

)
P

(∫
Jik

R2
n,ik(x)dx ≥ 0.08lC0n−1

)
+ E

∑
k

∫
Jik

(
Dik(x)− Dik f (x)

)2
dx · IE

=

∑
k

∑
j∈B(k)

E R2
n,i j + I3211.

However, from the same argument as for term I322, we that see
∑

k
∑

j∈B(k) E R2
n,i j ≤ Cn−1.

Combining this with the term I3211 ≤ Cn−1, we complete the proof. �

Lemma A.4. Suppose that the assumptions of Theorem 3.1 hold. Then

I34 = E
∑

k

∫
Jik

(Dik f (x))2 dx I (B̂ik ≤ C0n−1)I (Bik > 2C0n−1) = O
(

n−1
)
.
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Proof. Compare the term I23 in Lemma A.2 with the above term I34; we notice that the only
difference between them is the different ranges of i . Since the proof of Lemma A.2 holds for all
i ≤ 2R , we have I34 = O

(
n−1

)
also. �
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