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Abstract

In this paper, we study the optimal control problem for an n × n coupled Petrowsky type system involving a 2`-th order self-
adjoint elliptic operator with an infinite number of variables and constrained boundary control acting through Neumann conditions.
Also, we derived the necessary and sufficient conditions of optimality for two types of performance index (quadratic one, general
integral form).

By using standard Lions’s arguments [J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations,
vol. 170, Springer-Verlag, 1971] we proved the existence of a solution to the n × n coupled Petrowsky system and we derived
optimality conditions for the optimal control problem with a quadratic performance index. In the case of the general integral form
of the performance index we applied Dubovitskii–Milyutin’s formalism earlier used in Kotarski [W. Kotarski, Some problems
of optimal and pareto optimal control for distributed parameter systems, Reports of Silesian University Katowice, Poland, 1997,
no. 1668]. Finally, we provided some special cases.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The controlled system arising in engineering practice, physics, medicine, etc., must often be considered with dis-
tributed parameters, being governed typically by partial differential equations. Tools used for the optimal control of
distributed parameter systems vary from the purely theoretical to mathematical analysis and the theory of partial differ-
ential equations. A fundamental class of optimal controls and its mathematical approaches can be found in Lions [1].

In [3–7], we study the linear quadratic optimal control problem for systems described by different types of partial
differential operator (n × n matrix operators) defined on spaces of functions of an infinite number of variables
(understood here to be a vector in an infinite tensor product of one-dimensional spaces). To obtain optimality
conditions, the arguments of Lions [1] have been applied.

Using the Dubovitskii–Milyutin theorem, Kotarski in [2] obtained the necessary and sufficient conditions of
optimality for the single Petrowsky type equation with an infinite number of variables and performance index that
was more general than the quadratic one and had an integral form.

The questions treated in this paper relate to the above results but in a different direction by taking the case of
optimal boundary control of the n × n coupled Petrowsky type system involving a 2`th order operator with an infinite
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number of variables and boundary control through a Neumann condition. First, using Lions’ theorems [1] we study the
quadratic boundary control problem for this system, and also the application of the generalized Dubovitskii–Milyutin
theorem demonstrated on an optimization problem for the same Petrowsky type system with the performance index
in integral form. Finally, necessary and sufficient conditions for optimality of boundary control are given. A set of
inequalities that characterize this optimal control is obtained and this set is studied in order to construct algorithms
useful to numerical computations for the approximation of control.

The outline of this paper is as follows: in Section 2, we formulate the mixed Neumann problem for an n × n
differential Petrowsky type system with an infinite number of variables. In Section 3, the quadratic boundary control
problem of this system is formulated; then we give the necessary and sufficient conditions for the control to be optimal.
In Section 4, we give special cases to derive optimality conditions. In Section 5, the boundary control problem with a
general performance index and the optimality condition for this problem are formulated.

2. The Neumann problem for the differential Petrowsky type system

Below, we consider the functions of points x ∈ R∞
= R′

× R′
× · · ·, the coordinate notation of such points being

x = (xk)
∞

k=1, xk ∈ R′. Let (Pk)
∞

k=1 be a fixed sequence of positive continuously differentiable probability weights,
R1

∈ xk → Pk(xk) ∈ (0,∞). The weighted product measure on R∞ given by, [8],

dρ(x) = (P1(x1)dx1)⊗ (P2(x2)dx2)⊗ · · ·

= (dρ1(x1))⊗ (dρ2(x2))⊗ · · · .

Let Ω be a bounded open set in R∞ with smooth boundary Γ and (W `(Ω , R∞), dρ(x))n (briefly (W `(Ω , R∞))n),
` = 1, 2, . . ., n-cartesian product of Sobolev space of vector function with infinitely many variables y(x) = y =

(y1, y2, . . . , yn) = (yi )
n
i=1 defined on Ω , i.e.

(W `(Ω , R∞))n = (W `(Ω , R∞))× · · · × (W `(Ω , R∞))︸ ︷︷ ︸
n−time

.

This space is a Hilbert space endowed with the standard scalar product and is defined by

(y, ϕ)(W `(Ω ,R∞))n =

n∑
i=1

(yi , ψi )W `(Ω ,R∞), y = (yi )
n
i=1, ϕ = (ϕi )

n
i=1 ∈ (W `(Ω , R∞))n .

We consider a family of the operator A(t) ∈ L((W `(Ω , R∞))n, (W −`(Ω , R∞))n) such that

A(t)y = (y1, y2, . . . , yn) = (A1(t)y1, A2(t)y2, . . . , An(t)yn)(∑
|α|≤`

∞∑
k=1

(1−)|α| D2α
k y1(x)+ q(x, t)y1(x)+

n∑
j=1

a1 j y j ,

∑
|α|≤`

∞∑
k=1

(1−)|α| D2α
k y2(x)+ q(x, t)y2(x)+

n∑
j=1

a2 j y j ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .∑
|α|≤`

∞∑
k=1

(1−)|α| D2α
k yn(x)+ q(x, t)yn(x)+

n∑
j=1

anj y j

)

=



∑
|α|≤`

∞∑
k=1

(1−)|α| D2α
k + q + 1 · · · −1

1 · · · −1
· · · · · · · · ·

· · · · · · · · ·

· · · · · · · · ·

1 · · ·

∑
|α|≤`

∞∑
k=1

(1−)|α| D2α
k + q + 1


n×n


ϕ1
ϕ2
...

ϕn


n×1
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so that A(t) is an n × n matrix operator with i th component

Ai (t)yi (x) =

∑
|α|≤`

∞∑
k=1

(1−)|α|
· D2α

k yi (x)+ q(x, t)ϕi (x)+

n∑
j=1

ai j y j (x), 1 ≤ i ≤ n

where [
∑

|α|≤`

∑
∞

k=1(−1)|α| D2α
k yi (x)+ q(x, t)yi (x)] is a bounded self-adjoint elliptic partial differential operator of

the 2`th order with infinite variables,

Dα
k yi (x) =

1
√

Pk(xk, t)

∂α

∂xαk

√
Pk(xk, t)yi (x),

the potential q(x, t) is a real function in x which is bounded and measurable on Ω , such that q(x, t) ≥ C0 > 0,C0
constant and ai j is the coupled term defined by

ai j =

{
1 if i ≥ j
−1 if i < j.

For each variable t which denotes the time, t ∈ (0, T ), T < ∞ we define a family of bilinear form on
(W `(Ω , R∞))n by

π : (W `(Ω , R∞))n × (W `(Ω , R∞))n → R1,

π(t; y, ψ) = (A(t)y, ψ)(L2(Ω ,R∞))n =

n∑
i=1

(Ai (t)yi (x), ϕi (x))L2(Ω ,R∞).

Where y = (yi )
n
i=1, ϕ = (ϕi )

n
i=1 ∈ (W `(Ω , R∞))n and A(t) maps (W `(Ω , R∞))n , onto (W `(Ω , R∞))n and takes

the above form, so

π(t; y, ϕ) =

n∑
i=1

(∑
|α|≤`

∞∑
k=1

(−1)|α| D2α
k yi (x)+ q(x, t)yi (x)+

n∑
j=1

ai j y j (x), ϕi (x)

)
L2(Ω ,R∞)

=

n∑
i=1

∫
Ω

∑
|α|≤`

∞∑
k=1

Dα
k yi (x)D

α
k ϕi (x)dρ +

n∑
i=1

∫
Ω

q(x, t)yi (x)ϕi (x)dρ

+

n∑
i=1

∫
Ω

n∑
j=1

ai j y j (x)ϕi (x)dρ. (1)

The above continuous bilinear form (1) is coercive on (W `(Ω , R∞))n , that is, there exists λ ∈ R1, λ > 0 such that

π(t; y, y) ≥ λ‖y‖
2
(W `(Ω ,R∞))n

. (2)

Taking into account the form of ai j we have

π(t; y, ϕ) =

n∑
i=1

∫
Ω

∑
|α|≤`

∞∑
k=1

Dα
k yi (x)D

α
k ϕ0(x)dρ +

n∑
i=1

∫
Ω

q(x, t)yi (x)ϕi (x)dρ +

n∑
i= j=1

∫
Ω

yi (x)ϕi (x)dρ

+

n∑
i> j

∫
Ω

yi (x)ϕi (x)dρ −

n∑
i< j

∫
Ω

yi (x)ϕi (x)dρ.

Then

π(t; y, y) =

n∑
i=1

(∫
Ω

∑
|α|≤`

∞∑
k=1

|Dα
k yi (x)|

2dρ +

∫
Ω

q(x, t)|yi (x)|
2dρ +

∫
Ω

|yi (x)|
2dρ

)

≥

n∑
i=1

(∑
|α|≤`

∞∑
k=1

‖Dα
k yi (x)‖

2
L2(Ω ,R∞) + C0‖yi (x)‖

2
L2(Ω ,R∞) + ‖yi (x)‖

2
L2(Ω ,R∞)

)
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=

n∑
i=1

‖yi (x)‖
2
W `(Ω ,R∞)

+ C0‖yi (x)‖
2
L2(Ω ,R∞)

≥

n∑
i=1

‖yi (x)‖
2
W `(Ω ,R∞)

= ‖y‖
2
(W `(Ω ,R∞))n

.

For y, ϕ ∈ (W `(Ω , R∞))n the function

t → π(t; y, ψ) is continuously differentiable with respect to t in (0, T ). (3)

In considerating the above in light of Lions and Magenes vol. 2. chapter 5 [9], we can formulate the following n×n
coupled Petrowsky type system with mixed Neumann conditions which defines the state of our control problem.

Theorem 1. Assume that (2) and (3) hold, then if given f = f (x, t) ∈ (L2(0, T ; W −`(Ω , R∞)))n , yi,0(x) ∈

L2(Ω , R∞) and yi,1(x) ∈ W −`(Ω , R∞) there exists a unique element y = y(u) ∈ (L2(0, T ; L2(Ω , R∞)))n (briefly
(L2(Q))n) such that ∀1 ≤ i ≤ n

∂2 yi (u)

∂t2 + Ai (t)yi (u) = fi in Q = Ω×]0, T [,

∂m yi (u)

∂νm
Ai

= ui on S = Γ×]0, T [,

yi (x, 0) = yi,0(x),
∂yi (x, 0)
∂t

= yi,1(x) in Ω


(4)

where ∂m

∂νm
Ai

derivatives of order m along the normal to S, m = 0, 1, . . . , ` − 1, S is the lateral boundary of Q and

( ∂
2

∂t2 + A(t)) is the n×n matrix operator well-positioned in the sense of Petrowsky type maps (L2(0, T ; W `(Ω , R∞)))n

onto (L0(0, T ; W −`(Ω , R∞)))n and

∂yi

∂t
∈ L2(Q),

∂2 yi

∂t2 ∈ L2(0, T ; W −`(Ω , R∞)).

Proof. Let X = {ϕ : ϕ = (ϕi )
n
i=1, ϕi ∈ L2(0, T ; W `(Ω , R∞)), ϕ′

i ∈ L2(Q), ϕ′′

i + A∗

i (t)ϕi ∈ L2(Q),
∂mϕi
∂νm

A∗
i

=

0 on S, ϕi (x, T ) = 0, ϕ′(x, T ) = 0}, the operator ϕ → ϕ′′
+ A(t)ϕ is an isomorphism of X onto (L2(Q))n , where

A∗

i (t) is the adjoint to Ai (t).
By transposition: let ϕ → L(ϕ) be a continuous linear form on X ; there exists a unique y = y(u) ∈ (L2(Q))n such

that
n∑

i=1

∫
Q

yi (u)(ϕ
′′

i + A∗

i (t)ϕi )dρdt = L(ϕ) ∀ϕ ∈ X.

We define a continuous linear form on X by

L(ϕ) =

n∑
i=1

[∫
Q

fiϕi dρdt +

∫
S

uiϕi dS +

∫
Ω

yi,1ϕi (x, 0)dρ −

∫
Ω

yi,0
∂ϕi (x, 0)

∂t
dρ
]

where fi ∈ L2(0, T ; W −`(Ω , R∞)), yi,0 ∈ L2(Ω , R∞), yi,1 ∈ W `(Ω , R∞) and ui ∈ L2(0, T ; L2(Γ )) (briefly
L2(S)).

Then we have
n∑

i=1

∫
Q

yi (u)(ϕ
′

i + A∗

i (t)ϕi )dρdt

=

n∑
i=1

[∫
Q

fiϕi dρdt +

∫
S

uiϕi dS +

∫
Ω

yi,1ϕi (x, 0)dρ −

∫
Ω

yi,0
∂ϕi (x, 0)

∂t
dρ
]
. (5)
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Letting ϕ(t) = (ϕi (t))ni=1 with compact support in ]0, T [, we deduce that

d2 yi

dt2 + A(t)yi = fi in ]0, T [. (6)

Now, scalar multiplying (6) by ϕ ∈ X and integrating by parts by applying Green’s formula, we obtain

n∑
i=1

∫
Q

fiϕi dρdt =

n∑
i=1

[
−

∫
Ω

∂yi (x, 0)
∂t

ϕi (x, 0)dρ +

∫
Ω

yi (x, 0)
∂ϕi (x, 0)

∂t
dρ

+

∫
Q

yi (ϕ
′′

i + A∗(t)ϕi )dρdt −

∫
S

∂m yi

∂νm
Ai

ϕi dS.

]
.

Comparing the latter equation with (5), we get
n∑

i=1

[
−

∫
Ω

yi,1(x)ϕi (x, 0)dρ +

∫
Ω

yi,0(x)
∂ϕi (x, 0)

∂t
dρ −

∫
S

uiϕi dS

]

=

n∑
i=1

[
−

∫
Ω

∂yi (x, 0)
∂t

ϕi (x, 0)dρ +

∫
Ω

yi (x, 0)
∂ϕi (x, 0)

∂t
dρ −

∫
S

∂m yi

∂νm
Ai

ϕi dS

]
.

From this we deduce that
∂m yi

∂νm
Ai

= ui on S,

yi (x, 0) = yi,0(x),
∂yi (x, 0)
∂t

yi,1(x) in Ω .

3. Quadratic boundary control problem

For the control u = (ui )
n
i=1 ∈ (L2(S))n = U (space of controls) the state of the system y(u) ∈ (L2(Q))n is given

by the solution of (4) with yi = yi (u), so the control is being exercised through the boundary.
We observe y(u) on S, so y(u) ∈ (L2(S))n and mapping u → y(u)|S is a continuous affine map of (L2(S))n onto

itself, and the cost function is given by

J (u) =

n∑
i=1

[
‖yi (u)− zi,d‖

2
L2(S) + (Ni ui , ui )L2(S)

]
=

n∑
i=1

∫
S

[
(yi (u)− zi,d)

2
+ Ni u

2
i

]
dS

where Zd = (zi,d)
n
i=1 ∈ (L2(S))n and N = (Ni )

n
i=1 ∈ L((L2(S))n, (L2(S))n) is a diagonal matrix of Hermitiun

positive definite operators:

Nu = (Ni ui )
n
i=1, (Nu, u)(L2(S))n ≥ ξ‖u‖

2
(L2(S))n , ξ > 0.

If Uad (set of admissible controls) is a closed convex subset of (L2(S))n , minimizing J over Uad, i.e. we find u0

(optimal control) such that

J (u0) = inf
u∈Uad

J (u). (7)

The solution to this problem is given in the following theorem.

Theorem 2. Problem (7) admits a unique solution given by (4) and
n∑

i=1

∫
S
(Pi (u

0)+ Ni u
0
i )(ui − u0

i )dS ≥ 0 ∀u = (ui )
n
i=1 ∈ Uad

where Pi (u0) is the adjoint state.
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Proof. As in [1] the optimal control is characterized by

n∑
j=1

J ′

i (u
0)(ui − u0

i ) ≥ 0 ∀u = (ui )
n
i=1 ∈ Uad

that is

n∑
i=1

∫
S

[
(yi (u

0)− zid)(yi (u)− yi (u
0))+ (Ni u

0
i )(ui − u0

i )
]

dS ≥ 0. (8)

For the control u = (ui )
n
i=1 the adjoint state Pi (u) ∈ L2(Q) is given by

∂2 Pi (u)

∂t2 + A∗

i (t)Pi (u) = 0 in Q,

∂m Pi (u)

∂νm = yi (u)− zi,d on S,

Pi (x, T ; u) = 0,
∂Pi (x, T ; u)

∂t
= 0 on Ω .

 (9)

From Theorem 1, this problem admits a unique solution Pi (u) ∈ L2(Q).
Using Green’s formula we transform (8) as follows: formally, setting u = u0 in (9) and multiplying the first

equation in (9) by (yi (u)− yi (u)) and integrating by parts, we obtain

0 = −

∫
S

∂m Pi (u0)

∂νm
A∗

i

(yi (u)− yi (u
0))dS +

∫
S

Pi (u
0)
∂m yi (u0)

∂νm
Ai

−
∂m yi (u0)

∂νm
Ai

dS

= −

∫
S
(yi (u

0)− zi,d)(yi (u)− yi (u
0))dS +

∫
S

Pi (u
0)(ui − u0

i )dS;

condition (8) then becomes
n∑

i=1

∫
S
(Pi (u

0)+ Ni u
0
i )(ui − u0

i )dS ≥ 0 ∀ui ∈ Uad.

4. Special cases

(1) If we take n = 2, then U = L2(S)× L2(S) and the optimality system is given by

∂2 y1(u0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

D2α
k + q(x, t)

)
y1(u

0)+ y1(u
0)− y2(u

0) = f1 in Q,

∂2 y2(u0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

D2α
k + q(x, t)

)
y2(u

0)+ y2(u
0)+ y1(u

0) = f2 in Q,

∂m y1(u0)

∂νm = u0
1,

∂m y2(u0)

∂νm = u0
2 on S,

y1(x, 0; u0) = y1,0(x), y2(x, 0; u0) = y2,0(x) in Ω ,

∂y1(x, 0; u0)

∂t
= y1,1(x),

∂y2(x, 0; u0)

∂t
= y2,1(x) in Ω ,

∂2 P1(u0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

D2α
k + q(x, t)

)
P1(u

0)+ P1(u
0)+ P2(u

0) = 0 in Q,

∂2 P2(u0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

D2α
k + q(x, t)P2(u

0)

)
+ P2(u

0)− P1(u
0) = 0 in Q,
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∂m P1(u0)

∂νm
A∗

1

= y1(u
0)− z1,d ,

∂m P2(u0)

∂νm
A∗

2

= y2(u
0)− z2,d on S,

P1(x, T ; u0) = 0, P2(x, T ; u0) = 0 in Ω ,
∂P1(x, T ; u0)

∂t
= 0,

∂P2(x, T ; u0)

∂t
= 0 in Ω ,∫

S

[
(P1(u

0)+ N1u0
1)(u1 − u0

1)+ (P2(u
0)+ N2u0

2)(u2 − u0
2)
]

dS ≥ 0 (10)

for all (u1, u2) ∈ Uad, where u0
= (u0

1, u0
2) ∈ Uad and P(u0) = (P1(u0), P2(u0)) is the adjoint state.

(2) If n = 2 and Uad = U (no constraints on controls) then the optimal u0
= (u0

1, u0
2) is obtained by solving the

following system of partial differential equations:

∂2 y1(u0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

D2α
k + q(x, t)

)
y1(u

0)+ y1(u
0)− y2(u

0) = f1 in Q,

∂2 y2(u0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

D2α
k + q(x, t)y2(u

0)

)
+ y2(u

0)+ y1(u
0) = f2 in Q,

∂2 P1(u0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

D2α
k + q(x, t)

)
P1(u

0)+ P1(u
0)+ P2(u

0) = 0 in Q,

∂2 P2(u0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

D2α
k + q(x, t)

)
P2(u

0)+ P2(u
0)− P1(u

0) = 0 in Q,

∂m y1(u0)

∂νm
A1

+ N−1 P1(u
0) = 0,

∂m y2(u0)

∂νm
A2

+ N−1
2 P2(u

0) = 0 on S,

∂m P1(u0)

∂νm
A∗

1

= y1(u
0)− z1,d ,

∂m P2(u0)

∂νm
A∗

2

= y2(u
0)− z2,d on S,

y1(x, 0; u0) = y1,0(x), y2(x, 0; u0) = y2,0(x) in Ω ,

∂y1(x, 0; u0)

∂t
= y1,1(x),

∂y2(x, 0; u0)

∂t
= y2,1(x) in Ω ,

P1(x, T ; u0) = 0, P2(x, T ; u0) = 0 in Ω ,
∂P1(x, T ; u0)

∂t
= 0,

P2(x, T ; u0)

∂t
= 0 in Ω .

Further

u0
1 = −N−1

1 P(u0), u0
2 = −N−1

2 P2(u
0).

(3) If we assume that

Uad = {u0
i |u

0
i ≥ 0 a.e on S}.

Then u0
1, u0

2 is obtained by solving the unilateral problem

∂2 y1(u0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

D2α
k + q(x, t)

)
y1(u

0)+ y1(u
0)− y2(u

0) = f1 in Q,

∂2 y2(u0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

D2α
k + q(x, t)

)
y2(u

0)+ y2(u
0)+ y1(u

0) = f2 in Q,
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∂2 P1(u0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

D2α
k + q(x, t)

)
P1(u

0)+ P1(u
0)+ P2(u

0) = 0 in Q,

∂2 P2(u0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

D2α
k + q(x, t)

)
P2(u

0)+ P2(u
0)− P1(u

0) = 0 in Q,

∂m y1(u0)

∂νm ≥ 0, P1 + N1
∂m y1(u0)

∂νm = 0 on S,(
P1 + N1

∂m y1(u0)

∂νm
A1

)(
∂m y1(u0)

∂νm
A2

)
= 0,

∂m P1(u0)

∂νm
A∗

1

= y1(u
0)− z1,d on S,

∂m y2(u0)

∂νm
A1

≥ 0, P2 + N2
∂m y2(u0)

∂νm
A2

= 0 on S,(
P2 + N2

∂m y2(u0)

∂νm

)(
∂m y2(u0)

∂νm

)
= 0,

∂m P2(u0)

∂νm
A∗

2

= y2(u
0)− z2,d on S,

y1(x, 0) = y1,0(x), y2(x, 0) = y2,0(x) in Ω ,
∂y1(x, 0)

∂t
= y1,1(x),

∂y2(x, 0)
∂t

= y2,1(x) in Ω ,

P1(x, T ) = 0, P2(x, T ) = 0 in Ω ,
∂P1(x, T )

∂t
= 0,

∂P2(x, T )

∂t
= 0 in Ω ,

then

u0
1 =

∂m y1

∂νm
A1

, u0
2 =

∂m y2

∂νm
A2

.

Note 1. We observe that the conditions of optimality derived above allow us to obtain an analytical formula for the
optimal control in particular cases only (i.e. where there are no constraints on controls). These results are due to the
determining of the function Pi (ū0) in the maximum condition from the adjoint equation if and only if we know ȳ0

which corresponds to the control ū0. These mutual connections make the practical use of the derived optimization
formulas difficult. Therefore, we resign from the exact determining of the optimal control by using approximation
methods. This requires further investigation and will form tasks for future research.

5. Boundary control problem with general performance functional

Let us denote by U = (L2(S))n the space of controls, by Y = (L2(Q))n the space of state and for a control
u = (ui )

n
i=1 ∈ (L2(S))n the state y(u) = (yi (u))ni=1 = (yi (x, t; u))ni=1 of the system given by the solution of (3); the

control time T is assumed to be fixed.
The performance functional is given by

I (y,u) =

n∑
i=1

Ii (y,u) =

n∑
i=1

∫
S

Fi (x, t; y,u)dS → min, (11)

where for every i = 1, . . . , n, Fi : Ω × (0, T ) × Rn
× Rn

→ R1 that satisfies the following conditions:
(A1) Fi (x, t; y,u) is continuous with respect to (x, t; y,u),
(A2) there exists Fréchet derivatives Fiy(x, t; y,u), Fiu(x, t; y,u) which are continuous with respect to (x, t; y,u).
(A3) Fi (x, t; y,u) is strictly convex with respect to the pair (y,u), i.e.

Fi (x, t; λy1
+ (1 − λ)y2, λu1

+ (1 − λ)u2) < λFi (x, t; y1,u1)+ (1 − λ)Fi (x, t, y2,u2),

∀y1y2,u1u2
∈ Rn, (y1,u1) 6= (y2,u2), λ ∈ (0, 1).
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We assume the following constraints on controls:

Let u ∈ Uad (set of admissible controls) be a closed convex and bounded subset of U . (12)

The solution of the statement optimal control problem is equivalent to seeking a pair (y0,u0) ∈ E where
Y × U = E = E1 × E2 × En , that satisfies (3), and minimizes the performance functional (11) subject to the
control constraints (12).

Using the extension of the Dubovitskii–Milyutin Theorem in the case of n equality constraints, [10], we derive the
necessary and sufficient optimality condition for the optimal control problem (3), (11) and (12) in the following.

Theorem 3. By the assumptions mentioned above, there exist a unique solution (y0,u0) of the optimization problem
(3), (11) and (12) which satisfies the maximum condition

n∑
i=1

∫
S
(Pi + Fiu)(ui − u0

i )dS ≥ 0 ∀ u = (ui )
n
i=1 ∈ Uad, (13)

where the superscript 0 denotes the optimal element and Pi is the adjoint state.

Proof. We apply the generalized Dubovitskii–Milyutin theorem. Therefore, denote by G1,G2 the following sets in
the space E = Y × U, E = E1 × E2 × · · · × En ,

G1 =

⋃
1≤i≤n

G1,i =

⋃
1≤i≤n



∂2 yi

∂t2 + Ai (t)yi = fi , x ∈ Ω , t ∈ (0, T ),

(yi , ui ) ∈ Ei ; yi (x, 0) = yi,1(x), x ∈ Ω ,
∂yi

∂t
(x, 0) = yi,2(x), x ∈ Ω ,

∂m yi (x, t)

∂νm
Ai

= ui , x ∈ Γ , t ∈ (0, T ).


G2 = {(y,u) ∈ E; y ∈ Y,u ∈ Uad}.

The problem (3)–(5) can then be formulated in the form

I (y,u) → min subject to (y,u) ∈ G1 ∩ G2.

We approximate the sets G1 and G2 by the regular tangent cone (RTC) and the performance functional by the
regular improvement cone (RFC).

The tangent cone to the set G1 at (y0,u0) has the form

RTC(G1(y0,u0)) = {(ỹ, ũ) ∈ E; B ′(y0,u0)(ỹ, ũ) = 0}

so, for all 1 ≤ i ≤ n we have

RTC(G1, (y
0
i , u0

i )) =



∂2 ỹi

∂t2 + A(t)ỹi = 0, x ∈ Ω , t ∈)0, T ),

(ỹi , ũi ) ∈ E; ỹi (x, 0) = 0, x ∈ Ω ,
∂ ỹi

∂t
(x, 0) = 0, x ∈ Ω ,

∂m ỹi (x, t)

∂νm
Ai

= ũi , x ∈ Γ , t ∈ (0, T ).


where B ′(y0,u0)(ỹ, ũ) is the Fréchet differential of the operator B where,

B : (L2(Q))
n

× (L2(S))
n

→ (L2(0, T ; W −`
0 (Ω , R∞)))n × (W `

0 (Ω , R∞))n × (L2(Ω , R∞))n × (L2(S))
n,

B(y,u) =

(
∂2y
∂t2 + A(t)y, y(x, 0)− y1(x),

∂y
∂t
(x, 0)− y2(x),

∂m y

∂νm
A

− u

)
.
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The tangent cone to the set G2 at (y0,u0) has the form

RTC(G2, (y0,u0)) = Y × RTC(Uad,u0),

where RTC(Uad,u0) is the tangent cone to the set Uad at the point u0.
It is known that the tangent cones are closed and

RTC(G1 ∩ G2, (y0,u0)) = RTC(G1, (y0,u0)) ∩ RTC(G2, (y0,u0)),

further, [RTC(G1, (y0,u0))]∗ and [RTC(G2, (y0,u0))]∗ mean the same [2].
The regular improvement cone for the performance functional has the form

RTC(I, (y0,u0)) =

{
(ỹ, ũ) ∈ E;

n∑
i=1

∫
S
(Fiy ỹi + Fiu ũi )dS < 0

}
.

If RFC(I, (y0,u0)) 6= Φ, then its adjoint cone consists of the elements of the form g3(ỹ, ũ) = −λ0
∑n

i=1

∫
S(Fiy ỹi +

Fiu ũi )dS, where λ0 > 0.
The functionals belonging to [RTC(G1, (y0,u0))]∗ are

g1(ỹ, ũ) = 0 ∀(ỹ, ũ) ∈ RTC(G1, (y0,u0)).

The functionals in [RTC(G2, (y0,u0))]∗ can be expressed as

g2(ỹ, ũ) = g1
2(ỹ)+ g2

2(ũ),

where g1
2(ỹ) = 0 ∀y ∈ Y and g2

2(ũ) is the support functional to the set Uad at u0.
Now, we can write the Euler–Lagrange equation for our problem as

g2
2(ũ) =

n∑
i=1

[
λ0

∫
S

Fiy ỹi dS + λ0

∫
S

Fiu ũi dS

]
. (14)

where (ỹ, ũ) ∈ RTC(G1, (y0,u0)).
Introducing the adjoint variable P = (Pi )

n
i=1 by ∀1 ≤ i ≤ n,

∂2 Pi

∂t2 + A∗(t)Pi = 0, x ∈ Ω , t ∈ (0, T ),

Pi (x, T ) = 0, x ∈ Ω ,
∂Pi

∂t
(x, T ) = 0, x ∈ Ω ,

∂m Pi (x, t)

∂νm
A∗

i

= Fiy, x ∈ Γ , t ∈ (0, T )

and taking into account that ỹ is a solution of B1(y0,u0)(ỹ, ũ) = 0, for any fixed ũ, we transform the first term of the
right-hand side of (14) as

0 = λ0

∫
Q

(
∂2 Pi

∂t2 + A∗

i (t)Pi

)
ỹi dρdt,

= λ0

∫
Ω

∂Pi

∂t
ỹi |

T
0 dρ − λ0

∫
Q

∂Pi

∂t

∂ ỹi

∂t
dρdt + λ0

∫
Q

Pi A(t)ỹi dρdt

+ λ0

∫
S

Pi
∂m ỹi

∂νm
Ai

dS − λ0

∫
S

∂m Pi

∂νm
A∗

i

ỹi dS,

= λ0

∫
Ω

∂Pi

∂t
ỹi |

T
0 dρ − λ0

∫
Q

Pi
∂ ỹi

∂t
|
T
0 dρ + λ0

∫
Q

Pi
∂2 ỹi

∂t2 dρdt + λ0

∫
Q

Pi A(t)ỹi dρdt
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+ λ0

∫
S

Pi ũ0dS − λ0

∫
S

Fiy ỹi dS,

= λ0

∫
Q

Pi

(
∂2 ỹi

∂t2 + Ai (t)ỹi

)
dSdt + λ0

∫
S

Pi ũi dS − λ0

∫
S

Fiy ỹi dS.

So

λ0

∫
S

Fiy ỹi dS = λ0

∫
S

Pi ũi dS. (15)

Substituting (15) into (14), we obtain

g2
2(ũ) =

n∑
i=1

λ0

∫
S
(Pi + Fiu)ũi dS, ũ ∈ Uad. (16)

The equality λ0 in (16) cannot be equal to zero, because in this case all functionals in the Euler–Lagrange equation
would be zero, which is impossible according to the Dubovitskii Milyutin theorem. Using the definition of the support
functional and dividing both sides of the obtained inequality by λ0, we finally obtain the maximum condition (13). If
RTC(I, (y0,u0)) = Φ, then optimality conditions are fulfilled with equality in the maximum condition.

The uniqueness of the optimal control u0 follows from the strict convexity of the performance functional
(assumption (A3)). For the optimal control u0, there corresponds the optimal state y0 determined uniquely by the
state equation. Therefore, the solution of the problem (3), (11) and (12) exists, is unique and is given by the pair
(y0,u0). This completes the proof of the theorem.

Note 2. If we take n = 2, then U = L2(S)× L2(S) and the optimality system is given by

∂2 y0
1(u

0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

(−1)|α| D2α
k + q(x, t)+ 1

)
y0

1(u
0)− y0

2(u
0) = f1 in Q,

∂2 y0
2(u

0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

(−1)|α| D2α
k + q(x, t)+ 1

)
y0

2(u
0)+ y0

1(u
0) = f2 in Q,

y0
1(x, 0; u0) = y1,1(x), y0

2(x, 0; u0) = y2,1(x), in Ω ,

∂y0
1

∂t
(x, 0; u0) = y1,2(x),

∂y0
2

∂t
(x, 0; u0) = y2,2(x), in Ω ,

∂m y0
1(x, t; u0)

∂νm
A1

= u0
1,

∂m y0
2(x, t; u0)

∂νm
A2

= u0
2 on S,

∂2 P1(u0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

(−1)|α| D2α
k + q(x, t)+ 1

)
P1(u0)+ P2(u0) = 0 in Q,

∂2 P2(u0)

∂t2 +

(∑
|α|≤`

∞∑
k=1

(−1)|α| D2α
k + q(x, t)+ 1

)
P2(u0)− P1(u0) = 0 in Q,

P1(x, T ; u0) = 0, P2(x, T ; u0) = 0 in Ω ,
∂P1

∂t
(x, T ; u0) = 0,

∂P2

∂t
(x, T ; u0) = 0 in Ω ,

∂m P1(x, t; u0)

∂νm
A∗

2

= F1y,
∂m P2(x, t; u0)

∂νm
A∗

2

= F2y on Σ ,∫
S
[(P1(u0)+ F1uu0

1)(u1 − u0
1)+ (P2(u0)+ F2uu0

2)(u2 − u0
2)]dS ≥ 0,

for all u = (u1, u2) ∈ Uad where u0
= (u0

1, u0
2) ∈ Uad and P(u0) = (P1(u0), P2(u0)) is the adjoint state.
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