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Abstract

A sequence in an additively written abelian group is called zero-free if each of its nonempty subsequences has sum different from
the zero element of the group. The article determines the structure of the zero-free sequences with lengths greater than n/2 in the
additive group Zn of integers modulo n. The main result states that for each zero-free sequence (ai)

�
i=1 of length � > n/2 in Zn there is

an integer g coprime to n such that if gai denotes the least positive integer in the congruence class gai (modulo n), then ��
i=1gai < n.

The answers to a number of frequently asked zero-sum questions for cyclic groups follow as immediate consequences. Among other
applications, best possible lower bounds are established for the maximum multiplicity of a term in a zero-free sequence with length
greater than n/2, as well as for the maximum multiplicity of a generator. The approach is combinatorial and does not appeal to
previously known nontrivial facts.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Among n arbitrary integers one can choose several whose sum is divisible by n. In other words, each sequence of
length n in the cyclic group of order n has a nonempty subsequence with sum zero. This article describes all sequences
of length greater than n/2 in the same group that fail the above property.

Here and henceforth, n is a fixed integer greater than 1, and the cyclic group of order n is identified with the additive
group Zn = Z/nZ of integers modulo n. A sequence in Zn is called a zero sequence or a zero sum if the sum of its
terms is the zero element of Zn. A sequence is zero-free if it does not contain nonempty zero subsequences.

We study the general structure of the zero-free sequences in Zn whose lengths are between n/2 and n. Few nontrivial
related results are known to us, of which we mention only one.A work of Gao [6] characterizes the zero-free sequences of
length roughly greater than 2n/3. On the other hand, structural information about shorter zero-free sequences naturally
translates into knowledge about problems of significant interest. Several examples to this effect are included below.
The main result provides complete answers to a number of repeatedly explored zero-sum questions.

Our objects of study can be characterized in very simple terms. To be more specific, let us recall several standard
notions.
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If g is an integer coprime to n, multiplication by g preserves the zero sums in Zn and does not introduce new ones.
Hence a sequence � = (a1, . . . , ak) is zero-free if and only if the sequence g� = (ga1, . . . , gak) is zero-free, which
motivates the following definition.

For sequences � and � in Zn, we say that � is equivalent to � and write ��� if � can be obtained from � through
multiplication by an integer coprime to n and rearrangement of terms. Clearly � is an equivalence relation.

If � = (a1, . . . , ak) is a sequence in Zn, let ai be the unique integer in the set {1, 2, . . . , n} which belongs to the
congruence class ai modulo n, i=1, . . . , k. The number ai is called the least positive representative of ai . Consequently,
the sum L(�) = ∑k

i=1 ai will be called the sum of the least positive representatives of �.
Now the key result in the article, Theorem 8, can be stated as follows:

Each zero-free sequence of length greater than n/2 in Zn is equivalent to a sequence whose sum of the least
positive representatives is less than n.

This statement reduces certain zero-sum problems in cyclic groups to the study of easy-to-describe positive integer
sequences. Thus all proofs in Sections 5–8 are merely short elementary exercises.

The approach of the article is combinatorial and does not follow a line of thought known to us from previous work.
The exposition is self-contained in the sense that it does not rely on any nontrivial general fact. Sections 2 and 3 are
preparatory. The main result is proven in Section 4.

For a sequence � in Zn, the number Index(�) is defined as the minimum of L(g�) over all g coprime to n. Section 5
contains the answer, for all n, to the question about the minimum �(Zn) such that each minimal zero sequence of length
at least �(Zn) in Zn has index n.

Issues of considerable interest among the zero-sum problems are the maximum multiplicity of a term in a zero-free
sequence, and of a generator in particular. Sections 6 and 7 provide exhaustive answers for zero-free sequences of all
lengths � > n/2 in Zn. Best possible lower bounds are established in both cases, which improves on earlier work of
Bovey et al. [2], Gao and Geroldinger [7], Geroldinger and Hamidoune [8].

In Section 8 we introduce a function closely related to the zero-free sequences in cyclic groups. This is an analogue
of a function defined by Bialostocki and Lotspeich [1] in relation to the Erdős–Ginzburg–Ziv theorem [5]. Theorem
8 enables us to determine the values of the newly defined function in a certain range. An explicit description of the
zero-free sequences with a given length � > n/2 in Zn is included in Section 9.

2. Preliminaries

Several elementary facts about sequences in general abelian groups are considered below.We precede them by remarks
on terminology and notation. The sumset of a sequence in an abelian group G is the set of all g ∈ G representable as a
nonempty subsequence sum. The cyclic subgroup of G generated by an element g ∈ G is denoted by 〈g〉; the order of
g in G is denoted by ord(g).

Proposition 1. For a zero-free sequence (a1, . . . , ak) in an abelian group, let �i be the sumset of the subsequence
(a1, . . . , ai), i = 1, . . . , k. Then �i−1 is a proper subset of �i for each i = 2, . . . , k. Moreover, the subsequence sum
a1 + · · · + ai belongs to �i but not to �i−1. In particular, a1 + · · · + ak belongs to �k but not to any �i with i < k.

Proof. Since �i−1 ⊆ �i and a1 +· · ·+ai ∈ �i , it suffices to prove that a1 +· · ·+ai /∈ �i−1, i =2, . . . , k. Suppose that
a1 + · · · + ai ∈ �i−1 for some i = 2, . . . , k. Then a1 + · · · + ai = ∑

j∈J aj for a nonempty subset J of {1, . . . , i − 1}.
Each term on the right-hand side is present on the left-hand side, and ai is to be found only on the left. So canceling
yields a nonempty zero sum in (a1, . . . , ak), which contradicts the assumption that it is zero-free. �

Proposition 1 states that, for a zero-free sequence � = (a1, . . . , ak), the sumset of the subsequence (a1, . . . , ai−1)

strictly increases upon appending the next term ai , i = 2, . . . , k. If the increase of the sumset size is exactly 1, we say
that ai is a 1-term for �. Naturally, the property of being a 1-term is not necessarily preserved upon rearrangement of
terms.

The next statement contains observations on 1-terms. Parts (a) and (b) can be found in the article [10] of Smith and
Freeze.
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Proposition 2. Let � = (a1, . . . , ak) be a nonempty zero-free sequence with sumset � in an abelian group G. Suppose
that, for some b ∈ G, the extended sequence � ∪ {b} = (a1, . . . , ak, b) is zero-free and b is a 1-term for � ∪ {b}. Then:

(a) � is the union of a progression {b, 2b, . . . , sb}, where 1�s < ord(b) − 1, and several (possibly none) complete
proper cosets of the cyclic subgroup generated by b;

(b) the sum of � equals sb;
(c) b is the unique element of G that can be appended to � as a last term so that the resulting sequence is zero-free and

ends in a 1-term.

Proof. Parts (a) and (b) were proven in [10]. For completeness, we include a sketch of the proof. Because b is a 1-term
for � ∪ {b}, it is not hard to infer that the sumset � of � is the union of one progression P with difference b and several
(possibly none) complete cosets of the cyclic group 〈b〉 generated by b. These are proper cosets as � is zero-free. Let
�′ be the sumset of �∪{b}. Then �′\� consists of one element, which is the sum of �∪{b} by Proposition 1. Since � is
zero-free, the element b ∈ �′ is different from the sum of �∪ {b}, hence b ∈ �. In addition, b is not in a proper coset of
〈b〉, so it belongs to the progression P. Now � and � ∪ {b} are zero-free, implying that P has the form {b, 2b, . . . , sb},
where 1�s < ord(b) − 1. It follows that (s + 1)b is the single element of �′\�, and so the sum of � ∪ {b} equals
(s + 1)b. Thus the sum of � equals sb.

For part (c), let c ∈ G be such that the sequence �∪{c}= (a1, . . . , ak, c) is zero-free and c is a 1-term for �∪{c}. We
prove that c = b. Because b is a 1-term for � ∪ {b}, in view of (a) we have � = {b, 2b, . . . , sb} ∪ C1 ∪ · · · ∪ Cm, where
1�s < ord(b)−1 and C1, . . . , Cm are complete proper cosets of 〈b〉. The sumset �′′ of �∪{c} contains the progression
P = {c, c + b, . . . , c + sb} whose length s + 1 is at least 2. Since c is a 1-term for � ∪ {c}, it follows that P intersects
{b, 2b, . . . , sb} or one of C1, . . . , Cm. By (b), P contains the sum c + sb of � ∪ {c}, which is an element of �′′\� in
view of Proposition 1. Hence P ∩Ci =∅ for all i =1, . . . , m, or else c+ sb ∈ �. Thus P intersects {b, 2b, . . . , sb}, and
0 /∈ P implies c = xb for some integer x satisfying 1�x�s. Hence the progression {b, 2b, . . . , (s + x)b} is contained
in �′′. Now we see that the size of � grows exactly by 1 upon appending c only if x = 1, i.e. c = b. �

A zero-free sequence in a finite abelian group G is maximal if it is not a subsequence of a longer zero-free sequence
in G. Let � be a zero-free sequence in G whose sumset does not contain at least one nonzero element g of G. Then
�∪ {−g} is a longer zero-free sequence containing �. This remark and Proposition 1 show that a zero-free sequence in
G is maximal if and only if its sumset is G\{0}. The same remark, with Proposition 1 again, yields a quick justification
of the next statement. We omit the proof.

Proposition 3. Each zero-free sequence in a finite abelian group can be extended to a maximal zero-free sequence.

3. Behaving sequences

A positive integer sequence with sum S will be called behaving if its sumset is {1, 2, . . . , S}. The ordering of the
sequence terms is not reflected in the definition. However, assuming them in nondecreasing order enables one to state
a convenient equivalent description. Its sufficiency part is a problem from the 1960 edition of the celebrated Kürschák
contest in Hungary, the oldest mathematics competition for high-school students in the world.

Proposition 4. A sequence (s1, . . . , sk) with positive integer terms in nondecreasing order s1 � · · · �sk is behaving if
and only if

s1 = 1 and si+1 �1 + s1 + · · · + si for all i = 1, . . . , k − 1.

Proof. Denote S = s1 + · · ·+ sk and suppose that the sequence is behaving; then its sumset is �={1, 2, . . . , S}. Since
1 ∈ � and si �1 for all i, it follows that s1 = 1. For each i = 1, . . . , k − 1, let Ti = 1 + s1 + · · · + si . Clearly Ti �S,
hence Ti ∈ �. Also Ti > s1 + · · · + si , so the subsequence whose sum equals Ti contains a summand sj with index j
greater than i. Therefore Ti �sj �si+1, as desired.

Conversely, let s1 =1 and si+1 �1+s1 +· · ·+si , i=1, . . . , k−1. Denoting Sk =s1 +· · ·+sk , we prove by induction
on k that the sumset of (s1, . . . , sk) is {1, 2, . . . , Sk}. The base k = 1 is clear. For the inductive step, let �k−1 and �k

be the sumsets of (s1, . . . , sk−1) and (s1, . . . , sk−1, sk), respectively. Since �k−1 = {1, 2, . . . , Sk−1} by the induction
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hypothesis, it follows that �k = {1, 2, . . . , Sk−1} ∪ {sk, sk + 1, . . . , sk + Sk−1}. In view of the condition sk �1 + Sk−1,
we obtain �k = {1, 2, . . . , sk + Sk−1} = {1, 2, . . . , Sk}. The induction is complete. �

A simple consequence of Proposition 4 proves necessary for our main proof.

Proposition 5. Let k be a positive integer. Each sequence with positive integer terms of length at least k/2 and sum
less than k is behaving.

Proof. Denoting the sequence by (s1, . . . , s�) and assuming s1 � · · · �s�, we check the sufficient condition of Propo-
sition 4. Given that ��k/2 and ��

i=1si < k, it is easy to see that s1 = 1. Suppose that si+1 �2 + s1 + · · · + si for some
i = 1, . . . , � − 1. Then sj � i + 2 for all j = i + 1, . . . , �. Therefore

k >

�∑
i=1

si � i + (� − i)(i + 2) = 2� + i(� − i − 1)�k + i(� − i − 1)�k,

which is a contradiction. The claim follows. �

Now we introduce a key notion. Let G be an abelian group and g a nonzero element of G. A sequence � in G
will be called behaving with respect to g or g-behaving if it has the form � = (s1g, . . . , skg), where (s1, . . . , sk) is a
behaving positive integer sequence with sum S = s1 + · · · + sk less than the order of g in G.

It follows from the definition that 1�si < ord(g) for i =1, . . . , k. All terms of � are contained in the cyclic subgroup
〈g〉 generated by g. Moreover, since the sumset of (s1, . . . , sk) is {1, 2, . . . , S}, the sumset of � is the progression
{g, 2g, . . . , Sg}, entirely contained in 〈g〉. Finally, g is a term of � by Proposition 4 as one of s1, . . . , sk equals 1.

4. The main result

The proof of the main theorem involves certain rearrangements of terms in zero-free sequences. The next lemma
states a condition guaranteeing that such rearrangements are possible.

Lemma 6. Let � be a zero-free sequence of length � greater than n/2 in Zn. Suppose that, for some k ∈ {1, . . . , �−2},
the first k + 1 terms of � form a subsequence with sumset of size at least 2k + 1. Then the remaining terms of � can be
rearranged so that the sequence obtained ends in a 1-term.

Proof. Regardless of how the last � − k − 1 terms of � are permuted, at least one of them will be a 1-term for the
permuted sequence. If not, by Proposition 1 each term after the first k + 1 increases the sumset size by at least 2. Hence
the total sumset size is at least (2k + 1) + 2(� − k − 1) = 2� − 1�n which is impossible for a zero-free sequence.

Fix the initial k + 1 terms of �. Choose a rearrangement of the last � − k − 1 terms such that the first 1-term among
them occurs as late as possible. Let this term be c, and let �′ be the resulting rearrangement of �. We are done if c is
the last term of �′. If not, interchange c with any term d following it in �′ to obtain a new rearrangement �′′. The same
sequence � precedes c and d in �′ and �′′, respectively, and � contains no 1-terms after the initial k + 1 terms. On the
other hand, by the extremal choice of �′, a 1-term must occur among the last � − k − 1 terms of �′′ at the position of d
in the latest. Therefore, d is a 1-term for �′′. Thus if either of c and d is appended to �, the sequence obtained ends in a
1-term. Now Proposition 2(c) implies c = d . Hence the terms after c in �′ are all equal to c, so they are all 1-terms for
�′ by Proposition 2(a). In particular, �′ ends in a 1-term. �

Theorem 7. Each zero-free sequence of length greater than n/2 in the cyclic group Zn is behaving with respect to one
of its terms.

Proof. First we prove the theorem for maximal sequences. Let � be a maximal zero-free sequence of length � > n/2
in Zn. For each term a of � there exist a-behaving subsequences of �, for instance the one-term subsequence (a).
We assign to a one such a-behaving subsequence �a = (s1a, . . . , ska) of maximum length k. Here (s1, . . . , sk) is a
behaving positive integer sequence such that S = s1 + · · · + sk is less than the order ord(a) of a in Zn. In particular
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1�si < ord(a), i = 1, . . . , k. The sumset of (s1, . . . , sk) is {1, 2, . . . , S}, and the sumset of �a is {a, 2a, . . . , Sa}, a
progression contained in the cyclic subgroup 〈a〉 generated by a. Observe that all occurrences of a in � are terms of �a .

We show that there is a term g whose associated g-behaving subsequence �g is the entire �. To this end, choose
an arbitrary term a of � and suppose that �a 
= �. The notation for �a from the previous paragraph is assumed. Let
us rearrange � as follows. Write the terms of �a first and then any term b of � which is not in �a . The subsequence
�a∪{b}=(s1a, . . . , ska, b)obtained so far has sumsetP1∪P2 whereP1={a, 2a, . . . , Sa} andP2={b, b+a, . . . , b+Sa}.

It is not hard to check that P1 ∩P2 =∅. This is clear if b /∈ 〈a〉 as P1 and P2 are in different cosets of 〈a〉. Let b ∈ 〈a〉,
so b= sa with 1�s < ord(a). Then P2 ={sa, (s +1)a, . . . , (s +S)a} and it suffices to prove the inequalities S +1 < s

and s + S < ord(a).
First, s+S�ord(a) implies that ord(a) occurs among the consecutive integers s, s+1, . . . , s+S. Hence P2 contains

the zero element of Zn which is false. Next, suppose that s�S + 1. Then the integer sequence (s1, . . . , sk, s) has sum
s + S and sumset {1, . . . , S, . . . , s + S}, so it is behaving. We also have s + S < ord(a), as just shown. But then
�a ∪ {b} = (s1a, . . . , ska, sa) is an a-behaving subsequence of � longer than �a , contradicting the maximum choice of
�a . Therefore P1 and P2 are disjoint also in the case b ∈ 〈a〉.

Now, P1 ∩ P2 = ∅ and |P1| = S�k, |P2| = S + 1�k + 1 imply that |P1 ∪ P2|�2k + 1. It also follows that there are
terms of � out of �a ∪ {b}. Otherwise k + 1 = � and because n − 1� |P1 ∪ P2|�2k + 1 (�a ∪ {b} is zero-free, hence
its sumset has size at most n − 1), we obtain n�2� which is not the case. Therefore, by Lemma 6, the terms of � not
occurring in �a ∪ {b} can be permuted to obtain a rearrangement �′ which ends in a 1-term c.

Recall now that � is maximal, and hence so is its rearrangement �′. Let � be the sumset of the sequence obtained from
�′ by deleting its last term c. Since c is a 1-term for �′, � is missing exactly one nonzero element of Zn. By Proposition 1,
the missing element is the sum A 
= 0 of all terms of �. On the other hand, � must be missing the element −c of Zn

(−c 
= 0), or else appending c to obtain �′ would produce a zero sum. Because the missing element is unique, we
obtain A = −c, i.e. c = −A.

We reach the following conclusion. If �a 
= � for at least one term a of � then the group element −A is a term of �.
Moreover, if a is any term such that �a 
= �, the subsequence �a does not contain at least one occurrence of −A.

Apply this conclusion to an arbitrary term g of �. The statement is proven if �g = �. If not then h = −A is a term
of �. Consider its associated maximal h-behaving subsequence �h. Since �h contains all occurrences of −A = h, it
follows that �h = �. This completes the proof in the case where � is maximal.

Suppose now that � is not maximal. By Proposition 3, it can be extended to a maximal zero-free sequence � in Zn,
of length m > � > n/2. (Clearly m < n.) By the above, there is a term a of � such that � is a-behaving. This is to say,
� = (s1a, . . . , sma) for some behaving positive integer sequence (s1, . . . , sm) with sum less than ord(a). Deleting the
additionally added terms from �, we infer that � = (si1a, . . . , si�a) for some positive integer sequence (si1 , . . . , si� )

of length � and sum less than ord(a). Now, since � > n/2�ord(a)/2, one can apply Proposition 5 with k = ord(a),
which shows that (si1 , . . . , si� ) is behaving. Hence � = (si1a, . . . , si�a) is a-behaving. Also, a is a term of �: as already
explained, one of the integers si1 , . . . , si� equals 1 by Proposition 4. The proof is complete. �

By Theorem 7, each zero-free sequence of length � > n/2 in Zn has the form � = (s1a, . . . , s�a), where a is one
of its terms and (s1, . . . , s�) is a positive integer sequence with sum less than ord(a). In particular, 1�si < ord(a) for
i=1, . . . , �. It is immediate that ord(a)=n. Otherwise the subgroup 〈a〉, of order at most n/2, would contain a zero-free
sequence of length � > n/2 which is impossible. Hence there is an integer g coprime to n such that (s1, . . . , s�) is the
sequence of the least positive representatives for the equivalent sequence g�. This is our main result.

Theorem 8. Each zero-free sequence of length greater than n/2 in the cyclic group Zn is equivalent to a sequence
whose sum of the least positive representatives is less than n.

Such a conclusion does not hold in general for shorter sequences in Zn. Zero-free sequences with lengths at most
n/2 and failing Theorem 8 are not hard to find. Consider for example the following sequences in Zn:

� = 2n/2−13 for even n�6 and � = 2(n−5)/232 for odd n�9.

Here and further on, multiplicities of sequence terms are indicated by using exponents; for instance 13223 denotes the
sequence (1, 1, 1, 2, 2, 3). Both � and � are zero-free, of lengths n/2 and (n − 1)/2, respectively. One can check that
for each g coprime to n the sequences g� and g� have sums of their least positive representatives greater than n.
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5. The index of a long minimal zero sequence

Chapman et al. defined the index of a sequence in [3]. For the purposes of our exposition, we adopt the definition in [6],
where the index Index(�) of a sequence � in Zn is defined as the minimum of L(g�) over all integers g coprime to
n. (Recall that L(�) denotes the sum of the least positive representatives of the sequence �.) In terms of the index,
Theorem 8 can be stated as follows.

Theorem 9. Each zero-free sequence of length greater than n/2 in Zn has index less than n.

The index of each nonempty zero sequence in Zn is a positive multiple of n. A zero sequence in Zn is minimal if each
of its nonempty proper subsequences is zero-free. The question about the minimal zero sequences with index exactly
n was studied from different points of view.

For instance, let �(Zn) be the minimum integer such that every minimal zero sequence � in Zn of length at least
�(Zn) satisfies Index(�) = n. Gao [6] proved the estimates �(n + 1)/2� + 1��(Zn)�n − �(n + 1)/3� + 1 for n�8
(�x� denotes the greatest integer not exceeding x). Based on Theorem 8, here we determine �(Zn) for all n.

The proof comes down to the observation that each minimal zero sequence of length greater than n/2 + 1 in Zn has
index n. Indeed, remove one term a from such a sequence �; this yields a zero-free sequence �′ of length greater than
n/2. By Theorem 9, Index(�′) < n. Since ga�n for any integer g, it follows that Index(�)�Index(�′) + n < 2n. So
Index(�) = n, and we obtain �(Zn)��n/2� + 2 for all n. Now consider the following sequences in Zn:

� = 2n/2−13(−1) for even n�6 and � = 2(n−5)/232(−1) for odd n�9.

These modifications of the examples at the end of the previous section show that the upper bound �(Zn)��n/2� + 2
is tight for even n�6 and odd n�9. Indeed, � and � are minimal zero sequences, of respective lengths n/2 + 1 and
(n + 1)/2. In both cases, the length equals �n/2� + 1. By the conclusion from the last paragraph of Section 4, each of
� and � has index greater than n. (In fact Index(�) = Index(�) = 2n.)

For the values of n not covered by these examples, that is n=2, 3, 4, 5, 7, it is proven in [3] that �(Zn)=1. It remains
to summarize the conclusions.

Proposition 10. The values of �(Zn) for all n > 1 are: If n /∈ {2, 3, 4, 5, 7} then �(Zn)=�n/2�+2; if n ∈ {2, 3, 4, 5, 7}
then �(Zn) = 1.

6. The maximum multiplicity of a term

An extensively used result of Bovey et al. [2] states that each zero-free sequence of length � > n/2 in Zn contains a
term of multiplicity at least 2�−n+1. The authors remark that this estimate is best possible whenever (2n−2)/3�� < n.
An improvement for the more interesting range n/2 < ��(2n − 2)/3 is due to Gao and Geroldinger [7] who showed
that 2� − n + 1 can be replaced by max(2� − n + 1, �/2 − (n − 4)/12), for ��(n + 3)/2. Here we obtain a sharp
lower bound for each length � greater than n/2.

Let M be the maximum multiplicity of a term in a zero-free sequence � with length � > n/2 in Zn. Clearly, M has
the same value for all sequences equivalent to �, and also for the respective sequences of least positive representatives.
Therefore, by Theorem 8, one may assume that � is a positive integer sequence of length � > n/2 and sum S�n − 1.
Let � contain u ones and v twos. Then

n − 1�S�u + 2(� − u) = 2� − u, n − 1�S�u + 2v + 3(� − u − v) = 3� − 2u − v.

The above inequalities yield u�2� − n + 1 and 2u + v�3� − n + 1, respectively. Since M � max(u, v), it follows
that M � max(2� − n + 1, � − �(n − 1)/3�). Now, 2� − n + 1�� − �(n − 1)/3� if and only if ��(2n − 2)/3, so two
cases arise.

For (2n − 2)/3�� < n, the lower bound M �2� − n + 1 is best possible, as remarked already in [2]. Indeed,
� = 12�−n+12n−�−1 is a well-defined positive integer sequence whenever n/2 < � < n (note that the last inequality
implies n > 2). It has length � and sum n − 1. If in addition (2n − 2)/3�� < n then 2� − n + 1 is the maximum
multiplicity of a term in �, so M = 2� − n + 1.
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If n/2 < ��(2n − 2)/3, the lower bound M �� − �(n − 1)/3� is best possible. To show that the equality can be
attained, consider the sequence

� = 1�−�(n−1)/3�2�−�(n−1)/3�32�(n−1)/3�−�.

It is well defined unless n is divisible by 3 and � = 2n/3 − 1; this case will be considered separately. The multiplicities
of 1, 2 and 3 are nonnegative integers for all other values of n and � satisfying n/2 < ��(2n − 2)/3 (which also
implies n > 3). So � is a positive integer sequence with length �, sum 3�(n− 1)/3��n− 1 and two terms of maximum
multiplicity which equals �−�(n−1)/3�. In the exceptional case mentioned above, the example �=1n/32n/3−1 shows
that M = � − �(n − 1)/3� is attainable, too.

We proved the following tight piecewise linear lower bound.

Proposition 11. Let n and � be integers satisfying n/2 < � < n. Each zero-free sequence of length � in Zn has a term
with multiplicity:

(a) at least 2� − n + 1 if (2n − 2)/3�� < n;
(b) at least � − �(n − 1)/3� if n/2 < ��(2n − 2)/3.

These estimates are best possible.

Essentially speaking, the arguments above yield an explicit description of the zero-free sequences in Zn with a given
length � > n/2. This description is included in Section 9. Here we only note that the equality M = max(u, v) holds for
each positive integer sequence � of length greater than n/2 and sum at most n−1. Indeed, fix 2�−n+1 ones in � (this
many ones are available in view of u�2�−n+ 1). The remaining part �′ has length n− 1 − � and sum �2(n− 1 − �),
so the average of its terms is at most 2. It readily follows that �′ contains at least as many ones as terms greater than 2.

7. The maximum multiplicity of a generator

Given a zero-free sequence in Zn, what can be said about the number of generators it contains? As usual, here a
generator means an element of Zn with order n. This question attracted considerable attention and effort, for sequences of
length greater than n/2. Even the existence of one generator in such a sequence (which follows directly from Theorem 7)
does not seem immediate. It was proven by Gao and Geroldinger [7]. Improving on their result, Geroldinger and
Hamidoune [8] obtained the following theorem. A zero-free sequence � of length at least (n + 1)/2 in Zn (n�3)
contains a generator with multiplicity 3 if n is even, and with multiplicity 
(n + 5)/6� if n is odd (
x� denotes the least
integer greater than or equal to x). These bounds are sharp if � ranges over the zero-free sequences in Zn of all lengths
��(n + 1)/2.

On the other hand, the above estimates do not reflect the length of �. One can be more specific by finding best
possible bounds for each length � in the range (n/2, n).

Denote by m the maximum multiplicity of a generator in a zero-free sequence � with length � > n/2 in Zn. By
Theorem 8, we may assume again that � is a positive integer sequence of length � > n/2 and sum at most n − 1; the
point of interest now is the maximum multiplicity m of a term coprime to n. Let � contain u ones and v twos, as in
Section 6. It was shown there that u�2� − n + 1, and because 1 is coprime to n, we have m�2� − n + 1.

If n is even, the sequence 12�−n+12n−�−1 shows that the bound just obtained is best possible.
If n is odd then 2 is coprime to n, so m� max(u, v). But if M is the maximum multiplicity of a term in � then m�M ,

and also M = max(u, v) by the remark after Proposition 11. Hence M = m, so the answer in the case of an odd n
coincides with the one from the previous section.

The conclusions are stated in the next proposition.

Proposition 12. Let n and � be integers satisfying n/2 < � < n, and let � be a zero-free sequence of length � in Zn.

(a) For n even, � contains a generator of multiplicity at least 2� − n + 1. This estimate is best possible.
(b) For n odd, � contains a generator of multiplicity at least 2�−n+1 if (2n−2)/3�� < n, and at least �−�(n−1)/3�

if n/2 < ��(2n − 2)/3. These estimates are best possible.
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The theorem of Geroldinger and Hamidoune [8] can be regarded as an extremal case of Proposition 12, obtained by
setting � = n/2 + 1 if n is even, and � = (n + 1)/2 if n is odd.

8. A function related to zero-free sequences

For positive integers n and k, where n�k, let h(n, k)�k be the least integer such that each sequence in Zn with at
least k distinct terms and length h(n, k) contains a nonempty zero sum. The function h(n, k) is a natural analogue of a
function introduced by Bialostocki and Lotspeich [1] in relation to the Erdős–Ginzburg–Ziv theorem [5].

It is trivial to notice that h(n, k) = k whenever k is greater than or equal to the Olson’s constant of the group Zn.
Olson’s constant Ol(G) of an abelian group G is the least positive integer t such that every subset of G with cardinality
t contains a nonempty subset whose sum is zero. Erdős [4] conjectured that Ol(G)�

√
2|G| for each abelian group G;

here |G| is the order of G. The best known upper bound for Ol(G) is due to Hamidoune and Zémor [9] who proved
that Ol(G)�
√2|G| + �(|G|)�, where �(n) = O(n1/3 log n). On the other hand, the set {1, 2, . . . , k} where k is the
greatest integer such that 1 + 2 + · · · + k < n, yields the obvious lower bound Ol(Zn)��(√8n − 7 − 1)/2� + 1.

As for values of k less than Ol(Zn), by using Theorem 8 one can determine h(n, k) for all k�(
√

4n − 3 + 1)/2.

Proposition 13. Let n�k be positive integers such that k�(
√

4n − 3 + 1)/2. Then

h(n, k) = n − 1

2
(k2 − k).

Proof. The claim is true for k = 1, so let k > 1. Denote � = n − (k2 − k)/2 and notice that 2�k�(
√

4n − 3 + 1)/2
is equivalent to n/2 < � < n. We show that each zero-free sequence � of length � in Zn contains fewer than k distinct
terms; then h(n, k)�n − (k2 − k)/2 by the definition of h(n, k).

By Theorem 8 one may regard � as a positive integer sequence of length � and sum S�n − 1. An easy computation
shows that � has at least 2�−S ones. So �= 12�−S�, where � is a sequence of length S − � and sum 2(S − �). Let there
be m distinct terms in 12�−S�; then � has m − 1 distinct terms greater than 1. Because k > 1, we may assume m > 1.
Choose one occurrence for each of the m − 1 distinct terms in � and replace these occurrences by 2, 3, . . . , m. Next,
replace each remaining term by 1. The sum of � does not increase, so 2(S − �)�(2 + 3 + · · · + m) + (S − � − m + 1).
Combined with S�n − 1, this leads to m2 − m − 2(n − � − 1)�0. Hence

m� 1

2

(√
8(n − �) − 7 + 1

)
= 1

2

(√
4(k2 − k) − 7 + 1

)
< k.

Therefore 2�k�(
√

4n − 3 + 1)/2 implies h(n, k)�n − (k2 − k)/2.
Now consider the sequence � = 1�−k+123 . . . k, where � = n − (k2 − k)/2 − 1. Whenever 2�k�(

√
4n − 3 + 1)/2

and (n, k) 
= (3, 2), there are k distinct terms in � because these conditions imply �− k + 1�1. Also � has length ��k

and is zero-free since the sum of its least positive representatives is n− 1. It follows that h(n, k)�n− (k2 − k)/2. The
same lower bound holds for n = 3, k = 2 by the definition of h(n, k). Hence h(n, k)�n − (k2 − k)/2 for all n and k
satisfying 2�k�(

√
4n − 3 + 1)/2, which completes the proof. �

The example � = 1�−k+123 . . . k yields the lower bound h(n, k)�n − (k2 − k)/2 for k�(
√

8n − 7 − 1)/2 which is
a weaker constraint than k�(

√
4n − 3 + 1)/2 if n > 7. So the following query is in order here.

Question 14. Does the equality

h(n, k) = n − 1

2
(k2 − k)

hold true whenever k�(
√

8n − 7 − 1)/2?

9. Concluding remarks

Among other consequences, Theorem 8 yields various explicit descriptions of the zero-free sequences in Zn with a
given length � > n/2. We include one such description mentioned in Section 6, skipping over the easy justification.
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Let n and � be integers satisfying n/2 < � < n. An arbitrary zero-free sequence � of length � in Zn has one of the
equivalent forms specified below:

1. If (2n − 2)/3�� < n then ��1u�, where u�2� − n + 1 and � is a sequence of length � − u in Zn, without ones
and satisfying L(�)�n − 1 − u.

2. If n/2 < ��(2n − 2)/3 there are two possibilities:
(a) ��1u�, where u��/2 and � is a sequence of length � − u in Zn, without ones and satisfying L(�)�n − 1 − u.
(b) ��1u2v�, where

u� �

2
, min(u, v)�2� − n + 1, max(u, v)�� −

⌊
n − 1

3

⌋
,

and � is a sequence of length � − u − v in Zn, without ones and twos and satisfying L(�)�n − 1 − u − 2v.
A closer look at the description shows that the structure of the zero-free sequences with lengths � satisfying

n/2 < ��(2n − 2)/3 is significantly more involved than the one for � in the range (2n − 2)/3�� < n considered
in [6].

Yet another application of the main result concerns zero-sum problems of a different flavor. Let n and k be integers
such that n/2 < k < n. By using Theorem 8, one can determine the structure of the sequences in Zn with length n−1+k

that do not contain n-term zero subsequences. Such a characterization in turn has consequences related to variants of
the Erdős–Ginzburg–Ziv theorem [5] and deserves separate treatment. Questions of this kind will be considered in a
forthcoming article.

Acknowledgments

The first author enjoyed the cordial hospitality of Olimpíada Matemática Argentina during the work on this article.
He is particularly indebted to Patricia Fauring and Flora Gutiérrez for their understanding and continuous support.

References
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