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a b s t r a c t

A graph is half-arc-transitive if its automorphism group acts transitively on its vertex set,
edge set, but not arc set. In this paper, we show that there is no tetravalent half-arc-
transitive graph of order 2p2.
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1. Introduction

Throughout this paper graphs are assumed to be finite, simple and undirected, but with an implicit orientation of the
edges when appropriate. For a graph X , we let V (X), E(X), A(X) and Aut(X) be the vertex set, the edge set, the arc set and
the automorphism group of X , respectively.
A graph X is said to be vertex-transitive, edge-transitive or arc-transitive if Aut(X) acts transitively on V (X), E(X), or A(X),

respectively. A graph is said to be 1/2-arc-transitive or half-arc-transitive provided that it is vertex-transitive and edge-
transitive, but not arc-transitive. More generally, by a 1/2-arc-transitive or half-arc-transitive action of a subgroup G of
Aut(X) on a graph X we shall mean a vertex-transitive and edge-transitive, but not arc-transitive action of G on X . In this
case, we shall say that the graph X is (G, 1/2)-arc-transitive.
The investigation of half-arc-transitive graphswas initiated by Tutte [30] and he proved that a vertex- and edge-transitive

graph with odd valency must be arc-transitive. In 1970, Bouwer [4] constructed the first family of half-arc-transitive graphs
and later more such graphs were constructed (see for instance [2,10,15,16,29,31]). Let p be a prime. It is well known that
there is no half-arc-transitive graph of order p or p2. Xu [34] classified the tetravalent half-arc-transitive graphs of order
p3 and Feng et al. [12] classified the tetravalent half-arc-transitive graphs of order p4. By Cheng and Oxley [6], there is no
tetravalent half-arc-transitive graph of order 2p, and a classification of tetravalent half-arc-transitive graphs of order 3p can
be deduced from Alspach and Xu [2]. Feng et al. [14] recently classified the tetravalent half-arc-transitive graphs of order
4p. In this paper we show that there is no tetravalent half-arc-transitive graph of order 2p2. For more results on tetravalent
half-arc-transitive graphs, see [1,7,8,11,13,17–23,27,28,33,35].
For a finite group G and a subset S of G such that 1 6∈ S and S = S−1, the Cayley graph Cay(G, S) on Gwith respect to S is

defined to have vertex setG and edge set {{g, sg} | g ∈ G, s ∈ S}. Given a g ∈ G, define the permutation R(g) onG by x 7→ xg ,
x ∈ G. Then R(G) = {R(g) | g ∈ G} is a permutation group isomorphic to G, which is called the right regular representation
of G. The Cayley graph Cay(G, S) is vertex-transitive since it admits R(G) as a regular subgroup of the automorphism group
Aut(Cay(G, S)). Furthermore, the group Aut(G, S) = {α ∈ Aut(G) | Sα = S} is a subgroup of Aut(Cay(G, S)). Actually,
Aut(G, S) is a subgroup of Aut(Cay(G, S))1, the stabilizer of the vertex 1 in Aut(Cay(G, S)). A graph X is isomorphic to a
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Cayley graph on a group G if and only if its automorphism group Aut(X) has a subgroup isomorphic to G, acting regularly on
the vertex set of X (see [3, Lemma 16.3]). A Cayley graph Cay(G, S) is said to be normal if Aut(Cay(G, S)) contains R(G) as a
normal subgroup.
Let X and Y be two graphs. The lexicographic product X[Y ] is defined as the graphwith vertex set V (X[Y ]) = V (X)×V (Y )

and two vertices u = (x1, y1) and v = (x2, y2) in V (X[Y ]) being adjacent in X[Y ] whenever x1 is adjacent to x2, or x1 = x2
and y1 is adjacent to y2. Clearly, if both X and Y are arc-transitive then X[Y ] is arc-transitive.
To end the section we list some preliminary results that will be used later. Note that there is no half-arc-transitive graph

of order p or 2p for a prime p (see [5,6]), and all vertex-transitive graphs with fewer than 22 vertices were listed in [24,25].
By the proof that there is no half-arc-transitive graph of order 24 given in [26], one may conclude that there is no half-arc-
transitive graph with fewer than 27 vertices.

Proposition 1.1. There is no half-arc-transitive graph with fewer than 27 vertices.

Let X = Cay(G, S) be a Cayley graph on a group G with respect to S. If s ∈ S is an involution then R(s) ∈ Aut(X)
interchanges the two arcs (1, s) and (s, 1) in X . Moreover, if there exist α ∈ Aut(G, S) and t ∈ S such that tα = t−1 then
αR(t) interchanges the arcs (1, t) and (t, 1). This implies the following proposition.

Proposition 1.2. Let X = Cay(G, S) be a half-arc-transitive graph. Then there is no involution in S and no α ∈ Aut(G, S) such
that sα = s−1 for any given s ∈ S.

LetX = Cay(G, S)be a Cayley graphon an abelian groupG. Note that themappingα : x→ x−1, x ∈ G, is an automorphism
of G and so Proposition 1.2 implies the following proposition.

Proposition 1.3. Every edge-transitive Cayley graph on an abelian group is also arc-transitive.

The following is a fundamental result from permutation group theory.

Proposition 1.4 ([32, Theorem 3.4]). Let G be a permutation group onΩ and α ∈ Ω . Let p be a prime number, pm a divisor of
|αG|, and P a Sylow p-subgroup of G. Then pm is also a divisor of |αP |.

It is well known that every transitive permutation group of prime degree p is either 2-transitive or solvablewith a regular
normal Sylow p-subgroup (for example, see [9, Corollary 3.5B]), which implies the following proposition.

Proposition 1.5. Let X be a graph of prime order p which is neither the empty graph nor the complete graph. Then every vertex-
transitive subgroup of Aut(X) has a normal Sylow p-subgroup.

2. Main result

The main purpose of this paper is to prove the following theorem.

Theorem 2.1. There is no tetravalent half-arc-transitive graph of order 2p2.

Proof. Suppose to the contrary that X is a tetravalent half-arc-transitive graph of order 2p2. Then X is connected because
there is no half-arc-transitive graph of order p, 2p or p2. By Proposition 1.1, one may assume that p ≥ 5. Let A = Aut(X).
Clearly, X is (A, 1/2)-arc-transitive graph. Then in the natural action of A on V (X)×V (X), the arc set of X is a union of two

paired orbits of A, say A1 and A2, that is, A2 = {(v, u) | (u, v) ∈ A1}. Thus, one can obtain two oriented graphs having V (X) as
vertex set and A1 or A2 as arc set, respectively. Let DA(X) be one of the two oriented graphs. Then DA(X) has out-valency and
in-valency equal to 2 and A acts arc-transitively on it. Since DA(X) has out-valency and in-valency equal to 2, the stabilizer
Au of u ∈ V (X) in A is a 2-group. It follows that A is a {2, p}-group, implying that A is solvable. First, we prove the following
claim.

Claim 1. There is no tetravalent half-arc-transitive Cayley graph of order 2p2.

By contradiction, let X = Cay(G, S) be a Cayley graph on a group G of order 2p2 with respect to S. Since X is connected,
one has |S| = 4, S−1 = S and 〈S〉 = G. By Proposition 1.3, G is non-abelian. From the elementary group theory we know
that up to isomorphism there are three non-abelian groups of order 2p2 for an odd prime p:

G1(p) = 〈a, b | ap
2
= b2 = 1, b−1ab = a−1〉,

G2(p) = 〈a, b, c | ap = bp = c2 = 1, c−1ac = a−1, c−1bc = b−1, [a, b] = 1〉,
G3(p) = 〈a, b, c | ap = bp = c2 = 1, [a, b] = [a, c] = 1, c−1bc = b−1〉.

It follows that G is isomorphic to one of G1(p), G2(p) or G3(p). Note that G has a normal Sylow p-subgroup. Suppose that G
is isomorphic to G1(p) or G2(p). Since S generates G, S contains at least one involution, which contradicts Proposition 1.2.
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Thus G is isomorphic to G3(p). Furthermore, S consists of either one element of order p, one element of order 2p and their
inverses, or two elements of order 2p and their inverses.
Suppose first that S consists of one element of order p, one element of order 2p and their inverses. Then S =

{aibj, a−ib−j, casbt , ca−sbt}, where js 6= 0 (mod p) because 〈S〉 = G. Since the map cbt → c , as → a, bj → b induces an
automorphism of G one may assume S = {aib, a−ib−1, ca, ca−1}. In this case, the automorphism of G induced by a→ a−1,
b → b−1, c → c fixes S and maps s to s−1 for each s ∈ S, contrary to Proposition 1.2. Suppose now that S consists of two
elements of order 2p and their inverses. By a similar argument as above, one may assume that S = {ca, ca−1, caib, ca−ib}
where i 6= 0 (mod p). Thus, the automorphism of G induced by a→ a−1, b→ b, c → c fixes S and maps s to s−1 for each
s ∈ S, contrary to Proposition 1.2. This completes the proof of Claim 1.
Let N be a minimal normal subgroup of A and let XN be the quotient graph of X with respect to the orbits of N , that is the

graph with the orbits of N as its vertex set such that two orbits are adjacent in XN whenever there is an edge between the
two orbits in X . Let K be the kernel of A acting on V (XN). Since A is solvable, N is an elementary abelian 2- or p-group. We
now prove the following claim.

Claim 2. A has a normal Sylow p-subgroup.

Suppose that N is an elementary abelian 2-group. Then |N| = 2r for some integer r and |V (XN)| = p2. Sine p ≥ 5 is
odd, XN has valency 2 or 4. If XN has valency 2 then X = Cp2 [2K1], which is arc-transitive, a contradiction. If XN has valency
4 then the stabilizer Ku of u ∈ V (X) in K fixes the neighborhood of u in X pointwise because K fixes each orbit of N . The
connectivity of X implies that Ku = 1 and hence |K | = |N| = 2. Thus, one may view A/N as a group of automorphisms
of XN , that is, A/N ≤ Aut(XN). By Proposition 1.4, a Sylow p-subgroup PN/N of A/N is transitive on XN , where P is a Sylow
p-subgroup of A. Since p ≥ 5 and XN has valency 4, PN/N is regular on V (XN), implying |PN/N| = p2. It follows that PN is
regular on V (X) because |PN| = 2p2, which means that X is a Cayley graph on PN , contrary to Claim 1.
Note that the above argument is true if N is replaced by any nontrivial normal 2-subgroup of A. Then O2(A) = 1, where

O2(A) is the largest normal 2-subgroup of A.
Thus, N is an elementary abelian p-group. Clearly, |N| = p or p2. If |N| = p2 then N is a normal Sylow p-subgroup of A,

as claimed. Let |N| = p. In this case, |XN | = 2p and the edge-transitivity of X implies that XN has valency 2 or 4.
If XN has valency 2 then XN ∼= C2p, say XN = (B0, B1, . . . , B2p−1). Thus, the induced subgraph 〈Bi, Bi+1〉 of Bi ∪ Bi+1 in X

is a cycle of length 2p. This implies that |Ku| = 1 or 2 and hence |K | = p or 2p. On the other hand, A/K ≤ Aut(XN) ∼= D4p.
Then A/K has a normal Sylow p-subgroup, say PK/K , where P is a Sylow p-subgroup of A. Since |PK : P| = 1 or 2, P is
characteristic in PK and hence normal in A, as claimed.
Suppose now that XN has valency 4. In this case Ku = 1 for any u ∈ V (X) and hence |K | = |N| = p, implying that

A/N ≤ Aut(XN). LetM/N be a minimal normal subgroup of A/N . ThenM/N is an elementary abelian p- or 2-group. For the
former, M is a normal Sylow p-subgroup of A, as claimed. For the latter, M/N has orbits of length 2 because |V (XN)| = 2p.
Clearly, M C A has orbits of length 2p. Let XM be the quotient graph of X with respect to the orbits of M and let L be
the kernel of A acting on V (XM). It follows that XM has valency 4 or 2. If XM has valency 4 then |L| = |M| = 2p and
A/M ≤ Aut(XM). Furthermore, XM is (A/M, 1/2)-arc-transitive. Note that |V (XM)| = p. By Proposition 1.5, A/M has a
normal Sylow p-subgroup when p 6= 5. For p = 5, XM ∼= K5 and it is easy to see that each half-arc-transitive subgroup of
Aut(K5) ∼= S5 is isomorphic to D10 which has a normal Sylow 5-subgroup. It follows that A/M always has a normal Sylow
p-subgroup, say PM/M , where P is a Sylow p-subgroup of A. Since |PM| = 2p2, P is characteristic in PM and since PM C A,
one has P C A, as claimed. Suppose now that XM has valency 2, that is XM = (B0, B1, . . . , Bp−1) is a cycle of length p. It follows
that A/L ≤ Aut(XM) ∼= D2p and so A/L has a normal Sylow p-subgroup, that is, PL/L C A/L, where P is a Sylow p-subgroup of
A. If 〈B0 ∪ B1〉 is a union of two cycles of length 2p then N fixes the two cycles setwise and hence XN has valency 2, contrary
to the hypothesis that XN has valency 4. Thus, 〈B0 ∪ B1〉 is a cycle of length 4p or a union of p cycles of length 4. Let u ∈ B0
and denote by Lu the stabilizer of u in L. Clearly, if 〈B0 ∪ B1〉 is a cycle of length 4p then |Lu| = 1 or 2. If 〈B0 ∪ B1〉 is a union of
p cycles of length 4 then each of these 4-cycles contains precisely one vertex from each of the four N-orbits that constitute
B0 ∪ B1. Since X is half-arc-transitive, X 6∼= Cp2 [2K1], which implies that Lu fixes at least three vertices in B0, say u, v and w.
It follows that Lu = Lv = Lw . Using the fact that N is a cyclic group of order p acting semiregularly on V (X) one can easily
show that Lu fixes all vertices in B0. This means that Lu is the kernel of L acting on B0 and hence Lu E L. Since O2(A) = 1,
one has O2(L) = 1 because O2(L) E A, implying Lu = 1. Thus, we always have |L| = 2p or 4p and hence |PL| = 2p2 or 4p2,
forcing that P is characteristic in PL because p ≥ 5. Normality of PL in A thus implies that P is normal in A, as claimed. This
completes the proof of Claim 2.
By Claim 2, A has a normal Sylow p-subgroup, say P . Since |P| = p2, P is abelian and since |V (X)| = 2p2, X is a bipartite

graph with the two orbits of P as its two bipartite sets. It is easy to see that P acts regularly on each of the two bipartite sets
of X . Thus, onemay identifyU(P) = {U(n) | n ∈ P} and V (P) = {V (n) | n ∈ P}with the two bipartite sets of X in such away
that the action of n ∈ P on U(P) and on V (P) is just the right multiplication by n, that is U(g)n = U(gn) and V (g)n = V (gn)
for any g ∈ P . Let V (n1), V (n2), V (n3) and V (n4) be the neighbors of U(1). Then V (n1n), V (n2n), V (n3n) and V (n4n) are the
neighbors of U(n) for each n ∈ P . Since P is abelian, U(n−11 n), U(n

−1
2 n), U(n

−1
3 n) and U(n

−1
4 n) are the neighbors of V (n) for

each n ∈ P . Define the map α by U(n)→ V (n−1) and V (n)→ U(n−1). It is easy to show that α ∈ A. Since P E A, one has
|〈P, α〉| = 2p2 and 〈P, α〉 acts regularly on V (X). Thus, X is a Cayley graph, contrary to Claim 1. �
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