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ABSTRACT 

The Neville elimination Process, used by the authors in some previous papers in 
connection with totally positive matrices, is studied in detail in the case of nonsingular 
matrices. A wide class of matrices is found where Neville elimination has a lower 
computational cost than Gauss elimination. Finally some new characterizations are 
obtained for strictly totally positive and nonsingular totally positive matrices, in terms 
of their Neville elimination and that of their inverses. 

1. INTRODUCTION 

In several papers ([5, lo] among others) we have given a precise descrip- 
tion of an elimination process which had been previously used by some 
authors in slightly different ways. We called it Neville elimination and showed 
its usefulness for the characterization of totally positive (strictly totally posi- 
tive) matrices, that is, matrices whose minors are nonnegative (positive). 
These matrices play an important role in approximation theory and computer 
aided geometric design, as well as in statistics, economics, biology, etc. See 
for example [2, 6, and 9] in connection with approximation theory and [7, 81 
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for the applications to the corner cutting algorithms in CAGD. For other 
fields, see the references in [l] and [9]. 

The essence of Neville elimination (NE) is to make zeros in a column of a 
matrix by adding to each row a multiple of the previous one. Reorderings of 
the rows may be necessary in the process. 

Section 2 starts by recalling how a square matrix can be transformed into 
diagonal form by complete Neville elimination (CNE). The particular case of 
nonsingular matrices A whose Neville elimination can be performed without 
row exchanges is studied in more detail. For brevity, these matrices will be 
referred to as matrices satisfying the WR (without row exchange) condition. 
Nonsingular totally positive matrices satisfy that condition. We prove that a 
nonsingular matrix A satisfies the WR condition if and only if it can be 
factorized in the form A = LU, with L lower triangular, unit diagonal (that 
is, with l’s as diagonal entries) and satisfying the WR condition and with U 
upper triangular. We also prove that if the nonsingular matrix A satisfies the 
WR condition, then the Neville elimination processes of A and L are the 
same. Moreover, that of L-’ (which is the same as that of B = L-‘V with V 
nonsingular and upper triangular) can be carried out without row exchanges 
and with multipliers which are opposite in sign to those of L. As we shall see, 
this property does not hold for Gauss elimination, and so Neville elimination 
will sometimes provide a lower computational cost. In particular, the Neville 
elimination of a totally positive matrix B = L-‘U will need less operations 
than Gauss elimination when L is a lower triangular band matrix. 

In Section 3 similar results are given for complete Neville elimination, 
showing that certain factorizations of a matrix as a product of bidiagonal 
matrices are unique. Finally, in Section 4, we apply the results to nonsingular 
totally positive and strictly totally positive matrices to obtain some characteri- 
zations of those matrices in terms of their complete Neville elimination and 
that of their inverses. 

2. NEVILLE ELIMINATION 

First we recall the Neville elimination process [5] particularized to a 
square real matrix A = (aij>i 4 i, j d n. The rectangular case is an obvious 
extension. 

Let us define A1 = ($j)l,i,jgn by 6fj := aij. If there are zeros in the 
first column of A,, the corresponding rows are carried down to the bottom in 
such a way that the relative order among them is the same as in Ai. This new 
matrix is denoted by A, = (cz~~),~~,~~~. If no rows have been carried, then 
A, := Ar, and in both cases we define zr := 1. 
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The method consists in constructing a finite sequence of n + 1 matrices 
A, such that the submatrix formed by the k - 1 initial columns of Ak is 
an upper echelon form (u.e.f.) matrix. Recall [5] that V = <oij)~~_i~~-’ 
is a u.e.f. matrix if it satisfies the following conditions for any i < n: 

(1) if the ith row of V is zero, then the rows below it are zero, 
(2) if vij is the first nonzero entry in the ith row, then vhj = 0 Vh > i, 

and if oiSjS is the first nonzero entry in the i’th row (i < i’ ,< n), the j’ >j. 

Starting as above with A, := A and A,, and continuing with the elimina- 
tion process, we obtain A, = (afj), ~ i, j ~ n. In the next step we make zeros in 
its k th column below the ( zk, k) entry, thus forming 

ii 
k+l = (%j+‘)l<i,jsn> 

where for any j (1 <j < n) one defines 

if & 1 k # 0, zk<i<n, (2-l) 

if uk_l k = 0, zk < i < n. 

Observe that a:_ 1, k = 0 implies a& k = 0. The new value of z at this step 

of the elimination process is defined as 

zk 
Zk+l := 

zk + 1 
(2.2) 

If iI,, 1 has some zeros in the (k + l)th column, in any row starting from 
zk+ 1 or below, these rows are carried down as has been done with iI, thus 
obtaining a matrix denoted by A, f 1 = <a,klt ‘>1 < i,j 4 n. Of course, if there are 

no row exchanges, then A,, 1 := & + 1. 
After n steps (some of them may be obvious, because the corresponding 

column already has the necessary zeros) we get 

A n+l = u, (2.3) 

where U is an n X n u.e.f. matrix. 
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The element 

pij := aij, l<j<n, zj<i<n, (2.4) 

is called the (i, j> pivot of the Neville elimination (NE) of A, and the number 

(ajj/a{_,,j if u{_,,~ f 0, 

lGj<n, 

the (i, j) multiplier of the 
We remark that, when 

if a{_,,j =o( * aij = 0 
>> 

zj<i<n (2.5) 

NE of A. Observer that mij = 0 iff aij = 0. 
A is nonsingular, 

z -k Vk k- (2.6) 

and &+i = A,,. Also observe that when no row exchanges are needed in the 
elimination process, we have 

and 

Ak =A, Vk (2.7) 

mij=O(opij=O) * m,=O Vt > i. (2.8) 

The complete Neville elimination (CNE) of a matrix A consists in 
performing the Neville elimination of A to obtain a u.e.f. matrix U and then 
proceeding with the NE of UT (the transpose of U). The last part is 
equivalent to performing the Neville elimination of U by columns. When we 
say that the CNE of A is possible without row or column exchanges, 
we mean that there have not been any row exchanges in the NE of either 
A or UT. 

Let us now consider more in detail the case of a nonsingular matrix A 
whose Neville elimination can be performed without row exchanges. Since we 
are interested in these matrices, for the sake of brevity they will be referred 
to as matrices satisfying the WR condition. In this case, (2.61, (2.7), and (2.8) 
hold, and the Neville elimination process can be matricially described by 
elementary matrices without using permutation matrices. 
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To this end, we denote by Eij(a) (1 < i, j < n> the lower triangular 
matrix whose (r, s) entry (1 < r, s < n) is given by 

1 

1 if r=s, 

(Y if (r,s) = (i,j), 

0 elsewhere. 
(2.9) 

We are mainly interested in the matrices Ei, i _ J a ), which for simplicity will 
be denoted by EI(a). They are bidiagonal and lower triangular, and given 
explicitly by 

1 
1 

1 

Ej( a) := 
1 
(Y 1 

1 

(2.10) 

The inverse of Eij( a) is Eij( - a), and also one has Eij(a)Eij( /3) = 
Eij(a + P)* 

For a matrix A satisfying the WR condition, the Neville elimination 
process can be written 

x{E,( -rr~,~) *** E,_,( -m,_,,,)E,( -m,,)) A = U, (2.11) 

where U is a nonsingular upper triangular matrix, and the mij’s are the 
multipliers (2.5) satisfying (2.8). Equivalently, one has 

F,- lF,-2 -‘- F,A = U (2.12) 
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with 

Fi = 

1 

0 1 
0 *. 

1 

-mi+l,i 1 

-mi+2,i 1 

-m,, 1 

. (2.13) 

We will say that the Neville elimination of A consists of K nontrivial 
steps if 

K = card((i,j)li >j, mij z 0). (2.14) 

From (2.11) we get the factorization of A 

A = {En(mnl)Ldmn-l,J *** Edm2dHEn(mn2) *** E4ms2)l 

X *.* En(m”, n- l>U. (2.15) 

Let us discuss how these factorizations (with qj instead of mij for all 
i, j) work when the real numbers qj satisfy, for 1 < j < n - 1, 

a,=0 * qj=O Vl>i. (2.16) 

Denoteforanyl<j<n-1 

i 

j if ffij = OVi, 

Tj ‘= max{il cqi # 0) otherwise, 
(2.17) 

and, for a given k (1 < k < n - l), 

j if j<k 
rk,j := 

ma{rkk,rk+l,...,rj} if j&k. 
(2.18) 
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Observe that 

and 

El(culj) = ' Vl > rj + 1. 

If we also denote by Cj the matrix 

Cj := En(a,j)En-l(an-l,j) .** Ej+,(aj+l,j), (2.19) 

then (2.15) can be written (replacing mjj with aij) 

A = C,C, -.- C,_,U. (2.20) 

The following lemma shows the zero pattern of a matrix when its 
factorization (2.20) is known. 

LEMMA 2.1. Let U be a nonsingular upper triangular matrix of order n, 
and for 1 < k < n - 1, let Bck’ be the matrix 

(2.21) 

with Cj defined by (2.19). A ssume that the numbers cqj which appear in the 
factors Ck, Ck + 1, . . . , C, _ 1 satisfy (2.16). 

Then for each 1 <j G n - 1, one has 

b,“,,,,j + 0, (2.22) 

b; = 0 Vi > rk,j. (2.23) 

Proof. Let W be a matrix of order n, and w,r E RI” its ith row. The 

rows of the matrix E,(cx)W are w: ,..., wl_i, wl + CYW~-~, w:+~ ,..., w,‘. 
The proof of the lemma follows easily by induction on the number of factors 
C in (2.21) (starting, as usual, with one, i.e. with k = n - 11, taking into 

account that with our notation 

Cj = E,,(a,j,j)E,~-,((Y,,-l,j) **a E’+l(aj+l,j) 
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i 

rk+l,j(=j) if j<k, 

‘k,j = 
ma{rk, rk+l,i} if j 3 k. 

n 

Now we easily prove 

THEOREM 2.2. A nonsingular n x n matrix A satisfies the WR condition 
aIfand only if it can be factorized in the form (2.15) with the mij’s satisfying 
(2.8). If A satisfies th a condition, the factorization is unique and mij is the t 
(i, j) multiplier of the Neville elimination of A. 

Proof. If A satisfies the WR condition, the Neville elimination process 
for A can be described as in (2.11) with the multipliers verifying (2.8). Thus 
we get (2.15). 

Let us now prove the uniqueness of such a factorization. Suppose (2.15) 
holds, write it in the form (2.20) (with mjj 
exists another decomposition 

instead of aij), and assume there 

A = {E,(m’,,) **a Ez(m’,,)}{E,(m’,,2) *** Eel *** En(mL,n-~)U’ 

= c;cg *** Ch_lU’ (2.24) 

with the m:j’s satisfying a condition (2.8) and U’ a nonsingular upper 
triangular matrix. Premultiplying (2.20) and (2.24) by C,i, one has 

c2 . . . c 
n-1 

u = c-1C’C’ . . . C’ 
1 1 2 

U’ 
n-l * 

From the zero patterns of C, *** C,_,U and CjCh **- CA_,U’ given by 
Lemma 2.1, it easily follows that the unique possibility for CL’ to satisfy 
(2.25) is that ri = rl, and rnil = m,, for all i > 2. Observe that for i > ri = 
rl one has rnii = mi, = 0. In consequence, C, = Ci. Proceeding similarly 
with C, in 

c2 *** c,_,u = CL *** c;_,u’ 

and so on, we get Ci = Ci (2 < i < n - 11, U = U’, and therefore the 

uniqueness of (2.20) is proved. 
Conversely, if A can be factorized in the form (2.15) with the mij’s 

satisfying (2.81, f rom the uniqueness of such a factorization proved above, it 

follows that (2.111, obtained from (2.151, gi ‘ves the Neville elimination of A. 



NEVILLE ELIMINATION 41 

An interesting property of the matrices E,j defined in (2.9) is given by the 
following lemma. 

LEMMA 2.3. For any matrices Eij( a), E,,( /3>, with i > j, h > k, a/3 + 

0, one has 

E,j(a)Ehk(P) =Ehk(P)Eij(a) * j +h* 

Proof. Both sides of the equation above represent the matrix whose 
(r, s) entry is given by 

1 if r=s, 

(Y if (r,s) = (i, j), 

P if (r,s) = (h,k), 

0 elsewhere 

(2.26) 

ifandonlyifj # h. n 

REMARK 2.4. In particular one has E& cz)Ej( /3> = Ej( /3)E,( a> except 
for Ii - jl = 1 with (YP # 0. 

Let us denote by E,,( a> the elementary matrix of order rr whose (r, s> 
entry is defined by 

1 if r=s#i, 

ff if r=s=i, 
0 elsewhere. 

(2.27) 

Observe that, for cr # 0, E,,(a)-’ = E,,(l/cr). The following result is 
straightforward. 

LEMMA 2.5. For any matrices Ejj(cr),, Ei,i_ 1( p> one has 

Ejj(a)Ei,i-1( P) = Ei,i-l( P)Ejj(a> if j # i, i - 1, 

Eii(‘Y)Ei,i-r( P> =Ei,i-r(aD)Eii(a)> 

E. r-l,i-l( ‘~)Ei,i-l( P) = Ei,,-I( p/a)Ei-1,i-1(a) ((Y # 0). 

(2.28) 
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Now we can prove 

THEOREM 2.6. Let L be a lower triangular, unit diagonal matrix. The 
following properties are equivalent: 

(i) L satisfies the WR condition. 
(ii> For any upper triangular matrix V, the matrix LV satisfies the WR 

condition. 
(iii) L-l satisfies the WR condition. 
(v) For any upper triangular matrix V, the matrix L- ’ V satisfies the WR 

condition. 

Moreover, if these properties hold, the multipliers of the Neville elimination 
of LV are the same for any upper triangular matrix V. The multipliers of the 
Neville elimination of the matrices L -rV are opposite in sign to those of LV 
but, in general, occur in a diRerent order. 

Proof. According to Theorem 2.2, L satisfies the WR condition if and 
only if there exists a factorization 

L = {E,( m,,) *a* Ez(mSI)}{R,(m,z) .a* CAmA) *** %(m,,,-1) (2.29) 

such that (2.8) holds. Observe that L = LZ is a factorization (2.15) for L. 
Hence the equivalence of properties (i> and (ii) becomes apparent. On the 
other hand, by the second part of Theorem 2.2, the multipliers of the Neville 
elimination of any matrix LV are the same. The same reasoning proves the 
equivalence of (iii) and (iv). Therefore the theorem follows if we prove 
the equivalence of (i) and (iii) and see that the multipliers are opposite in 
sign. 

If (2.29) and (2.8) hold, then one has 

L-l = E,( -mn,n-l ){E,-l(-m,-,,,-,)E,(-m,,,-,))‘.. 

X{Ed -4 **- Ed -md). (2.30) 

If all the mij’s are different from zero, then, using Lemma 2.3 to reorder the 
factors in (2.30), we get a factorization of L-l as in (2.15): 

L-l = {E,(mkl) 0.. E,(m\,)}*** E,(m’,,.-l)Z (2.31) 
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with multipliers 

m:, = -m, T--s (r>s) (2.32) 

which also satisfy (2.8). Therefore, by Theorem 2.2, L-i satisfies the WR 
condition. 

Suppose now that mij = 0 in (2.29), with mipl, j # 0 if i > j + 1, and 
mrs # 0 for all r > s, s < j. Since (2.8) holds for (2.29), we have m,+l, j = 
. . . = mnj = 0, and then E,(mrj) = E,(-mrj) = Z for r > i. As in the 
previous case, by Lemma 2.3 we can reorder the factors of (2.30) and write 
LP1 in the form 

L-l =H,H, ... H,_,Z (2.33) 

with 

K = L( -mn,n-r) **- E,+d -T+LI>. (2.34) 

Taking into account again Lemma 2.3, since Ei( -mij) = I, we know that 

the factors Ei+l(-mi+l,j+l), Ei+2(-mi+,,j+2),...,E,(-m,,._i+j) can be 
moved, just in that order, from H._ to H._ where there was a factor 

Ei+l(mi+l,j ) = I. Then the factors 'Ef 2+2 (--7fL.'+lI ) . , l&-m, n_i+j_l) 

can be moved from Hi _j + 1 
Hi_j+l,...,HAp, the matrices 

to Hi_j+P, and”ii’on: Denoting ‘by H(_j, 

I 
E,_l(-mi_l,j_l) ... 

H;_j = XE,pj+l(-m,pj+,,,) if i > 2, (2.35) 

Z if i =2(-j = l), 

H(-j+k = E,(-m n,n-i+j-k+l) “* Ei+k(-mi+k,j+l)Ei+k-l(-mi+k-l,j-l) 

x a.- E. 
t-]+k+l(-mi-j+k+l,l) (2.36) 

for k = 1,2,. .., n - i fj - 1, one has 

L-' =H,H, ... Hi_j_lH;_jH;_j+I a.. H:,_,H,:_,Z. (2.37) 

If no more multipliers m,, of (2.29) are zero, the conditions of Theorem 
2.2 hold in (2.37). If more multipliers are zero, the above process can 
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be repeated until the conditions of that theorem are satisfied. Therefore, L-’ 

satisfies the WR condition. 
Since the roles of L and L-l can be exchanged, the equivalence of (i) 

and (iii) is proved. In the above reasoning we have also proved that the 
multipliers of L and L-’ are opposite in sign, but in general occur in a 
different order [see for example (2.32)]. n 

REMARK 2.7. Any nonsingular lower triangular matrix L can be written 
in the form L = TD, where T is a lower triangular, unit diagonal and D is a 
diagonal matrix. 

D = dag(L, L,..., 4,) = ML) *** E,,(LJ. 

By Theorem 2.6, L satisfies the WR condition if and only if T does. If that 
happens, T admits a factorization of the type (2.151, and so does T-l with 

multipliers opposite in sign to those of T. 
Writing 

L-l = E,,,(Z;;) -1. E,,(Z,‘)T-‘, (2.38) 

by Lemma 2.5 the factors E,i(Zc;l) can be moved to the right of T-l if we 
modify [by product or quotient, according to (2.28)] some of the multipliers 
appearing in the factorization of T-l. So we get 

L-1 = T’D-‘, (2.39) 

where T’ is a lower triangular, unit diagonal matrix satisfying the WR 
condition. It is clear that the number of nonzero multipliers of the Neville 
elimination of T’ (and L-l) is the same as that of T-l, T, and L. 

Therefore, we easily conclude that the equivalence of properties (i), (ii), 
(iii), and (iv) of Theorem 2.6 holds for any nonsingular lower triangular matrix 
L. For those matrices L the second part of the theorem does not hold, but 
the number of nonzero multipliers of the Neville elimination of LV is the 
same as that of L-‘V. 

Theorem 2.6 and Remark 2.7 allow us to point out some matrices whose 
Neville elimination has a lower computational cost than Gauss elimination. 
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For instance, let L be a bidiagonal, lower triangular, nonsingular matrix 

1 11 

1 42 21 

L= 1 43 32 (2.40) 

Z fL,n-1 ' L 

Obviously, L satisfies the WR condition, and the number of nontrivial steps 
of its Neville elimination (that is, the number of nonzero multipliers) is 

m = card{i12 Q i Q n and l,,j_l # O}. 

In this case, the matrix L-’ is lower triangular, but not necessarily bidiago- 
nal. However, the number of nontrivial steps in the Neville elimination of 
L-l is m again. 

This curious property does not hold in Gauss elimination. For example, 
the matrix 

L=[-: -; _; j 

requires three nontrivial steps to be transformed by Neville elimination 
(multipliers 1,2,3) into the identity matrix I. The same happens (multipli- 
ers - 3, -2, - 1) with the inverse of L, 

i 1 
1 0 0 0 

L-1 = 1 1 0 0 

2 2 10’ 
6 6 3 1 

On the contrary, the Gauss elimination process requires three steps for L 
and six steps for L-l. In general, for matrices of order n of this type, the 
numbers are n - 1 for Neville elimination and n(n - 1)/2 for Gauss 
elimination. 

By Theorem 2.6 and Remark 2.7 we get an analogous conclusion for the 
NE of any matrix B = L-lV with V an upper triangular matrix and L 
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bidiagonal lower triangular. In general, if L is a lower triangular band matrix, 
then the Neville elimination of B = L-‘V will need less operations than 
for Gauss elimination. In fact, it can be deduced from Proposition 2 of [3] 
that the Gauss elimination of a totally positive matrix B = L-lV with all its 
elements nonzero has all the multipliers nonzero, even when L is a band 
matrix. 

3. COMPLETE NEVILLE ELIMINATION 

Taking into account that the complete Neville elimination consists of two 
simple Neville eliminations (which will be referred to as the lower and the 
upper Neville elimination respectively), the theorems of Section 2 can be 
easily modified. For brevity we will say that a nonsingular matrix A satisfies 
the WRC condition if the complete Neville elimination can be performed 
without row or column exchanges. Proceeding as with Theorem 2.2, Theorem 
2.6, and Remark 2.7 we have 

THEOREM 3.1. A nonsingular matrix A satisfies the WRC condition if 
and only if it can be factorized in the form (2.15) with 

(3.1) 

where the mjj, rnij satisfy (2.8). Zf A satisfies that condition, the factorization 
is unique, and mij (rnij) is the (i, j> multiplier of the lower (upper) Neville 
elimination of A. 

COROLLARY 3.2. A nonsingular matrix A satisfies the WRC condition if 
and only if it can be factorized as A = LDV with L (V) lower (upper) 
triangular and unit diagonal, D a diagonal matrix, and L, VT satisfying the 
WR condition. Zf A satisfies that condition, the lower and upper Neville 
elimination processes of A coincide, respectively, with the Neville elimination 
of L and VT. 

THEOREM 3.3. Let A be a nonsingular matrix which can be factorized in 
the form A = LDV with L (V ) 1 ower (upper) triangular and unit diagonal, 

and D a diagonal matrix. Then A satisfies the WRC condition if and only 
af the matrix B = L-‘CV1, with C a diagonal matrix, satisfies the same 
condition. Zn the affirmative case, the multipliers of the lower (or upper) 
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Seville elimination of A are opposite in sign to those of B, but in general 
occur in a diferent order. 

As we have seen in Section 2, a lower triangular, unit diagonal matrix L 
satisfies the WR condition iff it can be factorized in the form (2.29) with the 
mij’s satisfying (2.8). This is equivalent to the existence of a factorization 
(2.30) for L-l with (2.8). 

But (2.30) can be written in the form 

1 
1 
0 

L-1 = 

X 

X 

1 

0 1 
-m n.n-1 

1 
0 1 

-m n-l,n-2 

1 

- m21 1 

--m,, 1 

1 1 
1 

-m n,n-2 1 I *.. 
J 

1 

(3.2) 

and so, taking into account (2.8) we can say that L satisfies the WR condi- 
tion if and only if its inverse L-’ can be expressed as a product of lower 
triangular, bidiagonal, unit diagonal matrices 

L-l = s,_,s,_, *** s, (3.3) 

in such a way that if $2 1, t denotes the (t + 1, t> entry of Si one has 

for 2<i<n-1, s(i) 
t+1,t =0 ift<i, (3.4) 
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and 

for l<i<n--1, if si:)i,, = 0 and t 2 i then 

s(i) 
r+1,r = 0 for r > t. (3.5) 

If that decomposition of L-l exists, then the entry s,(y ,,,, with t > i, is 
opposite in sign to the (t + 1, i) multiplier of the Neville elimination of L. 

Analogously, L - ’ satisfies the WR condition if and only if L can be 
factorized as in (3.3): 

L = In- lln-2 *** Jl (3.6) 

with the lower triangular, bidiagonal, unit diagonal matrices Jj satisfying the 
corresponding conditions (3.4), (3.5). The entry $2 i, t (t > i) is opposite in 
sign to the (t + 1, i) multiplier of the Neville elimination of L-l. 

Thus, by Theorem 2.6 and Remark 2.7, we can summarize by saying that 
a matrix L satisfies the WR condition if and only if it can be factorized in 
the form (3.6) with conditions similar to (3.4), (3.5). The multipliers of the 
Neville elimination of L are opposite in sign to the subdiagonal entries of 
the matrices Ji of (3.61, b t u in g eneral occur in a different order. 

Finally, taking into account Theorem 3.1, a nonsingular matrix A satisfies 
the WRC condition if and only if A can be decomposed in the form 

where Jo, K,? satisfy the same conditions as the matrices Ji in (3.6). 

4. CHARACTERIZATIONS OF STP AND NONSINGULAR 
TP MATRICES BY THEIR COMPLETE NEVILLE 
ELIMINATION AND THAT OF 
THEIR INVERSES 

In [5, Theorem 4.11 ([5, Corollary 5.5]), STP matrices (nonsingular TP 
matrices) were characterized by their complete Neville elimination. With 
our present terminology, those characterizations can be reformulated in the 
following theorem. 

THEOREM 4.1. A square matrix M is STP (is nonsingular TP) $ and 
only if it satisfies the WRC condition, with positive (nonnegative) multipliers 

and positive diagonal pivots. 
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To deal with complete Neville elimination of TP matrices, the concept of 
conversion of a matrix A of order n (see [l, p. 1711) is very useful. Recall that 
the conversion of the matrix A = (aij)r G i, jG n is the matrix A# of order n 
whose (i,j> entry is a,_,+r n_j+l. 

’ Given k < n, Qk,” will denote the totality of strictly increasing sequences 
of k natural numbers less than or equal to n: 

For ff, P E Qk,n A[ a 1 p] will denote the k X k submatrix of A containing 
rows numbered by (Y and columns numbered by R. Then the following 
properties of the conversion of A are straightforward: 

(1) for ah (Y, R E Qk,n and 1 < k =G n, one has 

det ~#[alP] = det A[o++lR#], (4.1) 

where CY#, R# are the elements of Qk. n defined by 

(a”)i = n - ak_i+l + 1, 

(P”)i = n - P&i+1 + 1 

(1 < i < k); 

(2) A is TP (STP) e A# is TP (STP); 
(3) (AB)# = A%#; 
(4) (A#)-1 = (A-‘)#. 

Now we can prove 

THEOREM 4.2. A nonsingular matrix M is totally positive $ and only $ 

M-l satisfies the WRC condition with nonpositive multipliers and positive 

diagonal pivots. 

Proof. According to Theorem 4.1 and Corollary 3.2, M is totally positive 
if and only if it can be factorized as M = LDV, where L, VT are products of 
elementary matrices Ei with nonnegative off-diagonal entries and D is a 
diagonal matrix with positive diagonal elements. Therefore L and VT are 
nonsingular totally positive. 

On the other hand, we have 

M# = L#D#V# (4.2) 
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p/p-l = p-1)” = (v”)-‘(@+-‘(L#)-l. (4.3) 

V# and ( L#>T are lower triangular nonsingular, and they are TP if and only if 
V, L are TP. By Theorem 4.1 this is equivalent to saying that V#, ( L#>T 

satisfy the WRC condition with nonnegative multipliers and positive diagonal 
pivots (in this case the diagonal pivots are 1). By Corollary 3.2 and Theorem 
3.3 that happens if and only if (M#>-’ satisfies the WRC condition with 
nonpositive multipliers and positive diagonal elements. Since M# is nonsin- 
gular TP if and only if M is TP, applying the above reasoning to M# and 
taking into account that [(M#)#]-1 = M-’ proves the theorem. n 

In the case of STP matrices we cannot use Theorem 4.1 as in the above 
proof, because in the decompositions (4.1) (4.2) the lower triangular matrices 
are not STP, but ASTP. Remember that a lower triangular matrix A is said 
to be ASTP if and only if all minors 

with oi > Pi Vi are positive (all the other minors are trivially zero). 
From Lemma 2.6 of [5] and Theorem 3.1 of [4] we get directly the 

following theorem, which is similar to Theorem 4.1. 

THEOREM 4.3. A lower triangular matrix M is ASTP if and only if it 

sati.$es the WR condition with positive multipliers and positive diagonal 

entries. 

Now it is easy to prove 

THEOREM 4.4. A square matrix M is strictly totally positive if and only 

if M-l satisfies the WRC condition with negative multipliers and positive 

diagonal pivots. 

Proof. The proof of Theorem 4.2 applies with obvious changes: the 
matrices Ei have a positive (i, i - 1) entry, and the triangular matrices 
L, VT, L#, V# are now ASTP. Then we can use Theorem 4.3 instead of 
Theorem 4.1 and deduce that (M#)-1 satisfies the WRC condition with 
negative multipliers and positive diagonal entries. n 

REMARK 4.5. The conversion of the product of matrices allows to 
provide UL factorization results by using arguments identical to those used 
for LU factorizations. 
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We can reformulate the theorems of this section in terms of factorizations 

by using the remarks at the end of Section 3. 

THEOREM 4.1’. A square matrix M of order n is STP if and only if it can 
be decomposed in the form 

M =Jn_1]n-2 .*.J,DK, ... K,_,, (4.4) 

where D is a diagonal matrix with positive diagonal entries, and for i = 
1 , . . . > n-l 

1 

0 

Ii = 

Ki = 

with 

1 0 

1’ 0 

1 k(“’ 

1 kc’, 

1 

jF)>O Vr>i, k j’) > 0 Vs > i - (4.6) 

(4.5) 

A nonsingular matrix M of order n is TP if and only if it can be 
decomposed in the form (4.4) under the same conditions as above, but with 
(4.6) replaced by 

jy)>O Vr>i, ki’) 2 0 b‘s > i - 1 (4.7) 
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.P = O(r>i) =-a jt’“‘=O vt>r, 

kj” = 0 (s > i) - k@) = 0 Vt > s. t (4.8) 

Theorems 4.2 and 4.4 are combined in 

THEOREM 4.2’. A square matrix M of order n is STP if and only if M-’ 

can be decomposed in the form 

(4.9) 

where D’ is a diagonal matrix with positive diagonal entries, and for 

i = 1,2 )... 
j:‘i’, k’,‘“’ 

n - 1, Ji, Ki are of the form (4.5) with ofl-diagonal entries 

satisfying 

j:i)<O Vr>i, s k’(“)<O Vs>i-1. (4.10) 

A nonsingular matrix M of order n is TP if and only if M-l can be 

decomposed in the form (4.9) under the same conditions as above, but with 

(4.10) replaced by 

j:"'<O Vr>i, kdi)<O vs>i_l (4.11) 

and 

jrci) = 0 (r > i) 
r 

3 jici' = 0 Vt > r, 

k :i)=O(s>i) + k:“=O Vt>s. (4.12) 

The particular case of nonsingular triangular TP matrices M is included 
in Theorems 4.1’ and 4.2’, but in that case K, = .** = K,_, = K; = *** = 

Kh- 1 = I in the lower triangular case and Jr = *** = Jn_ r = J; = 
.** =J,!_r = Z in th e u p per triangular case. The case of ASTP matrices is 

also included: for example, in the lower triangular case, Ki = Ki = I Vi and 

jp)>O Vr>i, j:i’<O Vr>i. 

This result is equivalent to Theorem 4.3. 

REMARK 4.6. The uniqueness of the factorizations given in Theorems 
4.1’ and 4.2’ follows from Section 3. 
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