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Abstract Phthiobuzone is a bis(thiosemicarbazone) derivative with a single chiral center which has been
used as a racemate in the clinical treatment of herpes and trachoma diseases. In this study, its two enantiomers
were prepared from chiral amino acids and their absolute configurations were investigated by electronic
circular dichroism (ECD) combined with modern quantum-chemical calculations using time-dependent density
functional theory. It was found that solvation changed both the conformational distribution and the ECD
spectrum of each conformer. The theoretical ECD spectra of the two enantiomers were in good agreement with
the experimentally determined spectra of the corresponding isomers in dimethyl sulfoxide. The ECD behavior
of the bis(thiosemicarbazone) chromophore in a chiral environment is also discussed. Our results indicate that
ECD spectroscopy may be a useful tool for the stereochemical evaluation of chiral drugs.
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1. Introduction

Despite the development of versatile technologies to discover
novel drugs and despite increasing expenditure, the number of
first-in-class drug approvals continues to disappoint1. Perhaps
because of this, old drugs continue to attract attention as potential
sources of new drugs if only because their metabolism and clinical
side-effects are generally well-understood2. Thus much effort
continues to be devoted to the investigation of novel pharmaco-
logical effects of old drugs and their mechanisms of action.
In particular, drugs with chiral centers have been examined either
with a view to the potential benefits of switching from racemates
to single enantiomers or for their use in new indications. An often-
quoted example is that of thalidomide, the (S)-isomer of which
caused the enormous tragedy of congenital abnormalities. During
the last three decades, thalidomide was subjected to a full re-
evaluation by pharmacologists and eventually approved by the
Food and Drug Administration of the USA for the treatment of
leprosy and multiple myeloma3.

Phthiobuzone (1, Fig. 1) has been used for more than 30 years
to treat herpes and trachoma diseases in China. It has a unique
antiviral mechanism against herpes simplex virus 1 and 2 (HSV-1
and HSV-2), which is different from nucleotide derivatives4. As
shown in Fig. 1, the chemical structure of 1 consists of a core
phthalimide and a side chain bis(thiosemicarbazone). The latter is
present in many biologically active compounds and continues to
attract the attention of medicinal chemists5,6. In fact, some chiral
analogs of Phthiobuzone have been synthesized in the search for
novel antiviral compounds7,8.

Electronic circular dichroism (ECD) is a powerful spectroscopic
method for solving stereochemical problems of chiral molecules
including natural products and synthetic compounds9,10. Together
with quantum chemical calculations using time-dependent density
functional theory (TDDFT), ECD has become a rapid and reliable
way to establish the absolute configuration of chiral com-
pounds11,12. Phthalimide is an inherently symmetric chromophore
with a strong charge-transfer π-πn transition at 220 nm which has
often been used in stereochemical studies of chiral amino groups
using ECD13,14. However, to date ECD studies of derivatives
containing the bis(thiosemicarbazone) group have not been
reported. Thus, prompted by our continuous efforts to apply
chiroptical methods to the study of chiral compounds, we
employed ECD and TDDFT to assign the absolute configuration
of the enantiomers of 1. The present study also provides
preliminary information regarding the ECD behavior of the bis
(thiosemicarbazone) group.
Figure 1 Chemical structure of (S)-1.
2. Experimental and computational methods

2.1. Material and methods

Enantiomers of 1 were synthesized from (R)- and (S)-alanine according
to the literature method15. The ECD spectra of (R)-1 and (S)-1 in
DMSO at a concentration of 0.1–0.3 mg/mL were recorded in a 1 mm
path length quartz cuvette using a Jasco J-815 CD spectrometer (Jasco
Inc., Japan).

2.2. Quantum chemical calculations

All quantum chemical calculations were carried out on the (S)
enantiomer of 1. Primary conformers were identified by a standard
conformational search using the MMFF94 molecular mechanics
force field in the MOE software package16. These conformers were
further optimized and verified as true minima of the potential
energy surface using Gaussian 09 software in the framework of
TDDFT at the B3LYP/6–31þG(d,p) level17. The polarizable
continuum model (PCM) was used to take into account solvent
effects using a value of 46.8 for the dielectric constant of DMSO.
Oscillator strengths and rotational strengths in both dipole length
and dipole velocity representations of the 45 lowest electronic
transitions were calculated for each conformer. Because rotatory
strengths in length and velocity representations showed only small
differences, only velocity representations were used to simulate the
ECD spectra with a Gaussian function. The overall ECD spectra
were generated by Boltzmann statistics.
3. Results and discussion

3.1. Conformational analysis

Since different conformers of a specific stereochemical configura-
tion can give different or even opposite ECD spectra, it is crucial
to identify all stable conformers in order to predict the ECD
spectrum. Compound 1 has several freely rotatable single bonds
giving rise to multiple possible conformers. Therefore, a standard
conformational analysis was performed in the MMFF94 force field
and 11 conformations were identified within an energy window of
6 kcal/mol. These conformers were then re-optimized and verified
as true minima of the potential energy surface using the B3LYP
hybrid functional. This has been frequently used in TDDFT
calculations and can provide acceptable results for many molecular
properties9. In addition, the polarizable continuum model (PCM)
was utilized to mimic environmental effects.

Relative free energies, equilibrium populations and key dihedral
angles of all stable conformations of (S)-1 in dimethyl sulfoxide
(DMSO) and in the gas phase are listed in Table 1. It was found
that solvation markedly affected the number and relative amount
of each conformer. Thus, in DMSO, the number of stable
conformers was eight both at the B3LYP/6-31þG(d,p) level and
the lower B3LYP/6-31G(d) level (data not shown). Whereas, in
the gas phase, the number reduced to seven because conformer 1c
was able to readily transform into 1a. Even when conformer 1c in
DMSO was used as input geometry, the transformation still took
place. For conformers 1a, 1b and 1c in DMSO, two C¼N bonds
adopted the s-cis configuration and formed six-membered rings
through intramolecular hydrogen bonds which greatly decreased
the free energies (Fig. 2). In the gas phase, the lowest-energy
conformer was 1b which has similar structural characteristics with



Table 1 Equilibrium distribution and key dihedral angles of conformers of (S)-1 at the B3LYP/6–31þG(d,p) level.

Conformer In DMSO In the gas phase

P (%) D(N8-C12-C13-N14) P (%) D(N8-C12-C13-N14)

1a 63.00 �127.5 29.73 �114.0
1b 15.60 113.3 68.35 109.2
1c 10.60 �15.6 –

1d 5.53 �118.1 0.75 �112.9
1e 4.95 �91.7 1.10 �95.5
1f 0.22 103.1 0.07 106.2
1g 0.09 87.0 0.00 80.6
1h 0.02 �90.0 0.00 �95.1

Figure 2 Main conformers of (S)-1 in DMSO at the B3LYP/6–31þG(d,p) level.
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its single crystal18. The dihedral angles D(N8-C12-C13-N14) of
conformers in DMSO were slightly different from the values of the
corresponding conformers in the gas phase.
3.2. ECD spectra

Synthesis of the enantiomers of 1 began with the condensation of
chiral amino acids and phthalic anhydride. The resulting acids
were transformed to diazoketones and then reacted with hydrogen
bromide. The bromoketone products were oxidized to ketoalde-
hydes and subsequently condensed with thiosemicarbazone, at
which step partial racemization took place because of the release
of hydrogen bromide. The specific optical rotations of (S)- and
(R)-1 were �2211 (c 0.11, acetone) and þ2891 (c 0.11, acetone)
respectively indicating that the optical purity of (S)-1 was lower
than that of (R)-1. Because compound 1 is almost insoluble in the
solvents normally used for ECD determination (methanol, acet-
onitrile), DMSO was used with a terminal wavelength of 250 nm
because of its intrinsic absorption. In the experimental ECD curve
of (R)-1, the diagnostic Cotton effects (CEs) were two strong
positive signals near 290 nm and 355 nm; for (S)-1, the ECD
spectrum was opposite to that of (R)-1 with slightly weaker
intensities consistent with the optical rotation results.

CEs in the ECD spectrum arise from chiral perturbations of the
UV absorption chromophore during excitation. The chromophores
in compound 1 are the phthalimide and bis(thiosemicarbazone)
groups. The phthalimide chromophore has been used as a
chromophoric tag in determining the absolute configuration
of chiral amines or amino acids using the ECD method 13.
Its intramolecular charge-transfer π-πn band at 220 nm is suitable
for exciton coupling with π-πn transitions of other chromophores.
However, the ECD behavior of the bis(thiosemicarbazone) group
remains unknown. Thus, the ECD and UV spectra of 1 were
predicted by quantum-chemical calculation using TDDFT not only
to verify the assignment of absolute configuration but also to
investigate the ECD behavior of the bis(thiosemicarbazone) group.

Calculation of the ECD spectra of the principal conformers of 1
at the B3LYP/6–31þG(d,p) level in both DMSO and the gas
phase revealed that different conformers show different ECD



Figure 3 Calculated ECD spectra of conformers 1a–1f at the B3LYP/6–31þG(d,p) level. s¼0.35 eV.

Figure 4 Comparison of experimental ECD spectrum of chiral 1 in DMSO (After blue shift 20 nm).

Figure 5 Molecular orbitals involved in the key electron transitions of (S)-1 at the 6–31þG(d,p) level in DMSO.
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spectra in the same medium with conformers 1a and 1b giving
nearly opposite ECD spectra (Fig. 3). This may be ascribed to
different or opposite exciton coupling between the phthalimide and
bis(thiosemicarbazone) chromophores which is consistent with the
D(N8-C12-C13-N14) dihedral angles. Conformers gave similar
ECD curves in DMSO and the gas phase with the exception of 1e
and 1f which showed greater differences due to subtle solvation
effects.

The overall UV and ECD spectra of 1 shown in Fig. 4 were
obtained by averaging the ECD spectra of each conformer using
Boltzmann statistics. Based on our experience and on the
literature, a lower level basis set can sometimes give better
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concordance with the experimental data due to the error compen-
sation in the calculation19,20. Thus, the ECD spectra of the
enantiomers of 1 were also calculated at the B3LYP/6–31G(d)
level using the optimized geometries at the B3LYP/6–31þG(d,p)
level in DMSO. Since the TDDFT method has a tendency to
underestimate the excitation energy, it is necessary to perform a
correction to compensate for systematic computational errors. In
this case, the long wavelength absorption band at 349 nm was used
for wavelength correction. After a blue shift of 20 nm, the
calculated ECD spectra of the enantiomers of 1 were in good
agreement with their corresponding experimental ECD spectra. In
the gas phase, the theoretical and experimental ECD spectra
differed greatly from those in DMSO indicating that solvation
has a major effect on both the conformational distribution and
excitation properties.

For 1, the lowest energy CE was observed at 355 nm
corresponding to the absorption peak at 349 nm due to the HOMO
(MO-98)-LUMOþ1 (MO-100) transition (Fig. 5). Another
diagnostic CE at 290 nm originated from the interaction between
the phthalimide and bis(thiosemicarbazone) groups, the corre-
sponding transitions being from HOMO-4 (MO-94)- LUMOþ1
(MO-100) and HOMO-5 (MO-93)-LUMOþ1 (MO-100).

As recommended by the Chinese Pharmacopoeia, the content of
Phthiobuzone in crude drug and pharmaceutical dosage forms can
be determined using its absorption band at 349 nm21. Since 1 has
only one chiral center, the CE at around 349 nm could then
provide a convenient means to assign the absolute configuration of
1 and its chiral derivatives, the positive sign corresponding to the
R configuration. It could also be useful to assign the absolute
configuration of novel bis(thiosemicarbazone) derivatives.
4. Conclusions

The absolute configurations of the enantiomers of Phthiobuzone
have been verified by a comparison of their experimental and
theoretical ECD spectra using quantum chemical calculations. To
assign the absolute configuration of Phthiobuzone and its chiral
analogs, the Cotton effect at 349 nm can be used being negative
for the S isomer and positive for the R isomer. Our results
demonstrate that the ECD method is a powerful and reliable tool
for the stereochemical evaluation of chiral drugs.
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