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We prove that there are exactly two connected graphs which are locally a cube: a graph on 15
vertices which is the complement of the (3% 5)-grid and a graph on 24 vertices which is the
1-skeleton of a certain 4-dimensional regular polytope called the 24-cell.

1. Introduction

Let {e,, e,, €3, €,} be the standard basis of R*. The 24-cell is a 4-dimensional
regular polytope whose vertices are the 24 vectors +e +e; (i#j) of R, two
vertices being adjacent iff the angle between the corresponding vectors is 60°. It is
well known [2] and easy to check that the 1-skeleton (i.e. the graph consisting of
the vertices and edges) of this polytope has the following property: for every
vertex v, the ne:ghbourhood of v (i.e. the subgraph induced by G on the set of
vertices adjacent to v) is isomorphic to the 1-skeleton of a 3-dimensional cube. In
other words, the 24-cell is locally a cube.

More generally [3], given a graph G’, we shall say that a graph G is locally G’
if, for evey vertex v of G, the neighbourhood G(v) of v is isomorphic to G'. If G’
is the 1-skeleton of a 3-dimensional cube and if G is locally G', we shall say that
G is locally a cube.

It is natural to ask whether the 24-cell is the only connected graph which is
locally a cube.

Theorem. If a connected graph G is locally a cube, G is isomorphic either to the
1-skeleton of the 24-cell or to the complement of the (3 X 5)-grid.

The (p X q)-grid is the graph whose vertices are the pq ordered pairs (i, j) with
i=1,...,p and j=1,...,q, two vertices being adjacent iff they have one
coordinate in common.

The adjacency relation in a graph G will be denoted by ~ and the number of
vertices of G by |G|.

2. Proof of the Theorem

Lemma 1. For any two adjacent vertices of G, there are exactly 3 vertices of G
adjacent to both of them.
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Proof. This follows immediately from the fact that the cube is a regular graph of
degree 3.

Let v be a fixed vertex of G. We shall denote by v; (i =1,. .., 8) the vertices of
G(v) and by G; the subgraph induced by G on the set of vertices adjacent to v;
and at distance 2 from v. Since the neighbourhood of v; is isomorphic to a cube,
G, is a 3-claw, that is G; has 4 vertices w,, iy, iz, i3 such that w; ~i, for every
r=1,2,3 and i,+ i for every r#s.

Lemma 2. If v;# v, then G, # G; and the subgraph G; NG, is not an edge.

Proof. If G, = G,, the vertices v, v;, iy, iy, i3 are all in the neighbourhood of w;,
which is isomorphic to a cube. This is a contradiction because v; and v; are both
adjacent to i,, i, i; and the graph of a cube cannot contain 5 such vertices.

If the claws G; and G; have exactly one edge in common, we may assume
without loss of generality that it is the edge {w;, i;}, so that w;=w, or w; =i,. In
any case, the neighbourhood G{w;) contains the vertices v;, v;, iy, i3, i3 With v; ~i,.
Since G{w,) is isomorphic to a cube, vy; must also be adjacent to one of the
vertices i, or i3, and so G; and G; have at least two edges in common,
contradicting the initial assumption.

Lemmas 3. If v;~ v, then w;# w;, w;¢ G, w;¢ G, and |G, NG;|=2.

Proof. Since v, -~ v;, there are exactly 3 vertices adjacent to v; and v; by Lemma 1.
One of them is v. There is no vertex adjacent to v; and v; in G(v). Therefore the
two missing vertices are at distance 2 from v, and so |G; NG| =2.

If w, e G;, then w, ~v;. This contradicts Lemma 1 because v; and w; are both
adjacent to iy, i,, i3, v. Therefore w;¢ G, and similarly w;¢ G,. In particular,
w £ w.

Let d(v, v;) denote the distance between v; and v; in the subgraph G(v).
Lemma 4. If d(v, v;) =2, then G;NG;# @, {w;} and {w;}.
Procf. If G, NG; is equal to @, {w;} or {w;}, then the vertices i,, i, i3, ;. j2, j3 are
pairwise distinct. Since d(v;, v;) = 2, there is a vertex v, € G(v) adjacent to v; and

v. By Lemma 3, w, ¢ G, UG; and we may assume without loss of generality that

G, NG, ={i,. i3} and G, NG, ={j,, j-}. It follows that G(v,) contains at least 9
vertices, a contradiction.

Lemma S. If d(v, v;,) =2 and w, = w;, then the subgraph G, NG, is a 2-claw (i.e.
the union of two intersecting edges).

Proof. This is a direct consequence of Lemmas 2 and 4.
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Lemma 6. If d(v,v;)=2 and w;#w,, then G,NG,;={i,} for some re{l,?2,3}
Moreover ihe & vertices of G(i,) are v, v;, v, U, Wi, W;, Wy, W, where v, and v, are
the vertices adjacent to v; and v; in thz subgraph G{v).

Proof. By Lemmas 2 and 4, we already know that |G; N G;| = 1,2 or 3. In view of
Lemma 3, we may assume that G, NG, ={i;, iz} and G; "G, ={j,, j}- ,

By hypothesis, w;# w;. Moreover, w;# iy, i, because w;é G thanks to Lemma
3. If w;=1i,, then i, #j, for every r,se{1,2,3} and so iy, i, j;, j» are 4 distinct
vertices adjacent to v,. It follows that G(v) contains at least 9 vertices, a
contradiction. Therefore w;¢ G; and similarly w;¢ G, so that G, NG; &{i, iy, i}.
Observe also that {i,, i,} £ G; N G;, because otherwise i, and i, would be adjacent
to v;, v;, w, Which is a contradiction since iy, i3, v;, v;, w; are all in G(v,) and since
the graph of a cube cannot contain 5 such vertices.

() If |G;NG;| =3, then G, NG, 2{i,, i;}, which is impossible as we have just
seen before.

(i) If |G, NG;|=2, it is no loss of generality, thanks to the preceding observa-
tions, to assume that G, NG, ={i;, iz} and G, ={w, iy, i, jo} with i;=j,. The
neighbourhood G(i,) coatains v;, v;, v, W;, W;, W, With w; ~v; ~ v, ~ v;# w;. Since
G(i,) is isomorphic to a cube, there must be a vertex x € G(i;) adjacent to v; and
v; but not to w;,. Moreover x € G(v) because x ~v;, x# v, x#w; and x# w;. Thus
x =v, and so v ~i,. Using the fact that G(v;) is a cube, we get vy ~i;. Now, in
G(v)), v; and v; are both adjacent to v, iy, i3, a contradiction since G(v,) is a cube.

(iii) Therefore |G, NG;|=1 and G;NG;={i,} for some re{l,2,3}. Together
with G; NG, ={i}, iz} and G; NG, ={j,, j»}, this implies r# 3 and so, without ioss
of generality, G; NG, ={i;} ={j,} and Gy ={w,, i, i, jo}. Using the same type of
arguments as in (ii), we get vy ~i;, and, because G(i;) is a cube, v;# w,. Thus
w;# w, and the vertices w;,, w;, w,, w; are pairwise distinct.

Lemma 7. If d(v, v;)) =3, then w,# w;.

Proof. Assume that w; = w; and let v, ~v,, ~ v, ~ v; be a path of length 3 joining
v; to v; in G(v).

If |GiNG;|=1, then G,NG;={w;]} and i #j; for every r,s€{l,2,3}. By
Lemma 3, we may assume that G; NG,, = {i,, i;}. Moreover, since w,,#w; =w;
we may assume, by Lemma 6, that G; = G,,, ={j3}. Therefore G,, ={Wu, i1, iz, j3},
which implies j;#i; and j;# i, a contradiction in the cube G(w;).

If |G, NG;| =2, then G, NG, is an edge, contradicting Lemma 2.

If |G; N G;| = 3, then the subgraph G; N G; is a 2-claw and we may assume that
G; ={w, iy, i, ja} with i; =j; and i, = j,. By Lemma 3, |G; N G,,| =2 with w;¢ G,,,,
and so G,, contains at least one of the two vertices ij, i,. Since w,#w;, =w,
Lemma 6 implies that G; N G,, ={j;} for some s€{1, 2, 3}, and so G,, contains at
most cne of the two vertices i, i,. Therefore, without any loss of generality,
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G; NG,, ={i,}. Now, by Lemma 6 again, G(i) has exactly 4 vertices in common
with the cube G(v), namely v;, v,, and the two vertices of G(v) adjacent to v; and
v, On the other hand, v; € G(i;) N G(v). This is a contradiction since vu; is not
adjacent to v;.

If |G, NG;| =4, then G, = G;, contradicting Lemma 2.

Propesition 1. If a graph G is locally a cube and if, for some vertex v of G, there
are two vertices v;, v; € G(v) such that d(v, v;) =2 and w; # w;, then G is isomorphic
to the 1-skeleton of the 24-cell.

Proof. It is easy to check that the 1-skeleton of the 24-cell satisfies the above
hypothesis. Therefore, it suffices to prove that a graph G satisfying this hypothesis
is uniquely determined up to isomorphism.

We shall denote the adjacencies in the cube G(v) by

Uy~ Uy~ 03~ U4~ 0y, Vs~ Vg~ U7~ Vg~ Vs
and
v,~v,s foreveryi=1,2,34.

Suppose that w, # w;. Then, by Lemma 6, G, N G;={1,} without any loss of
generality and v,, v,, U3, U4, Wy, W,, W;, w, ate the 8 vertices of the cube G(i,),
with

W~ Wy~ Wi~ Wy~ Wy, WiFws, watwy

Since vs~v, and vs# 1,, it follows from Lemma 3 that G,NGs={1,, 1;}.
Moreover, by Lemma 3 again, G, NG, ={1,, 1,} without any loss of generality,
and so G; NG, ={1,, 1;} thanks to Lemma 6. The neighbourhood G(i,) contains
the vertices v,, v;, vs, w;, w,, ws with ’

Ws™~Us™~ U1~ U~ W™~ W)~ Uy

and ws#w; by Lemma 3. Since G(i») is a cube, we have w, # ws and so, by

Lemma 6, G,NGs={1,} and vy, v,, vs, Vs, W1, W2, Ws, W, are the 8 vertices of
the cube G(1,), with

W™ W™~ We™ Ws ™~ Wy, Wi F We W2t Ws

By sunilar arguments, w, # ws, G4,N G5 = {15} and v,, vy, Vs, Vg, W1, Wy, Ws, Wg
are the 8 vertices of the cube G(1;), with

Wi Wam™ Wy~ Ws ™~ Wy, Wy F wg, Wi ws

The neighbourhood G(w,) contains the vertices v,, 1,, 1. 13, wo, wy, ws. Since
G(w,) is a cube, the missing vertex w € G(w,) must be adjacent to w,, w,, ws and
non adjacent to 1;, 1,, 1;, so that w# w;, w,, w3, w,, ws, w,, wg. Note that
w, + wg (because w, is already adjacent to 8 vertices distinct from wg) and also
W, Lwe, weF ws.
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Using similar arguments, it is now easy (but a little bit tedious) to show that the
subgraph induced by G on the set of vertices w; (i=1, ..., 8) is isomorphic to a
cube which is precisely the ncighbourhood G(w). Moreover, given any 4 vertices

¥, Uj, Oy, U, in a face of the cube G(v), there is exactly one vertex f, of G which is
adjacent to v;, vj; Uy, ¥, and to the vertices w;, w;, wy,, w; of the. oorrespondmg face
of the cube G(w); for examplc, we have seen that 1,, 1,, 1, are three of the
vertices fy, f2, f3, f4> fs» fo. This shows that the graph G has 1+8+6+8+1=24
vertices and, being uniquely determined up to isomorphism by the preceding
construction, it is isomorphic to the 1-skeleton of the 24-cell.

Proposition 2. If a graph G is locally a cube and if, for some vertex v of G, w; = w;
whenever v;, v; € G(v) with d(v,, v;) =2, then G is isomorphic to the complement of
the (3x5)-grid.

Proof. It is easy to check that the complement of the (3 x5)-grid satisfies the
above hypothesis. Therefore, it suffices to show that a graph G satisfying this
hypothesis is uniquely determined up to isomorphism.

We use the same notations as in the proof of Proposition 1 to denote the
adjacencies in G(v).

The hypothesis implies that w, is adjacent to v,, v3;, Vs, Ug and that w; is
adjacent to v,, ¥4, Us, V7, With w; # w, by Lemma 3. Using Lemma 5, we may
assume without loss of generality that G,={w;, 1,15, 15} and G;=
{w,, 1,, 13, 3,}. Since G(w,) is a cube, it follows that 3, is adjacent t0 v and vg
and, without loss of generality, G¢={w,, 1;, 15, 3;} and Gg={w,, 1, 15, 3;}. By
Lemmas 3 and 5, the subgraphs G,, G,, Gs, G, are then completely determined.

This construction shows that the graph G has 15 vertices and is uniquely
determined up to isomorphism.

The proof of the Theorem follows immediately from Propositions 1 and 2.

3. Final comments

A. Brouwer [1] proved independently that there are exactly two connected
graphs which are locally a cube. After some exchange of information, he could
prove a more general result characterizing the graphs which are locaily the
complement of a (pxq)-grid with p=q=2 (q>2 or p>3). We shall say that
these graphs are locally p X q.

Theorem (Brouwer [1]). If G is a connected graph which is locally pxq with
p=q=2(q>2 or p>3), then G is the comiplement of a ((p+ 1) x{(q+1))-grid or

(i) p=4, ¢ =2 and G is the 1-skeleton of the 24-cell

(ii) p=q=3 and G is the Johnson scheme () on 20 vertices (that is the graph
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whose vertices are the 3-subsets of a 6-set, two vertices being adjacent iff the
corresponding 3-subsets intersect in a 2-subset).

The remaining cases (p, q) =(3,2), (2,2) or (p,1) with p>1 allow infinitely
many nonisomorphic solutions. Kj is obviously the unique locally 1x1 graph.-
References

[1] A. Brouwer, Parsonal communication.
[2] H.S.M. Coxeter, Regular polytopes (Dover Publications, New York, 1973).
[3] 1.1. Hall, Locally Petersen graphs, J. Graph Theory 4 (1986) 173-187.



