MHD boundary layer slip flow and radiative nonlinear heat transfer over a flat plate with variable fluid properties and thermophoresis

S.K. Parida a,*, S. Panda b, B.R. Rout c

a Department of Mathematics, ITER, S’O’A University, Bhubaneswar, 751030 Odisha, India
b Department of Mathematics, NIT Calicut, NIT(P.O), 673601 Kerala, India
c Department of Mathematics, Krupajal Engineering College, Bhubaneswar, 751002 Odisha, India

Abstract This work considers the two-dimensional steady MHD boundary layer flow of heat and mass transfer over a flat plate with partial slip at the surface subjected to the convective heat flux. The particular attraction lies in searching the effects of variable viscosity and variable thermal diffusivity on the behavior of the flow. In addition, non-linear thermal radiation effects and thermophoresis are taken into account. The governing nonlinear partial differential equations for the flow, heat and mass transfer are transformed into a set of coupled nonlinear ordinary differential equations by using similarity variable, which are solved numerically by applying Runge-Kutta fourth-fifth order integration scheme in association with quasilinear shooting technique. The novel results for the dimensionless velocity, temperature, concentration and ambient Prandtl number within the boundary layer are displayed graphically for various parameters that characterize the flow. The local skin friction, Nusselt number and Sherwood number are shown graphically. The numerical results obtained for the particular case are fairly in good agreement with the result of Rahman [6].

Crown Copyright © 2015 Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction .. 942
2. The physical model and problem formulation .. 944
 2.1. Skin friction, Nusselt number and Sherwood number. 946
Nomenclature

\(v \) velocity (m s\(^{-1}\))
\(T \) temperature (K)
\(T_w \) temperature at the surface of the plate (K)
\(t_p \) thermophoretic coefficient
\(C \) concentration (mol m\(^{-3}\))
\(C_{\infty} \) concentration of the ambient fluid (mol m\(^{-3}\))
\(\mathbf{B} \) magnetic field (N m\(^{-1}\) A\(^{-1}\))
\(p \) pressure (N m\(^{-2}\))
\(c_p \) specific heat of the fluid at constant pressure (J kg\(^{-1}\) K\(^{-1}\))
\(q_c \) heat flux (W m\(^{-2}\))
\(q'' \) non-uniform heat generated or absorbed (kg m\(^{-1}\) s\(^{-3}\))
\(q_s \) surface heat flux (W m\(^{-2}\))
\(x, y \) distance along and normal to the plate (m)
\(k \) thermal conductivity (W m\(^{-1}\) K\(^{-1}\))
\(k_{\infty} \) thermal conductivity at ambient temperature (W m\(^{-1}\) K\(^{-1}\))
\(h \) heat transfer coefficient (W m\(^{-2}\) K\(^{-1}\))
\(H_a \) Hartmann number
\(G_r \) Grashof number
\(R \) radiation parameter
\(P_r \) variable Prandtl number
\(R_e \) local Reynolds number
\(S_h \) local Sherwood number
\(f \) Lorentz force (N m\(^{-1}\))
\(T_r \) reference temperature (K)
\(L \) slip length (m)
\(T_f \) free stream velocity (m s\(^{-1}\))
\(C_w \) concentration of the fluid at the plate (mol m\(^{-3}\))
\(g \) acceleration due to gravity (ms\(^{-2}\))
\(Q, Q_1 \) constants
\(E \) electric field (kg m\(^{-3}\) A\(^{-1}\))
\(J \) current density (A m\(^{-2}\))
\(A \) constant
\(q_r \) radiative heat flux (W m\(^{-2}\))
\(D \) mass diffusivity (m\(^2\) s\(^{-1}\))
\(m_w \) surface mass flux (mol m\(^{-2}\) s\(^{-1}\))
\(a \) surface convection parameter
\(a_1, a_2 \) constants
\(k_s \) mean absorption coefficient (m\(^{-1}\))
\(V_T \) thermophoretic velocity (m s\(^{-1}\))
\(b, T_r \) constants
\(C_f \) skin friction coefficient
\(N_u \) local Nusselt number
\(G_c \) solutal Grashof number
\(S_c \) Schmidt number
\(P_r_{\infty} \) ambient Prandtl number
\(K_n, L \) local Knudsen number
\(N_c \) concentration difference parameter

Greek symbols

\(\rho \) density (kg m\(^{-3}\))
\(\mu_{\infty} \) dynamic viscosity at ambient temperature (N m\(^{-2}\))
\(\nu_{\infty} \) kinematic viscosity far away from the sheet (m\(^2\) s\(^{-1}\))
\(\sigma_0 \) electric conductivity (s\(^3\) A\(^2\) m\(^{-1}\))
\(\beta \) coefficient of thermal expansion (K\(^{-1}\))
\(\theta_v \) variable viscosity parameter
\(\epsilon \) variable thermal conductivity parameter
\(\sigma^* \) Boltzmann constant (W m\(^{-2}\) K\(^{-4}\))
\(\gamma \) constant associated with thermal property of the fluid
\(\beta^* \) expansion coefficient with concentration (concentration\(^{-1}\))
\(\mu \) dynamic viscosity (N s m\(^{-2}\))
\(\lambda \) plate surface concentration exponent
\(\psi \) stream function
\(\phi \) non-dimensional concentration
\(\eta \) non-dimensional space variable
\(\theta_t \) non-dimensional temperature variable
\(\tau \) thermophoretic parameter
\(\delta \) slip parameter
\(\chi \) thermal property of the fluid
\(\tau_w \) viscous stress at the surface of the plate (N m\(^{-2}\))

Operator

\(\nabla \) nabla operator

3. Results and discussion ... 947
3.1. Numerical procedure .. 947
3.2. Computational results for velocity, temperature and concentration profiles .. 947
3.3. Computational results for coefficient of skin friction, Nusselt number and Sherwood number 951
4. Summary and conclusions ... 952
Acknowledgment .. 952
References .. 952

1. Introduction

The wide applications of laminar boundary layer flows of heat and mass transfer over a flat surface in different areas of science and engineering have attracted the attention of many researchers. Specific examples of such flows occur in the design of cooling systems for electronic devices, in the field of geothermal reservoirs, heat exchangers, cooling of nuclear reactor, etc. The first concept of similarity solution formulated by Blasius [1] for the boundary layer flow of a Newtonian fluid over a flat surface forms the basis for several subsequent studies. Later it has been extended by many researchers (e.g., Fang
The similar solution for the thermal boundary layer flow of Newtonian fluid with convective surface heat flux conditions has been developed by Aziz [7]. The problem has been revisited later on several times with the inclusion of physics or more complex rheology. Bataller [8], for example, extended Aziz’s contribution by analyzing Sakiadis flows with thermal radiation effects, while Ishak [9] considered the permeable flat surface. Yao et al. [10] concentrated on the heat transfer flow of a generalized stretching/shrinking wall with convective boundary condition. Similar analyses have been performed by Uddin et al. [11–14] for boundary layer flow of a nanofluid using scaling group of transformation. A common feature of the literature cited above is that it assumed the constant fluid properties such as constant viscosity and thermal conductivity. Most of the existing analytical studies for this type of problems have emphasized on constant physical properties of the ambient fluid. The variation of viscosity in thermal boundary layer is quite useful and significant in experimental studies such as glass fiber production, paper production, wire drawing, and drawing of plastic films. Recognizing the restriction of constant fluid properties assumptions, Prasad et al. [15] extended the formulation to account for variable thermal conductivity in a non-isothermal stretching sheet through power law fluids. Recently this work has been extended to include the combined effects of thermal buoyancy and variable thermal conductivity on magneto hydrodynamic flow (Abel et al. [16]), and it is reported that variable thermal conductivity substantially influences the shear stress enhancement. Many researchers (e.g., Elbarbary et al. [17], Seddeek et al. [18], Rahman et al. [19]) have studied the effect of variable fluid properties of MHD fluid flows in the last few years.

The no-slip boundary condition is extensively applied for flows involving Newtonian and non-Newtonian fluid past solid boundary. But, in many instances the no-slip boundary condition exhibits inaccurate results, like the incapability of the no-slip condition at the solid–fluid interface for the flow of fluids in a microelectromechanical system is no longer applicable. It has also been found that there is a large class of polymeric materials slip or stick–slip on solid boundaries (Rao et al. [20]). Thus, it is a well recognized subject as evident from the literature (Yoshimura et al. [21], Hasimoto [22], Martin et al. [23–25], Vedantam [26], Fang et al. [27], Andersson [28], Wang [29], Aziz [30], Sahoo [31]).

The study of radiation on the various types of flows is quite complicated. In the recent years, many authors (Seddeek et al. [32], Pal et al. [33], Mahdy [34], Rout et al. [35], Balla et al. [36]) have studied the effects of radiation on the boundary layer of radiating fluid in various problems. A more recent study (Rahman et al. [37, 38]) has predicted that the Prandtl number must be treated as a variable rather than a constant in characterizing the variable viscosity and thermal conductivity in a thermal boundary layer flow. The effect of non-linear radiation has been considered (Cortell [39]) due to high temperature difference for the boundary layer flow over a stretching sheet.

The uneven temperature distribution on the flat surfaces creates temperature gradient and has effect on the movement of molecules. As a result the molecules in the hot region move faster than the molecules in the cold region. This leads to a movement of particles in the direction opposite to the temperature gradient, i.e. from warmer areas to cooler areas. The physics behind this phenomenon are known as thermophoresis. Thermophoresis is of practical importance in a variety of industrial and engineering applications including aerosol collection (thermal precipitators), nuclear reactor safety, corrosion of heat exchangers, and microcontamination control. Goldsmith et al. [40] first studied the thermophoretic transport involved in a simple one-dimensional flow for the measurement of the thermophoretic velocity. Later the variable suction and thermophoresis effects on steady MHD combined free-forced convective heat and mass transfer flow over a semi-infinite permeable inclined plate were discussed by Alam et al. [41]. Recently El-Sayed et al. [42] have focused on the effectiveness of variable viscosity and variable thermal diffusivity on steady MHD heat and mass transfer flow over a semi-infinite porous inclined plate in the presence of thermal radiation and thermophoresis. The effects of variable fluid properties on the thermophoretic MHD slip flow over a permeable surface with linear radiation have been recently studied by Das et al. [43].

Effects of heat transfer on the flow dynamics of hydromagnetic thermal boundary layer flow of a viscous fluid over a flat plate with variable fluid properties in the presence of partial slip with the convective surface heat flux at the surface have been studied recently by Rahman [6]. But, so far no attempt has been made to analyze the effects of thermophoresis particle deposition on convective heat and mass transfer past a flat heated plate with variable fluid properties and non-linear radiation in the presence of slip and convective boundary conditions, and hence we have considered the problem of this kind. The mass deposition variation on the surface is taking into our problem to know the effects of thermophoresis. Therefore, the objective of the present paper was to investigate the effects of variable viscosity, and variable thermal diffusivity on steady mass and non-linear radiative heat transfer process in a two-dimensional MHD convective flow over a flat plate with partial slip at the surface subjected to the convective surface heat flux with thermophoresis. Thus, the main purpose of the analysis was to investigate how the flow field, temperature and concentration fields vary within the boundary layer for a hydromagnetic slip flow when both the thermal conductivity and viscosity are temperature dependent subjected to thermophoresis and non-linear radiative effects. The local similarity equations are derived and solved numerically and the graphs and tables are presented to illustrate and discuss important hydrodynamic and thermal features of the flow.

\[u = \frac{L}{y} \frac{\partial u}{\partial y} \]

\[v = 0 \]

\[T_w = \frac{C}{k(T)} \]

\[u(T) \]

\[\mu(T) \]

\[k(T) \]

\[C_{\infty}, T_{\infty} \]

\[B \]

Figure 1 Sketch of flow geometry.
2. The physical model and problem formulation

We consider a two dimensional MHD flow of a viscous incompressible, heat generating and absorbing, electrically-conducting fluid moving over the surface of a semi-infinite impermeable flat plate with a stream of cold fluid at uniform velocity U_∞, temperature T_∞ and concentration C_∞ in the presence of radiation. The viscosity and thermal conductivity of the fluid are assumed to be functions of temperature. The thermophoresis effect is considered for the understanding of the mass deposition variation on the surface. It is further assumed that the lower surface of the plate is being heated by convection from a hot fluid at temperature T_w that provides a heat transfer coefficient h_p. The concentration of the fluid near the plate is denoted by C_w. Here the x-axis is taken along the direction of plate and y-axis is normal to it, as shown in Fig. 1.

A magnetic field is applied in the direction perpendicular to the plate with varying strength as a function of x. Neglecting the viscous dissipation and Joule heating, the governing equations for a steady two-dimensional flow can be written as follows:

Continuity equation

$$\nabla \cdot \mathbf{v} = 0$$ (1)

Momentum equation

$$\rho (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla p + \nabla \cdot (\mu(T) \nabla \mathbf{v}) + \rho \mathbf{g} (T - T_\infty)$$

$$+ \beta' \left(C - C_\infty \right) + \mathbf{f}$$ (2)

Temperature equation

$$\rho c_p (\mathbf{v} \cdot \nabla) T = -\nabla \cdot (\mathbf{q}_l + \mathbf{q}_r) + q'''$$ (3)

Concentration equation

$$(\mathbf{v} \cdot \nabla) C = D \nabla \cdot (\nabla C) - \nabla \cdot (\mathbf{v}_r C)$$ (4)

The symbols $\mathbf{v} = (u, v)$, ρ, p, T and C denote the fluid velocity, the constant density, the pressure, the temperature and the concentration. Here c_p and \mathbf{g} are the constant heat capacity and acceleration due to gravity, β is the coefficient of thermal expansion, β' is the coefficient of expansion with concentration, μ is the variable viscosity, \mathbf{f} is the source term due to imposed magnetic field, q''' is the non-uniform heat generated (>0) or absorbed (<0) per unit volume and \mathbf{v}_r is the thermophoretic velocity. Here \mathbf{q}_l and \mathbf{q}_r are the conduction and radiation flux vectors, respectively. The symbol ∇ denotes the gradient operator.

The external force \mathbf{f} may be written as follows:

$$\mathbf{f} = J \times \mathbf{B},$$ (5)

where $J = \sigma_0 (\mathbf{E} + \mathbf{v} \times \mathbf{B})$ is the current density and $\mathbf{B} = (0, B_x(x))$ is the transverse uniform magnetic field applied to the fluid layer. The symbols σ_0 and \mathbf{E} are the electric conductivity and the electric field, respectively. The external electric field is assumed to be zero and under the condition that magnetic Reynolds number is small the induced magnetic field is negligible compared with the applied field. Accordingly, the Hall effect is neglected.

The conduction heat flux is given by,

$$\mathbf{q}_l = -k(T) \nabla T,$$ (6)

where k is the variable heat conductivity. Expression for radiative heat flux \mathbf{q}_r can be obtained using Rosseland approximation (Sparrow et al. [45])

$$\mathbf{q}_r = -\frac{4\sigma}{3K_r} \nabla T^4,$$ (7)

where k_r is the Rosseland mean absorption coefficient and σ is the Stefan–Boltzmann constant. Assuming the high temperature difference (Cortell [39]), Eq. (7) can be written as

$$\mathbf{q}_r = -\frac{16\sigma}{3K_r} T^3 \nabla T.$$ (8)

In our present study, we have considered the effect of thermophoresis and the thermophoretic velocity \mathbf{v}_T which appears in Eq. (13), can be written as (Talbot et al. [46])

$$\mathbf{v}_T = -\frac{\mu(T) \rho}{\rho T} \nabla T,$$ (9)

where the term $\mu(T) / \rho$ represents the thermophoretic diffusivity, with T some reference temperature and μ the thermophoretic coefficient which ranges in value from 0.2 to 1.2 as indicated by Batchelor et al. [47]. In the boundary layer flow the thermophoretic velocity component which is normal to the surface is of importance as the temperature gradient in the y-direction is much larger than that in the x-direction.

Within the framework of the above noted assumptions, the basic governing boundary layer equations for mixed convection flow under Boussinesq approximation can be written in the simplified form as follows:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$ (10)

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{1}{\rho} \frac{\partial}{\partial y} \left(\mu(T) \frac{\partial u}{\partial y} \right) + g \beta (T - T_\infty) + g \beta' (C - C_\infty) - \frac{\sigma_0}{\rho} B^2(x) (u - U_\infty)$$ (11)

$$\rho c_p \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = \frac{\partial}{\partial y} \left(k(T) + \frac{16\sigma}{3K_r} T^3 \right) \frac{\partial T}{\partial y} + q'''$$ (12)

$$u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D \frac{\partial^2 C}{\partial y^2} + \frac{\mu(T)}{\rho T} \frac{\partial}{\partial y} \left(\mu(T) \frac{\partial T}{\partial y} \right)$$ (13)

The boundary conditions relevant to the present problem are as follows:

$$u(x, 0) = L \frac{\partial u}{\partial y}(x, 0), \quad v(x, 0) = 0, \quad -k(T) \frac{\partial T}{\partial y}(x, 0) = h_p(T_w - T(x, 0)), \quad C_w(x, 0) = A \chi^\ast + C_\infty,$$

$$u(x, \infty) = U_\infty, \quad T(x, \infty) = T_\infty, \quad C(x, \infty) = C_\infty,$$ (14)

where L is the slip length, $A (>0)$ is constant, χ is the plate surface concentration exponent and the subscripts w and ∞ refer to the wall and boundary layer edge respectively.

It is known that the fluid properties may change with temperature and to accurately predict the flow and heat transfer rates, it is necessary to take into account this variation of viscosity and thermal diffusivity. Thus in order to predict the flow and heat transfer rates accurately, for fluid we suggest a viscosity dependence on temperature T of the following form:
\[\mu(T) = \frac{\mu_\infty}{1 + \gamma(T - T_\infty)} \]

where constant \(\gamma \) is associated with the thermal property of fluid. Eq. (15) can also be written as,

\[\mu(T) = \frac{1}{b(T - T_\gamma)} \]

where \(b = \gamma/\mu_\infty \) and \(T_\gamma = T_\infty - 1/\gamma \). Here \(b \) and \(T_\gamma \) are constants, whose values depend on the thermal property of the fluid \(\gamma \). It is found that \(b > 0 \) for liquids and \(b < 0 \) for gases.

The thermal conductivity is a linear function of temperature (Chiam [44]) which can be defined as

\[k(T) = k_\infty \left(1 + \epsilon \left(\frac{T - T_\infty}{T_w - T_\infty} \right) \right) \]

where \(\epsilon \) is the variable thermal conductivity parameter and \(k_\infty \) is the thermal conductivity of the fluid far away from the plate.

The internal heat generation or absorption term \(q'' \) is chosen as (Das et al. [43])

\[q'' = k_\infty \frac{U_w}{x_{w,\infty}} (Q_c(T_w - T_\infty)e^{-x^*} + Q_e(T - T_\infty)) \]

where \(Q_c \) and \(Q_e \) are the non-dimensional parameters of space-dependent and temperature-dependent heat source/sink. The symbol \(x^* \) is used for the thermal property of the fluid. For the internal heat generation both the parameters are positive and when both the parameters are negative then it corresponds to internal heat absorption.

For a similarity solution of Eqs. (10)–(13), we introduce the stream function \(\psi \) as \((u,v) = (\partial \psi/\partial y, -\partial \psi/\partial x) \). Following Das et al. [43] and Rahman [6], the similarity variable \(\eta \) and similarity functions \(f(\eta), \theta(\eta) \) and \(\phi(\eta) \) are defined as,

\[\psi = \sqrt{\nu_\infty U_w x} f(\eta), \quad \theta(\eta) = \frac{T - T_\infty}{T_w - T_\infty}, \] \[\phi(\eta) = \frac{C - C_\infty}{C_w - C_\infty}, \quad \eta = y \sqrt{\frac{U_w}{\nu_\infty x}} \]

where \(\nu_\infty = \mu_\infty/\rho \) is the coefficient of kinematic viscosity far away from the plate and \(\mu_\infty \) refers to the viscosity of the fluid far away from the sheet. The continuity equation holds for any \(f \) and \(\eta \) and the Eqs. (11)–(13) reduce to

\[\frac{\partial}{\partial \eta} \left(\frac{\eta}{\theta} \right) \frac{\partial f}{\partial \eta} + \frac{\partial}{\partial \eta(\theta - \eta)} \frac{\partial \rho}{\partial \eta} \theta^2 + \frac{1}{2} \theta f + Gr \theta + Gc \phi - Hc \theta (f - 1) = 0 \]

\[+ \frac{1}{2} Pr \left(\frac{1}{\theta} - \frac{\partial}{\partial \eta} \right) (1 + \epsilon \theta) \partial f^2 + R((\theta_n - 1) \theta + 1)^3 \partial f^2 = 0 \]

Table 1 Comparison values of \(Pr_\infty \) at the surface of the plate for various values of \(\theta_r \) and \(\delta \).

<table>
<thead>
<tr>
<th>(\theta_r)</th>
<th>Rahman results [6]</th>
<th>Present results</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta = 0)</td>
<td>(\delta = 0.5)</td>
<td>(\delta = 5)</td>
</tr>
<tr>
<td>-0.001</td>
<td>147.50</td>
<td>126.49</td>
</tr>
<tr>
<td>-0.010</td>
<td>29.82</td>
<td>26.30</td>
</tr>
<tr>
<td>-0.010</td>
<td>6.03</td>
<td>5.56</td>
</tr>
<tr>
<td>-1</td>
<td>1.86</td>
<td>1.80</td>
</tr>
<tr>
<td>-5</td>
<td>1.38</td>
<td>1.36</td>
</tr>
<tr>
<td>-100</td>
<td>1.26</td>
<td>1.25</td>
</tr>
<tr>
<td>-1000</td>
<td>1.25</td>
<td>1.24</td>
</tr>
<tr>
<td>-\infty</td>
<td>1.25</td>
<td>1.24</td>
</tr>
</tbody>
</table>

Figure 2 Velocity profiles for various values of variable viscosity parameter \(\theta_r \).

Figure 3 Temperature profiles for various values of variable viscosity parameter \(\theta_r \).

Figure 4 Velocity profiles for various values of temperature ratio parameter \(\theta_r \).
\[f(0) = 0, \quad f'(0) = \delta f'(0), \quad \theta'(0) = a \left(\frac{\theta(0) - 1}{1 + \epsilon \theta(0)} \right), \quad \phi(0) = 1, \]
\[f'(\infty) = 1, \quad \theta(\infty) = 0, \quad \phi(\infty) = 0, \] (22)

where \(\theta_0 = (T_0 - T_\infty)/(T_w - T_\infty) = -1/\gamma(T_w - T_\infty) \) is the fluid viscosity parameter, \(\theta_v = T_v/T_\infty \) is the temperature ratio parameter, \(Ha = \beta_0 \sqrt{\gamma_0/\rho U_\infty} \) is the magnetic parameter, \(Gr = g\beta x(T_w - T_\infty)/U_\infty^2 \) is the Grashof number, \(Gc = g\beta x(C_v - C_\infty)/U_\infty^2 \) is the solutal Grashof number, \(R = 16\epsilon \sigma T_\infty/3k_\kappa \) is the radiation parameter, \(\alpha = \kappa/\nu_\infty U_\infty \) is the thermal property of the fluid, \(Sc = \nu_\infty/D \) is the Schmidt number, \(\tau = -\tau_f(T_w - T_\infty)/T_j \) is the thermophoretic parameter, \(Nc = C_\infty/(C_w - C_\infty) \) is the concentration difference parameter and \(a = (h_\kappa/k_\kappa) \sqrt{\nu_\infty x/U_\infty} \) is the surface convection parameter.

The non-dimensional slip parameter is defined in terms of local Knudsen number \((Kn_{x, \kappa}) \) and local Reynolds number \((Re_x) \) i.e., \(\delta = L \sqrt{U_\infty/\nu_\infty} = Kn_{x, \kappa} Re_x^{1/2} \), where \(Kn_{x, \kappa} = L/x \) and \(Re_x = U_\infty x/\nu_\infty \).

The Prandtl number which can be defined by \(Pr = \mu(T)C_p/k(T) \) is expressed in terms of Prandtl number at infinity \((Pr_\infty = \mu_\infty C_p/k_\infty) \) by the following relation:
\[Pr = \frac{\theta_0 Pr_\infty}{(\theta_0 - \theta)(1 + \epsilon \theta)} \] (24)
The relation Eq. (24) is valid due to variation of both viscosity and thermal conductivity across the boundary layer (see e.g., Rahman [6]).

In order to have similarity transformation it is assumed that the applied magnetic field \(B(x) \) and convective heat transfer coefficient \(h_f \) are proportional to \(x^{-1/2} \) and we can therefore assume (Aziz [7], Makinde [48], Rahman [6])
\[B(x) = B_0 x^{-1/2} \quad \text{and} \quad h_f = h_0 x^{-1/2}, \] (25)
where \(B_0 \) and \(h_0 \) are constants. Further, it is to be noted that the parameters \(Gr \) and \(Gc \) appearing in Eq. (20) are functions of \(x \). Thus, to have similarity solution of the problem, we assume \(\beta = a_1 x^{-1} \) and \(\beta' = a_2 x^{-1} \), where \(a_1 \) and \(a_2 \) are constants.

2.1. Skin friction, Nusselt number and Sherwood number

The parameters of engineering interest for the present problem are the local skin friction coefficient, local Nusselt number and the local Sherwood number which indicate physically wall shear stress, rate of heat transfer and rate of mass transfer, respectively.

The skin-friction coefficient is given by
\[C_f = \frac{\tau_f \sqrt{x}}{U_\infty^{3/2} \sqrt{\rho_\infty}}, \] (26)
where \(\tau_f \) is the stress at the plate, i.e.
Using the similarity variables Eq.(19), we get
\[C_f = \frac{h_r}{C_0} \left(\frac{h_r}{C_0} \right) \frac{\partial T}{\partial y} \frac{y_{w,x}}{U_x}. \]
\[(27) \]

It is important to know the rate of heat transfer between the fluid and the plate and it is analyzed through non-dimensional Nusselt number and defined as

\[\text{Nu}_f = \frac{q_{w,x}}{k (T_w - T_\infty) U_x}. \]
\[(29) \]

where \(q_{w,x} \) is the surface heat flux, i.e.

\[q_{w,x} = - \left(\frac{k(T) + \frac{16 \sigma \xi}{3 k} T^3}{\frac{1}{3} \frac{\partial T}{\partial y}} \right) \]
\[(30) \]

Using similarity variables defined in Eq. (19), we get

\[\text{Nu}_s = -(1 + \epsilon \theta(0) + R(1 + \theta(0)(\theta_w - 1))) \theta'(0) \]
\[(31) \]

The ratio of convective to diffusive mass transport can be analyzed through non-dimensional Sherwood number i.e.,

\[Sh_x = \frac{m_w}{D(C_w - C_\infty) \frac{y_{w,x}}{U_x}}. \]
\[(32) \]

where the mass flux \(m_w \) at the plate is defined as

\[m_w = -D \left(\frac{\partial C}{\partial y} \right)_{y=0}. \]
\[(33) \]

Using non-dimensional relation, we get

\[Sh_x = -\phi'(0) \]
\[(34) \]

3. Results and discussion

3.1. Numerical procedure

The system of coupled non-linear differential Eqs. (20)–(22) with boundary conditions Eq. (23) are solved numerically. In order to solve the system of equations we first convert these equations into first order differential equations. Then the first order differential equations are solved using Runge–Kutta fourth-fifth order method in association with shooting technique. In the following section the simulation results of different variations of flow parameters are presented and discussed. In addition, for validating the accuracy of our numerical results, we have compared our results with the previous published data from Rahman [6] in Table 1.

3.2. Computational results for velocity, temperature and concentration profiles

The numerical results of non-dimensional velocity, temperature and concentration for various values of physical parameters are shown in Figs. 2–20. The parameters used for simulation are, unless otherwise stated: \(h_r = 3, Gr = 5, Gc = 5, Ha = 0.5, R = 0.2, \theta_w = 1.5, Q_s = 0.3, Q_t = 0.2, Pr = 1.0, Sc = 0.6, \tau = 0.2, Nc = 0.2, \delta = 0.2, a = 0.1, \epsilon = 0.1 \) and \(\alpha = 1.0 \).

Effects of variable viscosity parameter \(h_r \) on velocity and temperature profiles are analyzed in Figs. 2 and 3, respectively.
For $h_r > 0$, it is observed that velocity profiles increase with the increase of h_r. It is also seen that the change of velocity is negligible for higher values of h_r because the variable viscosity of the fluid approaches to constant viscosity at ambient temperature. On the other hand, temperature profiles decrease with the increase of positive value of h_r. That means, increase of variable viscosity parameter makes decrease of thermal boundary layer thickness and results in increase of velocity. The opposite effects can be seen on velocity and temperature profiles for negative values of h_r. This observation is similar to that of Makinde [48].

Figs. 4 and 5 illustrate effects of temperature ratio parameter (h_w) on velocity and temperature curves. The thermal state of the fluid is defined by the temperature ratio parameter. The more the temperature ratio parameter means the higher the thermal state of the fluid which increases the temperature as well as velocity profiles of the fluid.

The effects of thermophoretic parameter τ on velocity, temperature and concentration distributions are shown in Figs. 6–8. It is noticed that the temperature of the fluid (Fig. 7) increases whereas the velocity and concentration (Figs. 6 and 8) profiles decrease. Increase of thermophoretic parameter rises the thermophoretic forces which produce the thermophoretic velocity in the direction negative to that of temperature gradient. Because of hot wall surface condition the thermophoretic effect leads to less particle flux to the wall.
and the particle might be blown away from the surface. Consequently, the concentration decreases with increase in the thermophoretic parameter.

It is observed from Fig. 9 that velocity profiles decrease across the boundary layer with increase of Hartmann number (magnetic parameter) in the absence of slip $\delta = 0$ and in the presence of slip $\delta = 1$. Physically, the higher Lorentz force slows down the motion of the conducting fluid. The additional work used to drag the liquid against magnetic field is dispersed as thermal energy in thermal boundary layer. These outcomes in heating of the boundary layer and therefore the temperature increase in the boundary layer region (Fig. 10). The deceleration of stream because of magnetic force improves the species dispersion in the layer and that outcomes in the increment of concentration (Fig. 11). Further it suggests that the wall slip parameter influences substantially on the flow field parameters.

Figs. 12 and 13 present the velocity and temperature profiles for both slip and no-slip flows. It can be observed from Fig. 13 that the thermal boundary layer increases with the increase in the local surface convection parameter a due to the convective heat exchange between the hot fluid on the
lower side of the plate and the cold fluid on the upper side of the plate. Consequently, velocity profile increases (Fig. 12). The thermal boundary layer made a further reduction in the presence of slip.

The effects of Prandtl number Pr on temperature profiles are shown in Fig. 14. It can be observed that when the Prandtl number is high, the thermal boundary layer thickness is small. Physically, for the high Prandtl number flow the momentum diffusivity dominates the flow. Therefore, the region where thermal diffusion is important becomes smaller. Fig. 15 shows the temperature profiles for various values of radiation parameter. From this result we see that temperature increases with increase of radiation parameter. This result qualitatively agrees well with the fact that the rate of heat transport to the fluid increases with higher values of radiation parameter and thereby the temperature of the fluid increases.

The dimensionless velocity and temperature profiles for different values of variable thermal conductivity parameter ε are shown in Figs. 16 and 17. The increase in ε means increase of thermal conductivity near the wall and hence the temperature reduces near the wall and the velocity boundary layer also decreases (Fig. 16). It can be further observed that ε has negligible effect on temperature far away from the wall.

The variation of Schmidt number (Sc) on velocity, temperature and concentration profiles is shown in Figs. 18–20, respectively. The increase in the value of Sc results in the decrease of velocity and concentration profiles and the reverse effect is observed in case of the temperature profile. Since Schmidt number is the ratio of the viscous diffusion rate to mass diffusion rate, the increase in Sc results in an increase of the viscous diffusion rate which reduces the velocity and hence enhances the temperature in the fluid.

<table>
<thead>
<tr>
<th>R</th>
<th>a</th>
<th>δ</th>
<th>ε</th>
<th>θ_r</th>
<th>θ_∞</th>
<th>C_f</th>
<th>Nu_x</th>
<th>Sh_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>3</td>
<td>1.5</td>
<td>4.4225</td>
<td>0.0785</td>
<td>0.5762</td>
</tr>
<tr>
<td>0.4</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>3</td>
<td>1.5</td>
<td>4.4195</td>
<td>0.0994</td>
<td>0.5788</td>
</tr>
<tr>
<td>0.8</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>3</td>
<td>1.5</td>
<td>4.4100</td>
<td>0.1407</td>
<td>0.5824</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>1</td>
<td>1.5</td>
<td>4.8196</td>
<td>0.1868</td>
<td>0.5916</td>
</tr>
<tr>
<td>0.2</td>
<td>0.9</td>
<td>0.2</td>
<td>0.1</td>
<td>3</td>
<td>1.5</td>
<td>5.3953</td>
<td>0.3415</td>
<td>0.6121</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.5</td>
<td>0.1</td>
<td>3</td>
<td>1.5</td>
<td>3.3070</td>
<td>0.0823</td>
<td>0.6194</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>1.0</td>
<td>0.1</td>
<td>3</td>
<td>1.5</td>
<td>2.3122</td>
<td>0.0850</td>
<td>0.6581</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
<td>3</td>
<td>1.5</td>
<td>4.3421</td>
<td>0.0790</td>
<td>0.5743</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>1.0</td>
<td>3</td>
<td>1.5</td>
<td>4.2653</td>
<td>0.0797</td>
<td>0.5725</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>10</td>
<td>1.5</td>
<td>4.1709</td>
<td>0.0803</td>
<td>0.5823</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>100</td>
<td>1.5</td>
<td>4.0878</td>
<td>0.0809</td>
<td>0.5843</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>∞</td>
<td>1.5</td>
<td>4.0790</td>
<td>0.0810</td>
<td>0.5845</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>3</td>
<td>1.0</td>
<td>4.4144</td>
<td>0.0699</td>
<td>0.5750</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>3</td>
<td>2.0</td>
<td>4.4366</td>
<td>0.0905</td>
<td>0.5777</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>3</td>
<td>3.0</td>
<td>4.4868</td>
<td>0.1273</td>
<td>0.5819</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>τ</th>
<th>N_c</th>
<th>Sc</th>
<th>Gr</th>
<th>G_c</th>
<th>C_f</th>
<th>Nu_x</th>
<th>Sh_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.6</td>
<td>5</td>
<td>5</td>
<td>4.4225</td>
<td>0.0785</td>
<td>0.5762</td>
</tr>
<tr>
<td>0.4</td>
<td>0.1</td>
<td>0.6</td>
<td>5</td>
<td>5</td>
<td>4.4141</td>
<td>0.0784</td>
<td>0.5756</td>
</tr>
<tr>
<td>0.8</td>
<td>0.1</td>
<td>0.6</td>
<td>5</td>
<td>5</td>
<td>4.3974</td>
<td>0.0782</td>
<td>0.5747</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>0.6</td>
<td>5</td>
<td>5</td>
<td>4.4210</td>
<td>0.0785</td>
<td>0.5748</td>
</tr>
<tr>
<td>0.2</td>
<td>0.9</td>
<td>0.6</td>
<td>5</td>
<td>5</td>
<td>4.4166</td>
<td>0.0784</td>
<td>0.5707</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.9</td>
<td>5</td>
<td>5</td>
<td>4.2937</td>
<td>0.0768</td>
<td>0.6825</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>1.2</td>
<td>5</td>
<td>5</td>
<td>4.2016</td>
<td>0.0755</td>
<td>0.7697</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>10</td>
<td>5</td>
<td>5.1673</td>
<td>0.0823</td>
<td>0.6137</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>15</td>
<td>5</td>
<td>5.8024</td>
<td>0.0849</td>
<td>0.6432</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>5</td>
<td>10</td>
<td>6.0873</td>
<td>0.0853</td>
<td>0.6500</td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>5</td>
<td>15</td>
<td>7.6378</td>
<td>0.0894</td>
<td>0.7097</td>
</tr>
</tbody>
</table>

Figure 21 C_f vs. R effect of ε and δ.

Table 2: Values of C_f, Nu_x, and Sh_x for different values of R, a, δ, ε, θ_r, and θ_∞.

Table 3: Values of C_f, Nu_x, and Sh_x for different values of τ, N_c, Sc, Gr, and G_c.
3.3. Computational results for coefficient of skin friction, Nusselt number and Sherwood number

For validating the accuracy of our numerical results, we have compared our results with the previous published data from Rahman [6] in Table 1. Results for ambient Prandtl number at the surface of the plate versus different values of fluid viscosity parameter h_r and slip parameter d compared with those of Rahman [6] when $Q_s = Q_t = 0, R = 0, \epsilon = 0.5, a = 0.5, Pr = 1.0, Ha = 1.0$ and in the absence of mass transfer. It can be seen that the comparison in all cases is found to be in good agreement.

Tables 2 and 3 show the calculated values of skin friction, Nusselt number and Sherwood number for various values of fluid parameters. It can be noted that the skin friction, Nusselt number and Sherwood number increase whenever there is an increase in the value of Gr, GC, a and θ_r. From these tables it is observed that the radiation parameter R, slip parameter d, and variable viscosity parameter h_r reduces the shear stress whereas the reverse effect occurs for the rate of heat and mass transfer. It can be further noted that the skin friction, Nusselt number and Sherwood number decrease with the increase of thermophoretic parameter and concentration difference.
parameter. Further the mass transfer rate is considerably higher for higher value of Schmidt number.

A graphical representation of the variation of skin friction (C_f) with the radiation parameter R is given in Fig. 21 for various values of variable thermal conductivity parameter (ϵ) and slip parameter (δ). The presence of slip condition ($\delta = 1$) permits the fluid to slip past the sheet and the skin friction coefficient decreases and causes the increase of rate of heat and mass transfer (Figs. 23 and 25). It is further observed that the fluid with high variable thermal conductivity parameter promotes conduction and thereby reduce the shear stress and the rate of heat and mass transfer. The increase of radiation parameter increases the heat flux near the plate, which increases the heat transfer rate (Fig. 23) and also the value of the local Sherwood number. In Fig. 22 we plot skin friction versus surface convection parameter (a) for various values of variable viscosity parameter θ. This result shows that the skin friction increases with surface convection parameter (a), but decreases with θ. The temperature at the plate increases with the increase of surface convection parameter and hence it enhances the rate of heat transfer (Fig. 24) and increase in the mass transfer rate (Fig. 26).

4. Summary and conclusions

The effects of thermal radiation, thermophoresis, variable viscosity and variable thermal diffusivity on steady heat and mass transfer process in a two-dimensional MHD convective flow over a flat plate with partial slip at the surface were studied numerically. The radiative heat flux is modeled through the non-linear Rosseland diffusion approximation, which produces one new temperature ratio parameter. The present study reveals that this parameter influences velocity and temperature fields significantly. The variable thermodynamic transport coefficients provide strong coupling among energy, mass and momentum equations. The effects of various physical parameters on fluid flow, heat and mass transfer phenomena have been studied. Finally we arrived at the following major findings:

- The temperature profile and the rate of heat transfer at the wall reduce as the variable thermal conductivity parameter rises.
- The velocity and temperature distribution will rise having higher value of the temperature ratio parameter while the opposite effect is observed in the case of thermal conductivity parameter.
- The temperature profiles are higher for the case of no-slip than for the presence of slip.
- In the presence of magnetic field the velocity profile decreases with increasing induction drag. On the other hand, it enhances the temperature and concentration.
- The Prandtl number controls the thermal boundary layer. An increasing Prandtl number causes decrease in the thermal boundary layer.
- The rate of heat transfer to the fluid increases with increase in radiation parameter.
- The species concentration decreases with the increase of thermophoretic parameter and Schmidt number.
- The local skin friction, Nusselt number and Sherwood number increase with the increase in Grashof number, solutal Grashof number and the surface convection parameter.
- The wall stress decreases with the presence of slip and the Nusselt and Sherwood numbers increase.

These results have possible technological applications such as fabrication of optical fiber and nuclear reactor and are expected to be very useful for practical applications.

Acknowledgment

We thank the reviewers for their valuable comments and suggestions that have substantially improved our manuscript.

References

MHD boundary layer slip flow and heat transfer

