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1. INTRODUCTION 

Let R be a ring with identity 1. We denote the category of unital right 
(respectively left) R-modules by ‘U&m). MR will signify ME YJl&M E $tJl). 

We will be concerned with certain categorical properties of modules. 
MR is projective if and only if every epimorphism NR + MR splits. Dually, 
MR is injective if and only if every monomorphism Ma + NR splits.. MR 
is a generator in!Q if and only if, for every NR E !JJ~~ , there is an epimorphism 
from a direct sum of copies of MA to NR . Dually, M, is a cogenerator in 
mmR if and only if, for every NR E V&r , there is a monomorphism from NR 
into a direct product of copies of M, . RR is always a projective generator 
in %$ . This paper discusses rings for which RR possesses the dual properties. 

A ring R is quasi-Frobenius if R has descending chain condition (dcc) 
on right ideals, and RR is injective. Such rings have been extensively studied 
(see, for example, Nakayama [Z6] and [27], Morita and Tachikawa [15], 
Ikeda and Nakayama [lo], Morita [14], Dieudonne [5], Faith [8], and Faith 
and Walker [9]). 

There are many properties equivalent to this definition (it is not the 
original definition of these rings). For example, the following are equivalent: 

(i) R is quasi-Frobenius. 

(ii) RR is a cogenerator in !& and R has dcc on right ideals. 

(iii) RR has ascending chain condition (act) on right ideals and RR 

is injective. 

(iv) RR has act on right ideals and RR is a cogenerator in ‘Q . 

(v)-(viii) The above with chain conditions on left rather than right 
ideals. 

1 The author gratefully acknowledges partial support from the National Science 
Foundation under grant GP-4226. 
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In Section 2, we discuss what happens if we drop all chain conditions, 
but retain some of the other properties of quasi-Frobenius rings. There are 
rings with RR injective but not a cogenerator (for example, the ring of all 
linear transformations on a vector space I’, of infinite dimension over the 
field F). RR may be a cogenerator but not injective (example 2 in Section 2). 
Such rings have no chain conditions on any reasonable classes of right 
ideals. However, Theorem 1 states that if RR is an injective cogenerator in 
!ll& , then RR is a finite direct sum of indecomposable right ideals, and R 
modulo its Jacobson radical is semi-simple Artin. Thus RR has dcc and act 
on direct summands. An example (example 1) is constructed to show that 
no other chain conditions are implied. 

In Section 3, duality of modules is discussed. We assume we have rings 
S and T, and an S - T bimodule U such that sU and UT are injective 
cogenerators in ,&II and !J& respectively. In this case, S and T both have 
semi-simple Artin quotients modulo their Jacobson radicals, and idempotents 
lift modulo the radical. Moreover, if S (or T) is left or right perfect, then S 
and T are two-sided Artin. 

Section 4 contains a discussion of what happens if we only know that UT 
is an injective cogenerator in !I&-. 

2. RING INJECTIVJX COGENERATORS 

In this section we study rings R for which RR is an injective cogenerator 
in!&. 

A module M is called an essential extension of NR (written MR ‘1 NR 
orNR~‘MR)ifKREMRandKnN=O~K=O.EveryM~canbe 
embedded in an injective module E(M) which is an essential extension of M. 
Every injective module containing M contains an isomorphic copy of E(M) 
(Eckmann and Schopf [6]). If X G R, let (0 :X) = (r E R 1 XT = 0 for all 
x E X}, and (X) = the ideal generated by X. In the sequel, J will denote 
the Jacobson radical of R, and 7r the natural map ‘from R onto R/J. 

We list a series of known lemmas. 

LEMMA 1. A module n/r, is a cogenerator in !I& o M contains a copy of 
the injective hull E(U) of each simple right R-module U. 

Proof. Let M be a cogenerator in mR , V a simple right R-module. 
E(V) may be embedded in a direct product of copies of M, and the projection 
of V onto one of those copies is non-zero. Then the kernel of the projection 
of E(V) onto that copy of M has zero intersection with V. We conclude that 
the kernel is zero, so the projection embeds E(V) in M. 
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Now let M contain a copy of the injective hull E(V) of each simple R- 
module V. Consider the map from the right R-module N to &.rom~(N,M) A4, 
given by x -+ (f(x)). G iven x E N, XR has a simple quotient module V. The 
map from XR to V extends to a map from N to E(V) since E(V) is injective. 
Since M contains a copy of E(V), we get a map from N to M which is not 
zero on x. Thus N is embedded in J&suOmR(N,M, M, . 

LEMMA 2. IR 5 RR is a direct summand of RR o I = eR for some e = 
e2ER. 

Proof. I = eR implies RR = eR @ (1 - e)R. If I is a direct summand 
of RR, sayR=I@ J, thenif 1 =e+f,eEI,fEJ,eisanidempotent 
generating I. 

LEMMA 3. Let U be a minimal right ideal of R such that E(U) G R. Then 
E( U)/E( U) J is simple. 

Proof. Let A = Hom,(E(U), E(U)). Then f E A is a monomorphism 
if and only if kernel f n U = 0. Moreover, if f is a monomorphism, f(E( U)) 
is injective and hence a direct summand of E(U). Since E(U) ‘2 U which 
is simple, the only direct summands of E(U) are 0 and E(U). Thus f is an 
isomorphism. If x, y E R are non-units, then kernel x n kernel y 2 U, so 
x + y is a non-unit. We conclude that A is a local ring. 

Since E(U) G R, E(U) = eR f or some e = e2 E R by Lemma 2. Then 
A = eRe, and eRe/e Je M A/rad A is a field. But eRele Je is the endomorphism 
ring of eR/e J, a non-nilpotent right ideal of RI J. Hence eR/e J is simple as 
an R/J-module. It is then simple as an R-module (see Jacobson [II], p. 65). 

LEMMA 4. If Rx is injective, then RI J is regular and$nite sets of orthogonal 
idempotents in R/J lift to orthogonal idempotents in R. Moreover, J = 
{r E R / R ‘2 (O:r)}. 

Proof. Various portions of this lemma are due to different people, as 
Utumi [22] and Faith and Utumi [23]. 

LEMMA 5. If e = e2 E R, f = f 2 E R, then eR/e J m fR/fJo eR SW fR. 

Proof. If eR m fR, clearly eRje J SW fR/f J. The proof in the other direc- 
tion is Bass’ proof of the uniqueness of projective covers (see [3], or Jacobson 
[II], Proposition 1, p. 53). 

LEMMA 6. Let A be a set of cardinality X > N, . Then A can be decomposed 
into a class x of subsets of A with cardinality s?- > K, and for all X, Y E S, 
cardinality X = cardinality Y > cardinality X n Y if X # Y. 

Proof. See Tarski [21], page 191. 
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In the remainder of this section, RR will be an injective cogenerator in ‘9X, . 
Lemmas 1,2,3, and 5 enable us to establish a 1 - 1 correspondence between 
isomorphism classes of simple R-modules and isomorphism classes of simple 
submodules of R/ J. Our aim is to prove that every simple R-module appears 
in the socle of R/J by proving that there are only a finite number of non- 
isomorphic simple R-modules. Then R/J is semi-simple Artin since it is 
regular and no maximal ideal contains its socle. Lemma 4 enables us to lift 
idempotents and thus get the desired decomposition of R as a finite direct 
sum of indecomposable right ideals. As suggested by Lemma 6, a counting 
argument will be used. 

Every isomorphism class of simple R-modules has been associated with 
a class of simple R/J modules-a representative U is associated with E(U)/ 
E(U) J. We next extend this correspondence to one between homogeneous 
components of the socle of R and a set of central idempotents in RI J. 

If U is an injective module, and M a submodule of U, U must contain 
at least one copy of E(M). Although this copy is “unique up to isomorphism”, 
it need not be a unique submodule of U; that is, U may contain more than 
one copy of E(M) (see, for example, Osofsky [la]). Our next lemma basically 
states that homogeneous components of the socle of RR do indeed have 
unique (modulo J) injective hulls in RR . The symbol E(M) will refer 
to any one of the copies of the injective hull in RR of the right ideal M. 

Let C = {U, 1 L E 4) be a family of simple right R-modules, and let 
S(C) = CU, where the summation is taken over all minimal right ideals 
U of R isomorphic to U, for some U, E C. By Lemma 2, E(S(C)) = ecR 
for some idempotent ec in R. 

LEMMA 7. r(ecR) ‘r> CW, h w ere the summation is taken over all minimal 
right ideals W of R/ J @morphic to E(U,)IE(U,) J for some U, in C. 

Proof. Let W be a minimal right ideal of R/ J isomorphic to E( U,)/E( U,) J. 
Assume W $ r(ecR). Then W + rr(ecR) = r(f)R/J@ rr(ec)R/J, where 
P(ec) and r(f) are orthogonal idempotents in the regular ring R/J (see Von 
Neumann [24]). Since W is simple, r(f)R/ J * W. By Lemma 4, rr(ec) and 
r(f) lift to orthogonal idempotents e and f in R. By Lemma 2, E(U,) is 
generated by an idempotent; by Lemma 5, E( U,) w fR. Hence fR contains 
an isomorphic copy U’ of U, . Since rr(ec) = p(e), ec - e E: J. Hence by 
Lemma 4, (ec - e)U’ = 0. But ecR 2 U’, so e&J’ = U’. Then eU’ = 
U’ = fU’ = feU’ = 0, a contradiction. Thus W G v(ecR). 

Now let 0 # p E m(ecR). Since RI J is regular, pR/ J = ERI J and rr(ecR) = 
ER/ J + 6Rl J, where E and 6 are orthogonal idempotents in R/J. We lift o 
and S to orthogonal idempotents e and din R by Lemma 4. Then r(e + d)R = 
r(e=)R, so by Lemma 5, (e + d)R m ecR. But then eR n S(C) # 0, so eR 1 
E(U) for some U G S(C), and pR/ J = r(e)R/ J 2 E( U)/E( U) J. 
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Note added in proof. Since writing this paper, the author has 
found that Lemma J can be replaced by a result of Y. Utumi 
[On continuous rings and self injective rings. Trans. Am. Math. 
Sot. 118 (1965), 158-l 731: If R is right self-injective, then so is R/J. 
This immediately gives an idempotent in R/J with the properties 
we need in Lemma 7. 

For additional examples of ring injective cogenerators without 
chain conditions, see L. Levy [Commutative rings whose homo- 
morphic images are self injective. PaczJc J. Math. 18(1966), 149-1531. 

LEMMA 8. r(ec) = E is a central idempotent in R/J. 

Proof. Assume EP( 1 - c) # 0 f or some p E R/J. By Lemma 7, there 
is a Y E R/J such that l p(l - .)v is in W, a minimal right ideal of ER/ J. 
Since W is generated by an idempotent in R/J, W is a projective R/J-module. 
Hence the R/J-homomorphism from (1 - e)vR/ J to W given by left multi- 
plication by EP must split. Thus (1 - E)R/ J contains a minimal right ideal 
isomorphic to W. But all such are contained in CR/J by Lemma 7, a contra- 
diction. We conclude that CR/ J( 1 - E) = 0. 

Assume (1 - E)~Q # 0 for some p E R/J. Consider the map E + (1 - E)~E 
from CR/J to (1 - E)R/ J. It s image, a principal right ideal of R/ J, is generated 
by an idempotent, and hence a projective R/J-module. Thus CR/J contains 
a direct summand isomorphic to (1 - r)peR/ J. But the latter contains no 
submodule isomorphic to E( U,)/E( U,) J for U, E C, so Lemma J is contra- 
dicted. Hence (1 - <)R/ JC = 0. 

We are now ready for our main result. 

THEOREM 1. Let R, be an injective cogenerator in MR . Then R = Cy-, e,R, 
where {ei 1 1 < i < n} is a set of orthogonal idempotents, and eiR/ei J is simple 
for each i. 

Proof. Let {U, 1 I E $} be a complete set of representatives of the distinct 
isomorphism classes of simple R-modules. Assume 9 is infinite. We have 
a 1 - 1 correspondence between 4, isomorphism classes of simple right 
ideals, and isomorphism classes of simple modules E(U,)/E(U,)J in the 
socle of R/J. By Lemma 6, we may decompose 9 into a class s of subsets 
such that cardinality % > cardinality 3, and for all X, YE %, cardinality 
X = cardinality Y > cardinality X n Y if X # Y. For each $ E fl, 

Let C(f) = {uj IjEA, and let eN be the corresponding central idem- 
potent generating 4E(S(C(f)))). Let I = zr(vR), where cardinality 
fl < cardinality X for all X E %. I is a two sided ideal of R/J. For X E x, 
set I, = I + n( 1 - ex)R/ J. Th is is also a two sided ideal of RI J since the 
ex , ef are central idempotents in RI J. 
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Since S(X) = S(X - Y) @ S(X n Y), E(S(X)) = E(S(X - Y)) @ 
E(S(X n Y), and e,, r E e,R. Similarly, e,,, E eyR. Hence z(exny) E 
n(eXR) n n(eyR) E n(eXeyR) = n-(e,e,R). If p E n(eXeyR), let W be a 
simple module of pR/J. Then W - E(U,)IE(U,) J = E(U,MU,) J for 
some v E X, 4 E Y, since p is in rr(eXR) and in v(eyR). Hence v = # E X n Y. 
Since n(e,R) is an essential extension of its socle, pR/ J is an essential exten- 
sion of its socle. Moreover, +e,,,R) contains every essential extension of 
C {W / W w E( U,)/E( U,) J for some v E X n Y}, so p E n(exnyR). Thus 

4w+R) G 4exnyR), and equality must hold. Then n(exny) = r(exey) is 
the unique identity of the ring n-(eXeyR). 

Now assume n(er) E 1, . Then e, = (1 - ex)r, + EYE, ex,ri + j where 
j E J and cardinality Xi < cardinality X for 1 < i < rz. Hence cardinality 
uy=r Xi < cardinality X since X is infinite. Thus there is a ‘p E X, p $ UT=, Xi, 
and rr(+R) = n(1 - eX)r,R + Cy=, n(exi)riR has no submodule isomorphic 
to E( U,)/E( U&J, a contradiction to Lemma 7. We conclude that T(Q) 4 1, , 
so 1r # R/J. On the other hand, let X # Y E x. Then a(ey) = ~((1 - 
ex)ey) + n(exey) •1~ since +eXey) = ?r(exnr), and cardinality X n Y < 
cardinality X. 

Now enlarge 1, to a maximal right ideal N, of R/J. Then R/(NX + J) is a 
simple R-module annihilated by {ey ( X # YE 3?}, but not by e, . Thus 
X # Y implies R/(NX + J) is not isomorphic to R/(Ny + J). Hence we have 
found cardinality 3? > cardinality 3 non-isomorphic simple R-modules, 
a contradiction. 

We conclude that 9 is finite. Hence our 1 - 1 correspondence between 
simple R-modules and simple modules in the socle of R/J must be onto the 
classes of simple R-modules. Then every simple R/J-module appears in its 
socle, and so is projective. Then R/J equals its socle, and so is semi-simple 
Artin. Since idempotents lift modulo J by Lemma 4, we get the required 
structure on R. 

We have shown that if RR is an injective cogenerator in %& , then R has 
act and dcc on direct summands. The following example ,shows that no 
other chain conditions need hold. 

Example 1. An injective cogenerator without chain conditions. 

Let Zo,, denote the p-adic integers for some prime p. 
Define a ring R by (R, +) = ZCs, @ Z,, , and for (h, x), (p, y) E R, 

(h, x)(p, y) = (h,u, hy + p). This multiplication is associative and distributes 
over addition (the verification uses the facts that Zo,, = Homz(Z,, , Z,,), 

and -& is a commutative ring). 
Let I be a proper ideal of R. I may be any additive subgroup of Z,, . 

If not, let (h, x) ~1, X # 0. Then (h, x)Z,, = Z,, c I, and I/Z,, is an ideal 

of Z(P) . Such an ideal is of the form (p”) for some i > 0, so I = ((p*, 0)). 
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Thus R is a local ring with maximal ideal ((p, 0)), and R contains a copy 
of its only simple module, namely the subgroup of Z,, of order p. Thus by 
Lemma 1, if R is injective, it will be a cogenerator in M, . 

Let f be a map from an ideal I of R into R. 
If I E Z,, , f maps I into the torsion subgroup of (R, +), namely Z,, . 

Since Z,, is an injective group, f extends to an element h E Hom,(Z,, , 
Z,,) = .Z& . Then f(0, x) = (h, O)(O, x) for all (0, x) in I. 

If I = ((pi, 0)), and f(pi, 0) = (0, x), then there is a y E Z,, such that 
p”y = x. Then f(pi, 0) = (0, y)(pi, 0), so f(h, z) = (0, y)(h, z) for all (h, z) E 
((pi, 0)) = I. 

If1 = ((p”, 0)), andf(pi, 0) = (h, x), then (0: (pi, 0)), the additive subgroup 
of order pi, is annihilated by X. Hence pi divides X. Then f(pi, 0) = (h/p”, y) 
(pi, 0), where y is defined above. Then f(p, z)=(h/pi, y)(p, .z) for all (p, z) ~1. 

Hence, in all cases, f is given by left multiplication, and RR is injective by 
Baer’s criterion (see Baer [2]). 

In our proof of Theorem 1, the injectivity of R was used to get cyclic 
essential extensions of homogeneous components in the socle of R/J, which 
enabled us to generate too many simples if R/J were not semi-simple Artin. 
The following example shows that this injectivity is necessary for the con- 
clusion of the theorem. 

Example 2. A non-injective cogenerator in MR with no chain conditions 
on direct summands. 

Let R be an algebra over a field F with basis {I} U {ei 1 i = 0, 1, 2,...} U 

(xi 1 i = 0, 1, 2,...} such that: 

(i) 1 is a two-sided identity of R. 

(ii) For all i and for all j, eixi = 6i,ixj and xie, = Si,i-lxj , eiei = i3i,iei 
and xixj = 0. 

Here 6i,i is the Kronecker 6. 
One easily verifies that this multiplication of basis elements associates, 

and that J = ({xi 1 i > O}). Moreover, (R/J, +) = C r(ei)F + lF, and the 
simple R-modules are precisely {r(e,)R} and R/Ce,R. Since these are iso- 
morphic to {xi+,R} and xsR respectively, R will be a cogenerator if each eiR 
is injective. 

Let I be a right ideal of R, f : 1-+ e,R. We observe that (e,R, +) = e,F + 
xiF, so that f = 0 on I A R(l - e, - e,-& where e-i = 0. Hence f can be 
non-zero only on e,F + ei-,F + xiF + x,+,F. Moreover, x~+~R is simple, 
but not isomorphic to xiR, so f must be 0 on it. We conclude that f can be 
extended to I + (1 - [ei + e&J)R by defining it to be 0 on the last summand. 
If e,-i 4 I, define f(ejPl) = 0. Th en f is extended to 1 + (1 - ei)R. If e, E I, 
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f is extended to a map from R + e,R; if xi $ I or f(xc) = 0, define f(ei) = 0; 
if not, f(xi) = xiv for some Y E F, and we define f(ei) = eiv. In all cases, we 
have extended f to R, so eiR is injective by Baer’s criterion. 

3. MORITA DUALITY 

In this section, S and T will denote fixed rings with identities such that 
there exists an S - T bimodule U with sU and Ur injective cogenerators 
in ,XX and %kr respectively, and S = Homr(U, U), T = Homs(U, U). 

For M emrn, (NE ,$I), set M* = Homr(M, U) (N* = Homs(N, U)). 
Then M* E ,!UI (N* ~!lXr). For M, NE!& (or s!D2), and v : M + N, set 
Y* = Hom(v, 1 LI) : N* + M*. Then * is a functor from !lJIr to ,‘@ and from 
,%k to mm,. There is a natural homomorphism vM : M + M** given by 
am = f(x) (or xf) for all x E M, f E M*. M is called reflexive if vM 
is an isomorphism. * is a category anti-isomorphism between the categories 
of reflexive modules, since there ** is naturally equivalent to the identity 
under the transformation F. 

PROPOSITION. The category W of reflexive right T-modules (or reflexive 
left S-modules) contains T and U, (S and sU) and is closed under taking 
finite direct sums, submodules, and quotient modules. 

Proof. This is a portion of Morita’s Theorem 2.4 [24]. 

This proposition is the major reason for studying the situation in this 
section. 

A structure theorem for T and S comparable to Theorem 1 is readily 
obtained. A ring R is called semi-perfect if R/J is semi-simple Artin and 
idempotents lift modulo J. Bass [3] h s owed that R is semi-perfect if and 
only if every simple R-module is of the form eR/e J for some e = ea E R. 

THEOREM 2. S and T are semi-perfect. 

Proof. Let MT be a simple T-module. Since T is reflexive and M is a 
quotient of T, M is also reflexive, and M* is a simple S-submodule of T* M 
&. Since sU is injective, U = E(M*) ON, where N is some S-submodule 
of U. Then U* M T M E(M*)* @N*, so E(M*)* is projective. Since M* 
is the unique simple submodule of E(M*), by our category anti-isomorphism, 
M** M M is the unique simple quotient of E(M*)*. Since E(M*)* is a 
direct summand of T, it is generated by an idempotent e = ea E T (Lemma 2), 
and since M is its only simple image, the kernel of the epimorphism to M 
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must be eT n J = eJ. Then M C+ eT/e J. Thus T is semi-perfect, and by a 
symmetrical argument, so is S. 

If we impose additional finiteness conditions on S and T, we get stronger 
results. We first introduce some terminology. 

A module MR 5 NR is called small in NR if N = M + K z- N = K 
for all submodules K of N. A projective module PR is called a projective 
cover of MR if there is an epimorphism TV : P + M such that kernel p is 
small in P. Semi-perfect rings are precisely those for which every finitely 
generated module has a projective cover. A ring R is called right (left) perfect 
if every right (left) R-module has a projective cover. 

LEMMA 9. The following are equivalent: 

(i) R is right perfect. (R is left perfect.) 

(ii) RI J is semi-simple Artin and every cyclic left (right) R-module has 
non-zero socle. 

(iii) R/J is semi-simple Artin and every non-zero right (left) R-module 
has a non-zero simple epimorphic image. 

(iv) R/J is semi-simple Artin and if {ai 1 i = 0, 1, . ..} c J, there is an 
n such that a,a,-, **. a0 = 0 (a,,a, *** a,, = 0). 

Proof. All implications are in Bass [3]. (i) o (ii) o (iv) is from Bass’ 
proof of Theorem P. (i) * (iii) 3 (iv) is remark 2, p. 470. 

It is an immediate consequence of Lemma 9 that if R is right perfect and 
J” # 0, then J”J = J”+i f J” since J” has a non-trivial epimorphic image. 

Let {,4, ) n = 0, I,...} be a family of finite sets, and F a family of functions 
{fn : A,, + power set of A,,,). The pair ({A,}, F) is called a graph. A path 
in this graph is a set of elements {a,} such that a,, E A,, , and a, Ef,,-l(am-l) 
for m>l. 

LEMMA 10. If the graph ((A,}, F) h as arbitrarily long paths, then it has 
a path of in$nite length. 

Proof. This lemma is known as Konig’s Graph Theorem. We call a, E A,, 
“good” if there are paths of arbitrary length containing a, . For convenience 
we set A-, = {a} and set f-l(a) = A,. Then a is good by hypothesis. Now 
assume a, is good. If every element of the finite set f,(a,) is not good, then 
there is an upper bound on the lengths of paths through each of these 
elements, and hence the maximum of these upper bounds is an upper bound 
on the length of a path through a, . This contradicts the assumption that a, 
is good. We conclude that some element of f,,(a,) is good. We then get an 
infinite path by selecting a, a good element in f-,(A-,), and a, a good element 
in fn-l(a,-,) by induction. 

4gr14/3-5 
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LEMMA 11. Let R be left (right) perfect, and (J/ J2)R finitely generated. 
Then J is nilpotent, and R has dcc on right ideals. 

Proof. Let (J/ J”)R = C;s, xi’R, and let xi + xi’ in the natural map 
from J---f J/ J2. Let A, be the set of all products xi, *a* xi, # 0. xj a** q+r E 

f&i0 . .. xi,) if and only if j, = ik (ik = j,,,) for 0 < K < 71, kd xi0 a.. 
xj,+, # 0. Since R is left (right) perfect, by Lemma 9, ({A,}, { fn}) can have no 
paths of infinite length. Hence, by Lemma 10, there is an integer N such 
that no product of N xi’s is non-zero. Assume JN # 0. Then JN+l # JN, 
so there is a y E JN, y $ J N+l. Then y is a sum of products of N elements 
of J, and at least one of these products, say a, is not in JN+l. Then a is a 
product of N elements in J, none of which are in J”. Thus a = .a’ + a”, 
where a” E JNfl, and z’ = ~~~~~~~~~~ 1.. xiNrN , where the yj E R, yj $ J. 
Now J/J2 is an R - R bimodule, so yjxit = C%, x~‘Y~,~,~ . Then modulo 

J N+l, we may pull each rj appearing in a’ past all of the xit , and get a’ is 
congruent modulo J N+l to a sum of terms of the form xi1 ... xjNr. But all 
of these terms are zero, so z’ E JN+l, a contradiction. We conclude that 
J” = 0. 

We observe that the method of proof used shows that (J”/J”+l)R is generated 
by images of products of i xj’s. Since there are only a finite number of such 
products, for each i, (r/Ji+llR is a finitely generated R/J module and so 
has a composition series. Since there are only a finite number of non-zero 
r/Ji+l, these composition series combine to yield a composition series for 
RR , so R has dcc on right ideals. 

We now return to our rings S and T, and investigate what occurs under 
the hypothesis that either is perfect on one side. 

LEMMA 12. If T is right perfect, then S is right perfect. If S is left perfect, 
then T is left perfect. 

Proof. Let T be right perfect, I a left ideal of S. Then (S/I)* is a right 
T-module. By Lemma 9, it has a non-zero epimorphic image M. Then M* 
is a non-zero simple sub-module of (S/I) ** by Morita’s proposition. By 
Lemma 9, S is right perfect. The second part follows by symmetry. 

LEMMA 13. No infinite direct sum of T-modules (S-modules) is reflexve. 

Proof. Let M = C @ Mi be an infinite direct sum of right T-modules. 
Then M* = n M,*. Let X E M*, X 4 CM,*. Enlarge CMi* to a maximal 
submodule of SX + EMI*, say N. The map SX + CMi* + (SX+CM,*)/ 
N --+ U exists since U contains a copy of every simple S-module, and extends 
to a map from M* -+ slJ since JJ is injective. Call this map h. By definition, 
A EM**, and (CMi*)X = 0. But for all x # 0 EM, there is an f E CMi* 
such that f(x) # 0. Hence h 4 image of P)~ , so M is not reflexive. 
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THEOREM 3. If S is left or right perfect, or if T is left or right perfect, then 
S and T have dcc on left and right ideals. 

Proof. Assume T is left or right perfect. By Morita’s proposition, (//J2)r 
is reflexive. Since it is a T/J-module, it is a direct sum of simple submodules. 
By Lemma 13, that sum must be finite. Then, by Lemma 11, T has dcc on 
right ideals, and J is nilpotent. Then T is two-sided perfect, so by Lemma 
12, S is right perfect. A symmetrical argument shows that for S right or 
left perfect, S has dcc on left ideals, and T is left perfect. 

By Morita [14], Theorem 6.3, U is a finitely generated T (and S) module. 
Hence every simple right T-module (simple left S-module) is embeddable 
in an injective module of finite length. Then as Rosenberg and Zelinsky 
remark in [19], p. 376, their Theorem 1 implies that T has dcc on left ideals 
(S has dcc on right ideals). 

The category %&!X) f o reflexive T-modules (S-modules) has the 
property that any module which is injective in that category is injective in 
~&!lJt), since R and all its submodules are reflexive and * is an anti-iso- 
morphism. Thus the dual of a module which is projective in &!JIr) must be 
injective in ?lX&%X) (see Morita [14], Theorem 2.5). If T has dcc on right 
ideals, the dual of any module which is injective in %r must be projective 
in ,!N. For injectivity in %r implies injectivity in !JJIr , and the socle of IM 
must be a finite direct sum of simple right T-modules by Lemma 13. Then 
M is a finite direct sum of injective hulls of simple modules, since M is an 
essential extension of its socle. Hence M* is a (finite) direct sum of projective 
modules by the proof of Theorem 2. M* is thus projective in &Dt. In general, 
however, the dual of an injective, reflexive module need not be projective. 

Example 3. A reflexive, injective module whose dual is not projective. 
Let S = T = U be the ring R constructed in Example 1, and let QR = 

E(R/Z,,). Q is characterized by the properties: 

(i) If (1 denotes the p-adic number field, then Q is a /l - R bimodule. 
(ii) *Q is one-dimensional. 

Since any map from an ideal of R into Q must be 0 on Z,, (Q has no 
elements of finite additive order), Q is R-injective if and only if it is R/Z,, = 
&,,-injective. Hence (i) and (ii) hold for Q. Conversely, if i) holds for an 
R-module M, then M haa no elements of finite additive order, so MZ,, = 0. 
Moreover, M is a divisible Z,,,-module by (i), so M is an injective ZtD,- 
module (see Cartan and Eilenberg [4], p. 134). (ii) then implies that M is 
indecomposable, so M must be the injective hull of any of its cyclic sub- 
modules; in particular, M = E(Z,,,), as a Z(,,-module. But this is the same 
as E(Z,,,) as an R-module, so M = Q. 
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We now show that Q * possesses properties (i) and (ii). Since R is commuta- 
tive, the side on which we multiply by elements of R is immaterial. 

(i) By property (i) for Q, /l E Hom,(Q, Q). Hence Q* = Horn,(Q), R) 
is a (1 - R bimodule. (See Cartan and Eilenberg [4], p. 22). 

(ii) Let f, g E Q*, f # 0, g # 0. Since Q is a divisible Z(,,-module, so 

aref(Q> and&Q). Th e only such modules c R are 0 and Z,, . ,Hence range 
f =rangeg=Z+. Since Q = uEem piZo,, , for some i’, f(pi ) is of order 
p. Then f’ = pci +l’f takes p-i to an element of additive order pi for i > 0. 
We may similarly find a cl-multiple g’ of g with the same property. We define 
a sequence (pi} in .Zo,) by requiring pi to extend the map g’(p-“) +f’(pvi) to 
an element of Homz(ZP, , Z,,) = Zfv) . Then pcL( - pi+i sends g’(p-‘), and 
hence the entire subgroup of order pi, to 0. Thus pi - t++i is divisible by 
pi in Z,P, . Then {pi} is a Cauchy sequence in the complete valuation ring 
Z (P) , so it has a unique limit p in Zo,, . (See Schilling [20], p. 31.) Then for 
all i > 0, pg’(p+) = ~dg’(p-~) = f’(~-~). Hence pg’ = f’, and f is a (1- 
multiple of g. Thus nQ* is one-dimensional. 

We conclude that Q* M Q; hence Q is reflexive, since Q and Q** are one- 
dimensional /I-spaces, and the natural map between them is not 0; hence 
it is an isomorphism. But Q is clearly not projective, as any free module is an 
essential extension of its socle, and Q has zero socle. 

4. DISCUSSION OF SIDES 

In Section 3, we assumed slJr was a two-sided injective cogenerator with 
appropriate centralizer conditions. Any ring R has an injective cogenerator 
U, = the injective hull of a sum of representatives of each isomorphism 
class of simple R-modules. Yet not every ring has a duality of the kind 
discussed in Section 3. If (1 = Hom,(U, , U,), then, for the duality of 
Section 3 to fail, either i) R # Hom,(,U, nU); or ii) ,,U does not contain 
a copy of every simple cl-module; or iii) .U is not injective. All of these 
cases are possible. 

(i) If R = the ring of integers, Hom,( U, U) is a direct product of copies 
of Zo,, for each prime p. 

If R contains a copy of every simple R-module, then U = E(R). By a 
theorem of Lambek ([12], p. 364) Hom,,( U, U) may be identified with 
{.x E E(R) 1 for all h E .4, h(l) = 0 5 h(x) = O}. Moreover, if x $ R, XR + R 
has a simple homomorphic image whose kernel contains R, so x $ Horn, 
(U, U). Hence R = Hom,(U, U). 

(ii) For the ring of Example 2, R = Hom,(U, U) by the above remark. 
Moreover, the left socle of U = the right socle of U by a theorem of Azumaya 
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([I] Theorems 4 and 1). Hence no element in the socle of nU is annihilated 
by extension of left multiplication by every ei , so .U cannot contain a copy 
of every simple n-module. 

(iii) Let R be the local ring with dcc on right but not left ideals constructed 
in Rosenberg and Zelinsky [29], p. 375. Then R = Hom,( U, U) by Lambek’s 
theorem, and the socle of .U # 0 by Azumaya’s theorem. Hence every 
simple A-module must be contained in .U since A is a local ring, and so 
has only one isomorphism class of simple modules. Then .U cannot be 
injective. 

If U, = RR , then A = R and R = Hom,( U, U). By Theorem 1, RI J 
is semi-simple Artin. Hence the number of simple left R-modules = the 
number of simple right R-modules = n < co. By Azumaya [I], Theorems 
4 and 1, each homogeneous component of the socle of RR is a homogeneous 
component of the socle of RR and conversely. Thus there are n distinct 
homogeneous components of the socle of RR, so every simple left R-module 
is isomorphic to a minimal left ideal. Then R not a two-sided injective 
cogenerator implies RR is not injective. It is an open question whether this 
can occur, even if R is right or left perfect. This problem turns out to be 
closely related to a problem about division subrings of full linear rings. 

Let F be a simple Artin ring; that is, a complete matrix ring, and let V, 
be a right F-module of dimension N. Set L = Homr(Vr , I’,), I = the 
identity of L, and let c = ~a EL be such that <V, is one-dimensional. We 
note that LL~ w LV and cLL w (Hom,( V, l V)), . 

Let (P) be the statement: 
For all F and for all X > N, , if D is a division subring of L such that I E D, 

then the dimension of cLD > N. 
We observe that, if D, is a matrix ring over D, the dimension of a D,- 

module is a finite multiple of its dimension as a D-module. 
Assume L 3 D, 2 FI; then the dimension of cLo = the cardinality of Fx. 

For L can be identified ‘with all column finite N x K matrices with entries 
inF, EL with first rows, and LE with first columns. Since every transformation 
in D is invertible, none can have all zeros in the first column. Hence the 
dimension of D over the division ring F’ = the multiples of the identity 
in F, is at most N = the dimension of the module of first columns over F’. 
But the dimension of the module of first rows over F’ = cardinality F’a = 
cardinality FX ; hence that must be the dimension of EL over D (see Jacobson 
[II], p. 68). Thus (P) is not unreasonable. 

Observation. Statement (P) + if R is a right or left perfect ring and RR 
is an injective cogenerator in %$r , then R is quasi-Frobenius. 

To prove this, one uses injectivity and the coincidence of the left and right 
socles of R to identify the R - R bi-module Hom,(( J/ Jz)R , (0 : JIR) with 
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(0 : I”)/(0 : J) and Horn ((0 : I”)/(0 : 1)x Y (0 : ,&) with an R - R quotient 
of J/J”. If the largest dimension of a homogeneous component of ( J/J21R 
is infinite, then for some primitive idempotent e in R, a homogeneous com- 
ponent of e J/e J2 has this dimension. This component is a unital right module 
over some matrix ring ideal of R/J, and a unital left module over a matrix 
ring ideal of R/J. We may then use (P) to get a homogeneous component of 
((0 : J”MO : J>>tz f 1 g o ar er d imension, and use this component to get a com- 
ponent of (J/ J2)R o even larger dimension, a contradiction. We conclude f 
that (J/ JzIR must be finitely generated, so R is quasi-Frobenius by Lemma 11. 

On the other hand, if eLD and &a are one-dimensional, and D contains a 
subfield with first row, first column entries taking all values in F’ and all 
other entries in row 1 or column 1 = 0, then there is a perfect one-sided 
injective cogenerator R with (R, +)=D +F' + DDFp + F*DD +F' + D, 
where pairs of summands represent R/J, J/ J2, and J2 = (0 : J), respectively. 
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