There exists no tetravalent half-arc-transitive graph of order $2 p^{2}$

Xiuyun Wang, Yan-Quan Feng*
Department of Mathematics, Beijing Jiaotong University, Beijing 100044, PR China

ARTICLE INFO

Article history:

Received 6 July 2008
Accepted 17 November 2009
Available online 1 December 2009

Keywords:

Cayley graph
Vertex-transitive graph
Edge-transitive graph
Half-arc-transitive graph

Abstract

A graph is half-arc-transitive if its automorphism group acts transitively on its vertex set, edge set, but not arc set. In this paper, we show that there is no tetravalent half-arctransitive graph of order $2 p^{2}$.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper graphs are assumed to be finite, simple and undirected, but with an implicit orientation of the edges when appropriate. For a graph X, we let $V(X), E(X), A(X)$ and $\operatorname{Aut}(X)$ be the vertex set, the edge set, the arc set and the automorphism group of X, respectively.

A graph X is said to be vertex-transitive, edge-transitive or arc-transitive if $\operatorname{Aut}(X)$ acts transitively on $V(X), E(X)$, or $A(X)$, respectively. A graph is said to be $1 / 2$-arc-transitive or half-arc-transitive provided that it is vertex-transitive and edgetransitive, but not arc-transitive. More generally, by a $1 / 2$-arc-transitive or half-arc-transitive action of a subgroup G of Aut (X) on a graph X we shall mean a vertex-transitive and edge-transitive, but not arc-transitive action of G on X. In this case, we shall say that the graph X is $(G, 1 / 2)$-arc-transitive.

The investigation of half-arc-transitive graphs was initiated by Tutte [30] and he proved that a vertex- and edge-transitive graph with odd valency must be arc-transitive. In 1970, Bouwer [4] constructed the first family of half-arc-transitive graphs and later more such graphs were constructed (see for instance $[2,10,15,16,29,31])$. Let p be a prime. It is well known that there is no half-arc-transitive graph of order p or p^{2}. Xu [34] classified the tetravalent half-arc-transitive graphs of order p^{3} and Feng et al. [12] classified the tetravalent half-arc-transitive graphs of order p^{4}. By Cheng and Oxley [6], there is no tetravalent half-arc-transitive graph of order $2 p$, and a classification of tetravalent half-arc-transitive graphs of order $3 p$ can be deduced from Alspach and Xu [2]. Feng et al. [14] recently classified the tetravalent half-arc-transitive graphs of order $4 p$. In this paper we show that there is no tetravalent half-arc-transitive graph of order $2 p^{2}$. For more results on tetravalent half-arc-transitive graphs, see $[1,7,8,11,13,17-23,27,28,33,35]$.

For a finite group G and a subset S of G such that $1 \notin S$ and $S=S^{-1}$, the Cayley graph Cay (G, S) on G with respect to S is defined to have vertex set G and edge set $\{\{g, s g\} \mid g \in G, s \in S\}$. Given a $g \in G$, define the permutation $R(g)$ on G by $x \mapsto x g$, $x \in G$. Then $R(G)=\{R(g) \mid g \in G\}$ is a permutation group isomorphic to G, which is called the right regular representation of G. The Cayley graph Cay (G, S) is vertex-transitive since it admits $R(G)$ as a regular subgroup of the automorphism group $\operatorname{Aut}(\operatorname{Cay}(G, S))$. Furthermore, the $\operatorname{group} \operatorname{Aut}(G, S)=\left\{\alpha \in \operatorname{Aut}(G) \mid S^{\alpha}=S\right\}$ is a subgroup of $\operatorname{Aut}(\operatorname{Cay}(G, S))$. Actually, $\operatorname{Aut}(G, S)$ is a subgroup of $\operatorname{Aut}(\operatorname{Cay}(G, S))_{1}$, the stabilizer of the vertex $1 \operatorname{in} \operatorname{Aut}(\operatorname{Cay}(G, S))$. A graph X is isomorphic to a

[^0]Cayley graph on a group G if and only if its automorphism group $\operatorname{Aut}(X)$ has a subgroup isomorphic to G, acting regularly on the vertex set of X (see [3, Lemma 16.3]). A Cayley graph Cay (G, S) is said to be normal if $\operatorname{Aut}(\operatorname{Cay}(G, S)$) contains $R(G)$ as a normal subgroup.

Let X and Y be two graphs. The lexicographic product $X[Y]$ is defined as the graph with vertex set $V(X[Y])=V(X) \times V(Y)$ and two vertices $u=\left(x_{1}, y_{1}\right)$ and $v=\left(x_{2}, y_{2}\right)$ in $V(X[Y])$ being adjacent in $X[Y]$ whenever x_{1} is adjacent to x_{2}, or $x_{1}=x_{2}$ and y_{1} is adjacent to y_{2}. Clearly, if both X and Y are arc-transitive then $X[Y]$ is arc-transitive.

To end the section we list some preliminary results that will be used later. Note that there is no half-arc-transitive graph of order p or $2 p$ for a prime p (see [5,6]), and all vertex-transitive graphs with fewer than 22 vertices were listed in [24,25]. By the proof that there is no half-arc-transitive graph of order 24 given in [26], one may conclude that there is no half-arctransitive graph with fewer than 27 vertices.

Proposition 1.1. There is no half-arc-transitive graph with fewer than 27 vertices.
Let $X=\operatorname{Cay}(G, S)$ be a Cayley graph on a group G with respect to S. If $s \in S$ is an involution then $R(s) \in \operatorname{Aut}(X)$ interchanges the two $\operatorname{arcs}(1, s)$ and $(s, 1)$ in X. Moreover, if there exist $\alpha \in \operatorname{Aut}(G, S)$ and $t \in S$ such that $t^{\alpha}=t^{-1}$ then $\alpha R(t)$ interchanges the arcs $(1, t)$ and $(t, 1)$. This implies the following proposition.

Proposition 1.2. Let $X=\operatorname{Cay}(G, S)$ be a half-arc-transitive graph. Then there is no involution in S and no $\alpha \in \operatorname{Aut}(G, S)$ such that $s^{\alpha}=s^{-1}$ for any given $s \in S$.

Let $X=\operatorname{Cay}(G, S)$ be a Cayley graph on an abelian group G. Note that the mapping $\alpha: x \rightarrow x^{-1}, x \in G$, is an automorphism of G and so Proposition 1.2 implies the following proposition.

Proposition 1.3. Every edge-transitive Cayley graph on an abelian group is also arc-transitive.
The following is a fundamental result from permutation group theory.
Proposition 1.4 ([32, Theorem 3.4]). Let G be a permutation group on Ω and $\alpha \in \Omega$. Let p be a prime number, p^{m} a divisor of $\left|\alpha^{G}\right|$, and P a Sylow p-subgroup of G. Then p^{m} is also a divisor of $\left|\alpha^{P}\right|$.

It is well known that every transitive permutation group of prime degree p is either 2-transitive or solvable with a regular normal Sylow p-subgroup (for example, see [9, Corollary 3.5B]), which implies the following proposition.

Proposition 1.5. Let X be a graph of prime order p which is neither the empty graph nor the complete graph. Then every vertextransitive subgroup of $\operatorname{Aut}(X)$ has a normal Sylow p-subgroup.

2. Main result

The main purpose of this paper is to prove the following theorem.
Theorem 2.1. There is no tetravalent half-arc-transitive graph of order $2 p^{2}$.
Proof. Suppose to the contrary that X is a tetravalent half-arc-transitive graph of order $2 p^{2}$. Then X is connected because there is no half-arc-transitive graph of order $p, 2 p$ or p^{2}. By Proposition 1.1, one may assume that $p \geq 5$. Let $A=\operatorname{Aut}(X)$.

Clearly, X is $(A, 1 / 2)$-arc-transitive graph. Then in the natural action of A on $V(X) \times V(X)$, the arc set of X is a union of two paired orbits of A, say A_{1} and A_{2}, that is, $A_{2}=\left\{(v, u) \mid(u, v) \in A_{1}\right\}$. Thus, one can obtain two oriented graphs having $V(X)$ as vertex set and A_{1} or A_{2} as arc set, respectively. Let $D_{A}(X)$ be one of the two oriented graphs. Then $D_{A}(X)$ has out-valency and in-valency equal to 2 and A acts arc-transitively on it. Since $D_{A}(X)$ has out-valency and in-valency equal to 2 , the stabilizer A_{u} of $u \in V(X)$ in A is a 2 -group. It follows that A is a $\{2, p\}$-group, implying that A is solvable. First, we prove the following claim.

Claim 1. There is no tetravalent half-arc-transitive Cayley graph of order $2 p^{2}$.
By contradiction, let $X=\operatorname{Cay}(G, S)$ be a Cayley graph on a group G of order $2 p^{2}$ with respect to S. Since X is connected, one has $|S|=4, S^{-1}=S$ and $\langle S\rangle=G$. By Proposition 1.3, G is non-abelian. From the elementary group theory we know that up to isomorphism there are three non-abelian groups of order $2 p^{2}$ for an odd prime p :

$$
\begin{aligned}
& G_{1}(p)=\left\langle a, b \mid a^{p^{2}}=b^{2}=1, b^{-1} a b=a^{-1}\right\rangle \\
& G_{2}(p)=\left\langle a, b, c \mid a^{p}=b^{p}=c^{2}=1, c^{-1} a c=a^{-1}, c^{-1} b c=b^{-1},[a, b]=1\right\rangle \\
& G_{3}(p)=\left\langle a, b, c \mid a^{p}=b^{p}=c^{2}=1,[a, b]=[a, c]=1, c^{-1} b c=b^{-1}\right\rangle
\end{aligned}
$$

It follows that G is isomorphic to one of $G_{1}(p), G_{2}(p)$ or $G_{3}(p)$. Note that G has a normal Sylow p-subgroup. Suppose that G is isomorphic to $G_{1}(p)$ or $G_{2}(p)$. Since S generates G, S contains at least one involution, which contradicts Proposition 1.2.

Thus G is isomorphic to $G_{3}(p)$. Furthermore, S consists of either one element of order p, one element of order $2 p$ and their inverses, or two elements of order $2 p$ and their inverses.

Suppose first that S consists of one element of order p, one element of order $2 p$ and their inverses. Then $S=$ $\left\{a^{i} b^{j}, a^{-i} b^{-j}, c a^{s} b^{t}, c a^{-s} b^{t}\right\}$, where $j s \neq 0(\bmod p)$ because $\langle S\rangle=G$. Since the map $c b^{t} \rightarrow c, a^{s} \rightarrow a, b^{j} \rightarrow b$ induces an automorphism of G one may assume $S=\left\{a^{i} b, a^{-i} b^{-1}, c a, c a^{-1}\right\}$. In this case, the automorphism of G induced by $a \rightarrow a^{-1}$, $b \rightarrow b^{-1}, c \rightarrow c$ fixes S and maps s to s^{-1} for each $s \in S$, contrary to Proposition 1.2. Suppose now that S consists of two elements of order $2 p$ and their inverses. By a similar argument as above, one may assume that $S=\left\{c a, c a^{-1}, c a^{i} b, c a^{-i} b\right\}$ where $i \neq 0(\bmod p)$. Thus, the automorphism of G induced by $a \rightarrow a^{-1}, b \rightarrow b, c \rightarrow c$ fixes S and maps s to s^{-1} for each $s \in S$, contrary to Proposition 1.2. This completes the proof of Claim 1.

Let N be a minimal normal subgroup of A and let X_{N} be the quotient graph of X with respect to the orbits of N, that is the graph with the orbits of N as its vertex set such that two orbits are adjacent in X_{N} whenever there is an edge between the two orbits in X. Let K be the kernel of A acting on $V\left(X_{N}\right)$. Since A is solvable, N is an elementary abelian 2-or p-group. We now prove the following claim.

Claim 2. A has a normal Sylow p-subgroup.
Suppose that N is an elementary abelian 2-group. Then $|N|=2^{r}$ for some integer r and $\left|V\left(X_{N}\right)\right|=p^{2}$. Sine $p \geq 5$ is odd, X_{N} has valency 2 or 4 . If X_{N} has valency 2 then $X=C_{p^{2}}\left[2 K_{1}\right]$, which is arc-transitive, a contradiction. If X_{N} has valency 4 then the stabilizer K_{u} of $u \in V(X)$ in K fixes the neighborhood of u in X pointwise because K fixes each orbit of N. The connectivity of X implies that $K_{u}=1$ and hence $|K|=|N|=2$. Thus, one may view A / N as a group of automorphisms of X_{N}, that is, $A / N \leq \operatorname{Aut}\left(X_{N}\right)$. By Proposition 1.4, a Sylow p-subgroup $P N / N$ of A / N is transitive on X_{N}, where P is a Sylow p-subgroup of A. Since $p \geq 5$ and X_{N} has valency $4, P N / N$ is regular on $V\left(X_{N}\right)$, implying $|P N / N|=p^{2}$. It follows that $P N$ is regular on $V(X)$ because $|P N|=2 p^{2}$, which means that X is a Cayley graph on $P N$, contrary to Claim 1 .

Note that the above argument is true if N is replaced by any nontrivial normal 2-subgroup of A. Then $O_{2}(A)=1$, where $O_{2}(A)$ is the largest normal 2-subgroup of A.

Thus, N is an elementary abelian p-group. Clearly, $|N|=p$ or p^{2}. If $|N|=p^{2}$ then N is a normal Sylow p-subgroup of A, as claimed. Let $|N|=p$. In this case, $\left|X_{N}\right|=2 p$ and the edge-transitivity of X implies that X_{N} has valency 2 or 4.

If X_{N} has valency 2 then $X_{N} \cong C_{2 p}$, say $X_{N}=\left(B_{0}, B_{1}, \ldots, B_{2 p-1}\right)$. Thus, the induced subgraph $\left\langle B_{i}, B_{i+1}\right\rangle$ of $B_{i} \cup B_{i+1}$ in X is a cycle of length $2 p$. This implies that $\left|K_{u}\right|=1$ or 2 and hence $|K|=p$ or $2 p$. On the other hand, $A / K \leq \operatorname{Aut}\left(X_{N}\right) \cong D_{4 p}$. Then A / K has a normal Sylow p-subgroup, say $P K / K$, where P is a Sylow p-subgroup of A. Since $|P K: P|=1$ or $2, P$ is characteristic in $P K$ and hence normal in A, as claimed.

Suppose now that X_{N} has valency 4. In this case $K_{u}=1$ for any $u \in V(X)$ and hence $|K|=|N|=p$, implying that $A / N \leq \operatorname{Aut}\left(X_{N}\right)$. Let M / N be a minimal normal subgroup of A / N. Then M / N is an elementary abelian p - or 2-group. For the former, M is a normal Sylow p-subgroup of A, as claimed. For the latter, M / N has orbits of length 2 because $\left|V\left(X_{N}\right)\right|=2 p$. Clearly, $M \triangleleft A$ has orbits of length $2 p$. Let X_{M} be the quotient graph of X with respect to the orbits of M and let L be the kernel of A acting on $V\left(X_{M}\right)$. It follows that X_{M} has valency 4 or 2 . If X_{M} has valency 4 then $|L|=|M|=2 p$ and $A / M \leq \operatorname{Aut}\left(X_{M}\right)$. Furthermore, X_{M} is $(A / M, 1 / 2)$-arc-transitive. Note that $\left|V\left(X_{M}\right)\right|=p$. By Proposition $1.5, A / M$ has a normal Sylow p-subgroup when $p \neq 5$. For $p=5, X_{M} \cong K_{5}$ and it is easy to see that each half-arc-transitive subgroup of $\operatorname{Aut}\left(K_{5}\right) \cong S_{5}$ is isomorphic to D_{10} which has a normal Sylow 5-subgroup. It follows that A / M always has a normal Sylow p-subgroup, say $P M / M$, where P is a Sylow p-subgroup of A. Since $|P M|=2 p^{2}, P$ is characteristic in $P M$ and since $P M \triangleleft A$, one has $P \triangleleft A$, as claimed. Suppose now that X_{M} has valency 2 , that is $X_{M}=\left(B_{0}, B_{1}, \ldots, B_{p-1}\right)$ is a cycle of length p. It follows that $A / L \leq \operatorname{Aut}\left(X_{M}\right) \cong D_{2 p}$ and so A / L has a normal Sylow p-subgroup, that is, $P L / L \triangleleft A / L$, where P is a Sylow p-subgroup of A. If $\left\langle B_{0} \cup B_{1}\right\rangle$ is a union of two cycles of length $2 p$ then N fixes the two cycles setwise and hence X_{N} has valency 2 , contrary to the hypothesis that X_{N} has valency 4 . Thus, $\left\langle B_{0} \cup B_{1}\right\rangle$ is a cycle of length $4 p$ or a union of p cycles of length 4 . Let $u \in B_{0}$ and denote by L_{u} the stabilizer of u in L. Clearly, if $\left\langle B_{0} \cup B_{1}\right\rangle$ is a cycle of length $4 p$ then $\left|L_{u}\right|=1$ or 2 . If $\left\langle B_{0} \cup B_{1}\right\rangle$ is a union of p cycles of length 4 then each of these 4-cycles contains precisely one vertex from each of the four N-orbits that constitute $B_{0} \cup B_{1}$. Since X is half-arc-transitive, $X \not \approx C_{p^{2}}\left[2 K_{1}\right]$, which implies that L_{u} fixes at least three vertices in B_{0}, say u, v and w. It follows that $L_{u}=L_{v}=L_{w}$. Using the fact that N is a cyclic group of order p acting semiregularly on $V(X)$ one can easily show that L_{u} fixes all vertices in B_{0}. This means that L_{u} is the kernel of L acting on B_{0} and hence $L_{u} \unlhd L$. Since $O_{2}(A)=1$, one has $O_{2}(L)=1$ because $O_{2}(L) \unlhd A$, implying $L_{u}=1$. Thus, we always have $|L|=2 p$ or $4 p$ and hence $|P L|=2 p^{2}$ or $4 p^{2}$, forcing that P is characteristic in $P L$ because $p \geq 5$. Normality of $P L$ in A thus implies that P is normal in A, as claimed. This completes the proof of Claim 2.

By Claim 2, A has a normal Sylow p-subgroup, say P. Since $|P|=p^{2}, P$ is abelian and since $|V(X)|=2 p^{2}, X$ is a bipartite graph with the two orbits of P as its two bipartite sets. It is easy to see that P acts regularly on each of the two bipartite sets of X. Thus, one may identify $U(P)=\{U(n) \mid n \in P\}$ and $V(P)=\{V(n) \mid n \in P\}$ with the two bipartite sets of X in such a way that the action of $n \in P$ on $U(P)$ and on $V(P)$ is just the right multiplication by n, that is $U(g)^{n}=U(g n)$ and $V(g)^{n}=V(g n)$ for any $g \in P$. Let $V\left(n_{1}\right), V\left(n_{2}\right), V\left(n_{3}\right)$ and $V\left(n_{4}\right)$ be the neighbors of $U(1)$. Then $V\left(n_{1} n\right), V\left(n_{2} n\right), V\left(n_{3} n\right)$ and $V\left(n_{4} n\right)$ are the neighbors of $U(n)$ for each $n \in P$. Since P is abelian, $U\left(n_{1}^{-1} n\right), U\left(n_{2}^{-1} n\right), U\left(n_{3}^{-1} n\right)$ and $U\left(n_{4}^{-1} n\right)$ are the neighbors of $V(n)$ for each $n \in P$. Define the map α by $U(n) \rightarrow V\left(n^{-1}\right)$ and $V(n) \rightarrow U\left(n^{-1}\right)$. It is easy to show that $\alpha \in A$. Since $P \unlhd A$, one has $|\langle P, \alpha\rangle|=2 p^{2}$ and $\langle P, \alpha\rangle$ acts regularly on $V(X)$. Thus, X is a Cayley graph, contrary to Claim 1.

Acknowledgements

The authors are indebted to the referees whose valuable comments have greatly improved the original manuscript. This work was supported by the National Natural Science Foundation of China (10871021, 10911140266) and the Specialized Research Fund for the Doctoral Program of Higher Education in China (20060004026).

References

[1] B. Alspach, D. Marušič, L. Nowitz, Constructing graphs which are 1/2-transitive, J. Aust. Math. Soc. A 56 (1994) 391-402.
[2] B. Alspach, M.Y. Xu, 1/2-transitive graphs of order 3p, J. Algebraic Combin. 3 (1994) 347-355.
[3] N. Biggs, Algebraic Graph theory, second ed., Cambridge University Press, Cambridge, 1993.
[4] I.Z. Bouwer, Vertex and edge-transitive but not 1-transitive graphs, Canad. Math. Bull. 13 (1970) 231-237.
[5] C.Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc. 158 (1971) $247-256$.
[6] Y. Cheng, J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory B 42 (1987) 196-211.
[7] M.D.E. Conder, D. Marušič, A tetravalent half-arc-transitive graph with non-abelian vertex stabilizer, J. Combin. Theory B 88(2003) 67-76.
[8] A.B. D'Azevedo, R. Nedela, Half-arc-transitive graphs and chiral hypermaps, European J. Combin. 25 (2004) 423-436.
[9] J.D. Dixon, B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
[10] S.F. Du, M.Y. Xu, Vertex-primitive 1/2-arc-transitive graphs of smallest order, Comm. Algebra 27 (1999) 163-171.
[11] X.G. Fang, C.H. Li, M.Y. Xu, On edge-transitive Cayley graphs of valency 4, European J. Combin. 25 (2004) 1107-1116.
[12] Y.-Q. Feng, J.H. Kwak, M.Y. Xu, J.X. Zhou, Tetravalent half-arc-transitive graphs of order p^{4}, European J. Combin. 29 (2008) 555-567.
[13] Y.-Q. Feng, J.H. Kwak, C.X. Zhou, Constructing even radius tightly attached half-transitive graphs of valency four, J. Algebraic Combin. 26 (2007) 431-451.
[14] Y.-Q. Feng, K.S. Wang, C.X. Zhou, Tetravalent half-transitive graphs of order 4p, European J.Combin. 28 (2007) 726-733.
[15] D.F. Holt, A graph which is edge-transitive but not arc transitive, J. Graph Theory 5 (1981) 201-204.
[16] C.H. Li, H.S. Sim, On half-transitive metacirculant graphs of prime-power order, J. Combin. Theory B 81 (2001) 45-57.
[17] Z.P. Lu, Primitive half-transitive graphs constructed from the symmetric groups of prime degrees, J. Combin. Theory B 97 (2007) 818-826.
[18] A. Malnič, D. Marušič, Constructing 4-valent 1/2-transitive graphs with a nonsolvable automorphism group, J. Combin. Theory B 75 (1999) 46-55.
[19] A. Malnič, D. Marušič, Constructing $1 / 2$-arc-transitive graphs of valency 4 and vertex stabilizer $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, Discrete Math. 245 (2002) $203-216$.
[20] D. Marušič, Half-transitive group actions on finite graphs of valency 4, J. Combin. Theory B 73 (1998) 41-76.
[21] D. Marušič, On quartic half-arc-transitive graphs with large vertex stabilizers, Discrete Math. 299 (2005) 180-193.
[22] D. Marušič, C.E. Praeger, Tetravalent graphs admitting half-transitive group action: Alternating cycles, J. Combin. Theory B 75 (1999) $185-205$.
[23] D. Marušič, P. Šparl, On quartic half-arc-transitive metacirculants, J. Algebraic Combin. 28 (2008) 365-395.
[24] B.D. McKay, Transitive graphs with fewer than twenty vertices, Math. Comput. 33 (1979) 1101-1121.
[25] B.D. McKay, G.F. Royle, The transitive graphs with at most 26 vertices, Ars Combin. 30 (1990) 161-176.
[26] C.E. Praeger, G.F. Royle, Constructing the vertex transitive graphs of order 24, Symbolic Comput. 8 (1989) 309-326.
[27] P. Šparl, A classification of tightly attached half-arc-transitive graphs of valency 4, J. Combin. Theory B 98 (2008) 1076-1108.
[28] P. Šparl, On the classification of quartic half-arc-transitive metacirculants, Discrete Math. 309 (2009) 2271-2283.
[29] D.E. Taylor, M.Y. Xu, Vertex-primitive 1/2-transitive graphs, J. Aust. Math. Soc. A 57 (1994) 113-124.
[30] W.T. Tutte, Connectivity in Graphs, University of Toronto Press, Toronto, 1966.
[31] R.J. Wang, Half-transitive graphs of order a product of two distinct primes, Commun. Algebra 22 (1994) 915-927.
[32] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
[33] S. Wilson, Semi-transitive graphs, J. Graph Theory 45 (2004) 1-27.
[34] M.Y. Xu, Half-transitive graphs of prime-cube order, J. Algebraic Combin. 1 (1992) 275-282.
[35] C.X. Zhou, Y.-Q. Feng, An infinite family of tetravalent half-arc-transitive graphs, Discrete Math. 306 (2006) 2205-2211.

[^0]: * Corresponding author.

 E-mail address: yqfeng@bjtu.edu.cn (Y.-Q. Feng).

