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In this paper, an HIV-1 infection model with a saturation infection rate and an intracellular
delay accounting for the time between viral entry into a target cell and the production
of new virus particles is investigated. By analyzing the characteristic equations, the local
stability of an infection-free equilibrium and a chronic-infection equilibrium of the model is
established. By using suitable Lyapunov functionals and the LaSalle invariant principle, it is
proved that if the basic reproduction ratio is less than unity, the infection-free equilibrium
is globally asymptotically stable; if the basic reproduction ratio is greater than unity, the
chronic-infection equilibrium is globally asymptotically stable.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical modeling combined with experimental measurements has yielded important insights into HIV-1 patho-
genesis and has enhanced progress in the understanding of HIV-1 infection (see, for example, [1,7,17–20]). Models used
to study HIV-1 infection have involved the concentrations of uninfected target cells, x, infected cells that are producing
virus, y, and virus, v . After protease inhibitors are given, virus is classified as either infectious, v I , i.e., not influenced by the
protease inhibitor, or as non-infectious, vNI , due to the action of the protease inhibitor which prevents virion maturation
into infectious particles. A basic mathematical model describing HIV-1 infection dynamics that has been studied in [8,16,17,
20] is of the form

ẋ(t) = λ − dx(t) − βx(t)v(t),

ẏ(t) = βx(t)v(t) − ay(t),

v̇(t) = ky(t) − uv(t), (1.1)

where uninfected, susceptible cells are produced at a rate, λ, uninfected cells die at rate d, and become infected at rate βxv ,
where β is the rate constant describing the infection process; infected cells are produced at rate βxv and die at rate ay;
free virions are produced from infected cells at rate ky and are removed at rate uv .

It is assumed in model (1.1) that the infection process is governed by the mass-action principle, i.e. that the infection
rate per host and per virus is a constant. However, experiments reported in [4] strongly suggested that the infection rate
of microparasitic infections is an increasing function of the parasite dose, and is usually sigmoidal in shape (see, for exam-
ple, [21]). In [21], to place the model on more sound biological grounds, Regoes et al. replaced the mass-action infection
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rate with a dose-dependent infection rates. In [22], a more general saturated infection rate, βxv p

1+αvq , was suggested, where
p,q and α are positive constants.

The binding of a viral particle to a receptor on a target cell initiates a cascade of events that ultimately lead to the target
cell becoming productively infected, i.e. producing new virus. We note that in model (1.1) this process was assumed to occur
instantaneously: as soon as virus contacts a target cell the cell begins producing virus. This is not biologically sensible. In
reality, there is a time delay between initial viral entry into a cell and subsequent viral production. There has been some
work on the effect of intracellular delay accounting for the time between viral entry into a target cell and the production of
new virus particles (see, for example, [2,3,6,12–15,23,24]). In [6], Herz et al. used a discrete delay to model the intracellular
delay in an HIV model and showed that the incorporation of a delay would substantially shorten the estimate for the
half-life of free virus.

Motivated by the works of Herz et al. [6] and Song and Neumann [22], in the present paper, we are concerned with the
effect of saturation infection rate and intracellular delay describing the time between viral entry into a target cell and the
production of new virus particles on the global dynamics of HIV-1 infection. To this end, we consider the following delay
differential equation model

ẋ(t) = λ − dx(t) − βx(t)v(t)

1 + αv(t)
,

ẏ(t) = βe−mτ x(t − τ )v(t − τ )

1 + αv(t − τ )
− ay(t),

v̇(t) = ky(t) − uv(t), (1.2)

where the parameter τ accounts for the time between viral entry into a target cell and the production of new virus particles.
The recruitment of virus producing cells at time t is given by the number of cells that were newly infected at time t − τ
and are still alive at time t . Here, m is assumed to be a constant death rate for infected but not yet virus-producing cells.
Thus, the probability of surviving the time period from t − τ to t is e−mτ .

The initial conditions for system (1.2) take the form

x(θ) = φ1(θ), y(θ) = φ2(θ), v(θ) = φ3(θ),

φi(θ) � 0, θ ∈ [−τ ,0), φi(0) > 0 (i = 1,2,3), (1.3)

where (φ1(θ),φ2(θ),φ3(θ)) ∈ C([−τ ,0],R
3
+0), the Banach space of continuous functions mapping the interval [−τ ,0]

into R
3
+0, where R

3
+0 = {(x1, x2, x3): xi � 0, i = 1,2,3}.

It is well known by the fundamental theory of functional differential equations [5], system (1.2) has a unique solu-
tion (x(t), y(t), v(t)) satisfying the initial conditions (1.3). It is easy to show that all solutions of system (1.2) with initial
conditions (1.3) are defined on [0,+∞) and remain positive for all t � 0.

In this paper, our primary goal is to carry out a complete mathematical analysis of system (1.2) and establish its global
dynamics. The organization of this paper is as follows. In the next section, by analyzing the corresponding characteristic
equations, we study the local asymptotic stability of an infection-free equilibrium and a chronic-infection equilibrium of
model (1.2). In Section 3, we discuss the global stability of the infection-free equilibrium and the chronic-infection equi-
librium by means of suitable Lyapunov functionals and LaSalle’s invariant principle, respectively. The global stability of
the infection equilibrium rules out any possibility for the existence of Hopf bifurcations and sustained oscillations in sys-
tem (1.2). A brief remark is given in Section 4 to conclude this work.

2. Equilibria and local stability

In this section, we study the local stability of each of feasible equilibria of system (1.2).
Clearly, system (1.2) always has an infection-free equilibrium E1(λ/d,0,0).
Denote

R0 = kλβe−mτ

adu
. (2.1)

Here, R0 is called the basic reproduction ratio of system (1.2).
It is easy to show that if R0 > 1, system (1.2) admits a unique chronic-infection equilibrium E∗(x∗, y∗, v∗), where

x∗ = au

kβe−mτ

(
1 + αv∗), y∗ = u

k
v∗, v∗ = d

β + dα
(R0 − 1). (2.2)

The characteristic equation of system (1.2) at the infection-free equilibrium E1 is of the form

(s + d)

[
s2 + (a + u)s + au − kβ

λ
e−mτ e−sτ

]
= 0. (2.3)
d
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Clearly, Eq. (2.3) always has a negative real root s1 = −d. Other roots of (2.3) are determined by the following equation

s2 + (a + u)s + au − kβ
λ

d
e−mτ e−sτ = 0. (2.4)

Let

f (s) = s2 + (a + u)s + au − kβ
λ

d
e−mτ e−sτ .

If R0 > 1, it is easy to show that, for s real,

f (0) = au(1 − R0) < 0, lim
s→+∞ f (s) = +∞.

Hence, f (s) = 0 has at least one positive real root. Therefore, if R0 > 1, the infection-free equilibrium E1 is unstable.
If R0 < 1, we prove that the infection-free equilibrium E1 is locally asymptotically stable.
When τ = 0, Eq. (2.4) becomes

s2 + (a + u)s + au − kβ
λ

d
= 0. (2.5)

If R0 < 1, we have au > kβλ/d. Hence, the equilibrium E1 is locally asymptotically stable when τ = 0.
If iω (ω > 0) is a solution of Eq. (2.4), separating real and imaginary parts, it follows that

(a + u)ω = −kβ
λ

d
e−mτ sinωτ,

au − ω2 = kβ
λ

d
e−mτ cosωτ . (2.6)

Squaring and adding the two equations of (2.6), we derive that

ω4 + (
a2 + u2)ω2 + (au)2(1 − R2

0

) = 0. (2.7)

Hence, if R0 < 1, Eq. (2.7) has no positive roots. Noting that the equilibrium E1 is locally asymptotically stable when τ = 0,
by the general theory on characteristic equations of delay differential equations from Kuang [9, Theorem 3.4.1], we see that
if R0 < 1, E1 is always locally asymptotically stable.

The characteristic equation of system (1.2) at the chronic-infection equilibrium E∗ takes the form

s3 + p2(τ )s2 + p1(τ )s + p0(τ ) + (
q1(τ )s + q0(τ )

)
e−sτ = 0, (2.8)

where

p0(τ ) = au

(
d + βv∗

1 + αv∗

)
,

p1(τ ) = (a + u)

(
d + βv∗

1 + αv∗

)
+ au,

p2(τ ) = a + u + d + βv∗

1 + αv∗ ,

q0(τ ) = − adu

1 + αv∗ ,

q1(τ ) = − au

1 + αv∗ . (2.9)

When τ = 0, Eq. (2.8) becomes

s3 + p2(0)s2 + (
p1(0) + q1(0)

)
s + p0(0) + q0(0) = 0. (2.10)

It is easy to see that

p0(0) + q0(0) =
{

au

(
d + βv∗

1 + αv∗

)
− adu

1 + αv∗

}
τ=0

> 0,

p1(0) + q1(0) =
{
(a + u)

(
d + βv∗

1 + αv∗

)
+ au − au

1 + αv∗

}
τ=0

> 0,

p2(0)
(

p1(0) + q1(0)
) − (

p0(0) + q0(0)
)

=
{
(a + u)

(
d + βv∗

1 + αv∗

)(
a + u + d + βv∗

1 + αv∗

)
− auβv∗

(1 + αv∗)2
+ (a + u)

(
au − au

1 + αv∗

)}
τ=0

> 0.

Hence, if R0 > 1, the equilibrium E∗ of system (1.2) exists and is locally asymptotically stable when τ = 0.
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If iω (ω > 0) is a solution of Eq. (2.8), separating real and imaginary parts, it follows that

ω3 − p1(τ )ω = q1(τ )ω cosωτ − q0(τ ) sinωτ,

p2(τ )ω2 − p0(τ ) = q1(τ )ω sinωτ + q0(τ ) cosωτ . (2.11)

Squaring and adding the two equations of (2.11), we derive that

ω6 + (
p2

2(τ ) − 2p1(τ )
)
ω4 + (

p2
1(τ ) − 2p0(τ )p2(τ ) − q2

1(τ )
)
ω2 + p2

0(τ ) − q2
0(τ ) = 0. (2.12)

Direct calculations show that

p2
2(τ ) − 2p1(τ ) = a2 + u2 +

(
d + βv∗

1 + αv∗

)2

> 0,

p0(τ ) + q0(τ ) = au

(
d + βv∗

1 + αv∗

)
− adu

1 + αv∗ > 0,

p2
1(τ ) − 2p0(τ )p2(τ ) − q2

1(τ ) = (
a2 + u2)(d + βv∗

1 + αv∗

)2

+ a2u2 − a2u2

(1 + αv∗)2
> 0.

Hence, if R0 > 1, Eq. (2.12) has no positive roots. Noting that the equilibrium E∗ is locally asymptotically stable when τ = 0,
by the general theory on characteristic equations of delay differential equations from Kuang [9, Theorem 3.4.1], we see that
if R0 > 1, the equilibrium E∗ is locally asymptotically stable.

From what has been discussed above, we have the following result.

Theorem 2.1. For system (1.2), if R0 < 1, the infection-free equilibrium E1(λ/d,0,0) is locally asymptotically stable; if R0 > 1, E1 is
unstable and the chronic-infection equilibrium E∗(x∗, y∗, v∗) exists and is locally asymptotically stable.

3. Global stability

In this section, we study the global stability of each of feasible equilibria of system (1.2). The strategy of proofs is to use
suitable Lyapunov functionals and LaSalle’s invariant principle. The Lyapunov functionals used here are similar in nature to
those used in [10,11] in which the global dynamics are resolved for SEIR and SIR models with time delay, respectively.

We first state and prove our result on the global stability of the infection-free equilibrium E1(λ/d,0,0).

Theorem 3.1. The disease-free equilibrium E1(λ/d,0,0) of system (1.2) is globally asymptotically stable if R0 < 1.

Proof. Let (x(t), y(t), v(t)) be any positive solution of system (1.2) with initial conditions (1.3). Denote x0 = λ/d.

Define

V 11(t) = x − x0 − x0 ln
x

x0
+ emτ y + a

k
emτ v. (3.1)

Calculating the derivative of V 11(t) along positive solutions of system (1.2), it follows that

d

dt
V 11(t) =

(
1 − x0

x

)[
λ − dx − βx(t)v(t)

1 + αv(t)

]

+ emτ

[
βe−mτ x(t − τ )v(t − τ )

1 + αv(t − τ )
− ay(t)

]

+ a

k
emτ

[
ky(t) − uv(t)

]

=
(

1 − x0

x

)[
−d(x − x0) − βx(t)v(t)

1 + αv(t)

]

+ emτ

[
βe−mτ x(t − τ )v(t − τ )

1 + αv(t − τ )
− ay(t)

]

+ a

k
emτ

[
ky(t) − uv(t)

]

=
(

1 − x0

x

)[−d(x − x0)
]

− βx(t)v(t) + βx(t − τ )v(t − τ )
1 + αv(t) 1 + αv(t − τ )



R. Xu / J. Math. Anal. Appl. 375 (2011) 75–81 79
+
[

βx0

1 + αv(t)
− au

k
emτ

]
v(t). (3.2)

Define

V 1(t) = V 11(t) + β

t∫
t−τ

x(s)v(s)

1 + αv(s)
ds. (3.3)

We therefore derive from (3.2) and (3.3) that

d

dt
V 1(t) = −d

(x − x0)
2

x
+

[
βx0

1 + αv(t)
− au

k
emτ

]
v(t). (3.4)

Noting that

βx0

1 + αv(t)
− au

k
emτ � βx0 − au

k
emτ = au

k
emτ (R0 − 1) < 0,

it follows from (3.4) that V ′
1(t) � 0. By Theorem 5.3.1 in [5], solutions limit to M, the largest invariant subset of {V ′

1(t) = 0}.
Clearly, it follows from (3.4) that V ′

1(t) = 0 if and only if x = x0, v = 0. Noting that M is invariant, for each element in M,
we have v = 0, v ′(t) = 0. We therefore derive from the third equation of system (1.2) that

0 = v ′(t) = ky(t),

which yields y = 0. Hence, V ′
1(t) = 0 if and only if (x, y, v) = (x0,0,0). Accordingly, the global asymptotic stability of E1

follows from LaSalle’s invariance principle. This completes the proof. �
We are now in a position to establish the global stability of the chronic-infection equilibrium E∗ of system (1.2).

Theorem 3.2. If R0 > 1, then the chronic-infection equilibrium E∗(x∗, y∗, v∗) of system (1.2) is globally asymptotically stable.

Proof. Let (x(t), y(t), v(t)) be any positive solution of system (1.2) with initial conditions (1.3).
Define

V 21(t) = x − x∗ − x∗ ln
x

x∗ + emτ

(
y − y∗ − y∗ ln

y

y∗

)
+ a

k
emτ

(
v − v∗ − v∗ ln

v

v∗

)
.

Calculating the derivative of V 21(t) along positive solutions of system (1.2) it follows that

d

dt
V 21(t) =

(
1 − x∗

x

)[
λ − dx(t) − βx(t)v(t)

1 + αv(t)

]

+ emτ

(
1 − y∗

y

)[
βe−mτ x(t − τ )v(t − τ )

1 + αv(t − τ )
− ay(t)

]

+ a

k
emτ

(
1 − v∗

v

)[
ky(t) − uv(t)

]
. (3.5)

On substituting λ = dx∗ + βx∗v∗
1+αv∗ into (3.5), we derive that

d

dt
V 21(t) =

(
1 − x∗

x

)[
−d

(
x(t) − x∗) − βx(t)v(t)

1 + αv(t)
+ βx∗v∗

1 + αv∗

]

+ emτ

(
1 − y∗

y

)[
βe−mτ x(t − τ )v(t − τ )

1 + αv(t − τ )
− ay(t)

]

+ a

k
emτ

(
1 − v∗

v

)[
ky(t) − uv(t)

]

=
(

1 − x∗

x

)[−d
(
x(t) − x∗)]

− βx(t)v(t)

1 + αv(t)
+ βx∗v(t)

1 + αv(t)
+ βx∗v∗

1 + αv∗

(
1 − x∗

x

)

+ βx(t − τ )v(t − τ )

1 + αv(t − τ )
− β y∗x(t − τ )v(t − τ )

y(t)(1 + αv(t − τ ))
+ aemτ y∗

+ a
emτ

[
−uv(t) − kv∗ y(t) + uv∗

]
. (3.6)
k v(t)
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Noting that βe−mτ x∗v∗
1+αv∗ = ay∗ , ky∗ = uv∗ , it follows from (3.6) that

d

dt
V 21(t) =

(
1 − x∗

x

)[−d
(
x(t) − x∗)]

− βx(t)v(t)

1 + αv(t)
+ βx∗v(t)

1 + αv(t)
+ βx∗v∗

1 + αv∗

(
1 − x∗

x

)

+ βx(t − τ )v(t − τ )

1 + αv(t − τ )
− βx∗v∗

1 + αv∗
y∗(1 + αv∗)

x∗v∗
x(t − τ )v(t − τ )

y(t)(1 + αv(t − τ ))

− βx∗v∗

1 + αv∗
v(t)

v∗ − βx∗v∗

1 + αv∗
v∗

y∗
y(t)

v(t)
+ 2βx∗v∗

1 + αv∗ . (3.7)

Define

V 2(t) = V 21(t) + β

t∫
t−τ

[
x(s)v(s)

1 + αv(s)
− x∗v∗

1 + αv∗ − x∗v∗

1 + αv∗ ln
(1 + αv∗)x(s)v(s)

x∗v∗(1 + αv(s))

]
ds. (3.8)

We derive from (3.7) and (3.8) that

d

dt
V 2(t) =

(
1 − x∗

x

)[−d
(
x(t) − x∗)]

− βx(t)v(t)

1 + αv(t)
+ βx∗v(t)

1 + αv(t)
+ βx∗v∗

1 + αv∗

(
1 − x∗

x

)

+ βx(t − τ )v(t − τ )

1 + αv(t − τ )
− βx∗v∗

1 + αv∗
y∗(1 + αv∗)

x∗v∗
x(t − τ )v(t − τ )

y(t)(1 + αv(t − τ ))

− βx∗v∗

1 + αv∗
v(t)

v∗ − βx∗v∗

1 + αv∗
v∗

y∗
y(t)

v(t)
+ 2βx∗v∗

1 + αv∗

+ β

[
x(t)v(t)

1 + αv(t)
− x(t − τ )v(t − τ )

1 + αv(t − τ )
+ x∗v∗

1 + αv∗ ln
(1 + αv(t))x(t − τ )v(t − τ )

x(t)v(t)(1 + αv(t − τ ))

]

= −d
(x(t) − x∗)2

x

− βx∗v∗

1 + αv∗

[
x∗

x(t)
− 1 − ln

x∗

x(t)

]

− βx∗v∗

1 + αv∗

[
y∗(1 + αv∗)x(t − τ )v(t − τ )

x∗v∗ y(t)(1 + αv(t − τ ))
− 1 − ln

y∗(1 + αv∗)x(t − τ )v(t − τ )

x∗v∗ y(t)(1 + αv(t − τ ))

]

− αβx∗v∗(v(t) − v∗)2

v∗(1 + αv∗)2(1 + αv(t))

− βx∗v∗

1 + αv∗

[
1 + αv(t)

1 + αv∗ − 1 − ln
1 + αv(t)

1 + αv∗

]

− βx∗v∗

1 + αv∗

[
v∗ y(t)

y∗v(t)
− 1 − ln

v∗ y(t)

y∗v(t)

]
. (3.9)

Noting that x∗, y∗, v∗ > 0, we have that V ′
2(t) � 0. By Theorem 5.3.1 in [5], solutions limit to M, the largest invariant

subset of {V ′
2(t) = 0}. It is readily seen from (3.9) that V ′

2(t) = 0 if and only if x = x∗ , v = v∗ , y∗(1+αv∗)x(t−τ )v(t−τ )
x∗ v∗ y(t)(1+αv(t−τ ))

=
1+αv(t)
1+αv∗ = v∗ y(t)

y∗v(t) = 1. Using a similar argument as that in the proof of Theorem 3.1 and by the LaSalle’s invariant principle,
the global asymptotic stability of E∗ follows. This completes the proof. �
4. Conclusion

In this paper, we have studied the global dynamics of an HIV-1 infection model with a saturation infection rate and an
intracellular delay accounting for the time between viral entry into a target cell and the production of new virus particles.
The global stability of the infection-free equilibrium and the chronic-infection equilibrium of system (1.2) has been com-
pletely established by using the Lyapunov–LaSalle type theorem. By Theorem 3.1 we see that if the basic reproduction ratio
R0 is less than unity, the infection-free equilibrium is globally asymptotically stable. In this case, the virus is cleared up.
By Theorem 3.2 we see that if the basic reproduction ratio R0 is greater than unity, the chronic-infection equilibrium is
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globally asymptotically stable. From Theorems 3.1 and 3.2, we see that the intracellular delay describing the time between
viral entry into a target cell and the production of new virus particles does not affect the stability of the feasible equilibria
and therefore does not induce periodic oscillations and the possibility of Hopf bifurcations is therefore ruled out.
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