GRAPHS WHICH ARE LOCALLY A CUBE

Dominique BUSET
Université Libre de Bruxelles, Département de Mathématique, C.P. 216, Boulevard du Triomphe, B-1050 Bruxelles, Belgique

Received 29 October 1982

Abstract

We prove that there are exactly two connected graphs which are locally a cube: a graph on 15 vertices which is the complement of the (3×5)-grid and a graph on 24 vertices which is the 1 -skeleton of a certain 4 -dinensional regular polytope called the 24 -cell.

1. Introduction

Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be the standard basis of \mathbb{R}^{4}. The 24-cell is a 4-dimensional regular polytope whose vertices are the 24 vectors $\pm e_{i} \pm e_{i}(i \neq j)$ of \mathbb{R}^{4}, two vertices being adjacent iff the angle between the corresponding vectors is 60°. It is well known [2] and easy to check that the 1 -skeleton (i.e. the graph consisting of the vertices and edges) of this polytope has the following property: for every vertex v, the ncighbourhood of v (i.e. the subgraph induced by G on the set of vertices adjacent to v) is isomorphic to the 1 -skeleton of a 3 -dimensional cube. In other words, the 24 -cell is locally a cube.

More generally [3], given a graph G^{\prime}, we shall say that a graph G is locally \boldsymbol{G}^{\prime} if, for evey vertex v of G, the neighbourhood $G(v)$ of v is isomorphic to G^{\prime}. If G^{\prime} is the 1 -skeleton of a 3 -dimensional cube and if G is locally G^{\prime}, we shall say that G is locally a cube.

It is natural to ask whether the 24 -cell is the only connected graph which is locally a cube.

Theorem. If a connected graph G is locally a cube, G is isomorphic either to the 1 -skeleton of the 24 -cell or to the complement of the (3×5)-grid.

The ($p \times q$)-grid is the graph whose vertices are the $p q$ ordered pairs (i, j) with $i=1, \ldots, p$ and $j=1, \ldots, q$, two vertices being adjacent iff they have one coordinate in common.

The adjacency relation in a graph G will be denoted by \sim and the number of vertices of \boldsymbol{G} by $|\boldsymbol{G}|$.

2. Proof of the Theorem

Lemma 1. For any two adjacent vertices of G, there are exactly 3 vertices of G adjacent to both of them.

Proof. This follows immediately from the fact that the cube is a regular graph of degree 3.

Let v be a fixed vertex of G. Wé shall denote by $v_{i}(i=1, \ldots, 8)$ the vertices of $G(v)$ and by G_{i} the subgraph induced by G on the set of vertices adjacent to v_{i} and at distance 2 from v. Since the neighbourhood of v_{i} is isomorphic to a cube, G_{i} is a 3-claw, that is G_{i} has 4 vertices $w_{i}, i_{1}, i_{2}, i_{3}$ such that $w_{i} \sim i_{r}$ for every $r=1,2,3$ and $i_{r} \not \subset i_{s}$ for every $r \neq s$.

Lemma 2. If $v_{i} \neq v_{i}$, then $G_{i} \neq G_{i}$ and the subgrapn $G_{i} \cap G_{i}$ is not an edge.
Proof. If $G_{i}=G_{i}$, the vertices $v_{i}, v_{i}, i_{1}, i_{2}, i_{3}$ are all in the neighbourhood of w_{i}, which is isomorphic to a cube. This is a contradiction because v_{i} and v_{j} are both adjacent to i_{1}, i_{2}, i_{3} and the graph of a cube cannot contain 5 such vertices.

If the claws G_{i} and G_{i} have exactly one edge in common, we may assume without loss of generality that it is the edge $\left\{w_{i}, i_{1}\right\}$, so that $w_{i}=w_{i}$ or $w_{i}=i_{1}$. In any case, the neighbourhood $G\left(w_{i}\right)$ contains the vertices $v_{i}, v_{i}, i_{1}, i_{2}, i_{3}$ with $v_{i} \sim i_{1}$. Since $G\left(w_{i}\right)$ is isomorphic to a cube, v_{j} must also be adjacent to one of the vertices i_{2} or i_{3}, and so G_{i} and G_{i} have at least two edges in common, contradicting the initial assumption.

Lemma 3. If $v_{i} \sim v_{i}$, then $w_{i} \neq w_{i}, w_{i} \notin G_{i}, w_{i} \notin G_{i}$ and $\left|G_{i} \cap G_{i}\right|=2$.
Proof. Since $v_{i} \sim v_{i}$, there are exactly 3 vertices adjacent to v_{i} and v_{i} by Lemma 1 . One of them is v. There is no vertex adjacent to v_{i} and v_{j} in $G(v)$. Therefore the two missing vertices are at distance 2 from v, and so $\left|G_{i} \cap G_{i}\right|=2$.

If $w_{i} \in G_{i}$, then $w_{i} \sim v_{i}$. This contradicts Lemma 1 because v_{i} and w_{i} are both adjacent to $i_{1}, i_{2}, i_{3}, v_{i}$. Therefore $w_{i} \notin G_{i}$ and similarly $w_{i} \notin G_{i}$. In particular, $w_{1} \neq \boldsymbol{w}_{1}$.

Let $d\left(v_{i}, v_{i}\right)$ denote the distance between v_{i} and v_{i} in the subgraph $G(v)$.
Lemma 4. If $d\left(v_{i}, v_{i}\right)=2$, then $G_{i} \cap G_{i} \neq \emptyset,\left\{w_{i}\right\}$ and $\left\{w_{i}\right\}$.
Pro . If $G_{i} \cap G_{i}$ is equal to $\emptyset,\left\{w_{i}\right\}$ or $\left\{w_{i}\right\}$, then the vertices $i_{1}, i_{2}, i_{3}, j_{1}, j_{2}, j_{3}$ are pairwise distinct. Since $d\left(v_{i}, v_{i}\right)=2$, there is a vertex $v_{k} \in G(v)$ adjacent to v_{i} and v_{i}. By Lemma 3, $w_{k} \notin G_{i} \cup G_{i}$ and we may assume without loss of generality that $G_{1} \cap G_{k}=\left\{i_{1}, i_{2}\right\}$ and $G_{i} \cap G_{k}=\left\{j_{1}, j_{2}\right\}$. It follows that $G\left(v_{k}\right)$ contains at least 9 vertices, a contradiction.

Lemma 5. If $d\left(v_{i}, v_{i}\right)=2$ and $w_{i}=w_{i}$, then the subgraph $G_{i} \cap G_{1}$ is a 2-claw (i.e. the union of two intersecting edges).

Proof. This is a direct consequence of Lemmas 2 and 4.

Lemma 6. If $d\left(v_{i}, v_{j}\right)=2$ and $w_{i} \neq w_{j}$, then $G_{i} \cap G_{i}=\left\{i_{i}\right\}$ for some $r \in\{1,2,3\}$. Moreover the 8 vertices of $G\left(i_{r}\right)$ are $v_{i}, v_{i}, v_{k}, v_{l}, w_{i}, w_{j}, w_{k}, w_{l}$ where v_{k} and v_{l} are the vertices adjacent to v_{i} and v_{i} in the subgraph $G(v)$.

Proof. By Lemmas 2 and 4, we already know that $\left|G_{i} \cap G_{j}\right|=1,2$ or 3. In view of Lemma 3, we may assume that $G_{i} \cap G_{k}=\left\{i_{1}, i_{2}\right\}$ and $G_{j} \cap G_{k}=\left\{j_{1}, j_{2}\right\}$.

By hypothesis, $w_{i} \neq w_{j}$. Moreover, $w_{j} \neq i_{1}, i_{2}$ because $w_{i} \notin G_{k}$ thanks to Lemma 3. If $w_{i}=i_{3}$, then $i_{r} \neq j_{s}$ for every $r, s \in\{1,2,3\}$ and so $i_{1}, i_{2}, j_{1}, j_{2}$ are 4 distinct vertices adjacent to v_{k}. It follows that $G\left(v_{k}\right)$ contains at least 9 vertices, a contradiction. Therefore $w_{i} \notin G_{i}$ and similarly $w_{i} \notin G_{j}$, so that $G_{i} \cap G_{i} \subseteq\left\{i_{1}, i_{2}, i_{3}\right\}$. Observe also that $\left\{i_{1}, i_{2}\right\} \not \equiv G_{i} \cap G_{j}$, because otherwise i_{1} and i_{2} would be adjacent to v_{i}, v_{j}, w_{k} which is a contradiction since $i_{1}, i_{2}, v_{i}, v_{i}, w_{k}$ are all in $G\left(v_{k}\right)$ and since the graph of a cube cannot contain 5 such vertices.
(i) If $\left|G_{i} \cap G_{j}\right|=3$, then $G_{i} \cap G_{j} \supseteq\left\{i_{1}, i_{2}\right\}$, which is impossible as we have just seen before.
(ii) If $\left|G_{i} \cap G_{i}\right|=2$, it is no loss of generality, thanks to the preceding observations, to assume that $G_{i} \cap G_{i}=\left\{i_{1}, i_{3}\right\}$ and $G_{k}=\left\{w_{k}, i_{1}, i_{2}, j_{2}\right\}$ with $i_{1}=j_{1}$. The neighbourhood $G\left(i_{1}\right)$ contains $v_{i}, v_{i}, v_{k}, w_{i}, w_{i}, w_{k}$ with $w_{i} \sim v_{i} \sim v_{k} \sim v_{j} \not \subset w_{i}$. Since $G\left(i_{1}\right)$ is isomorphic to a cube, there must be a vertex $x \in G\left(i_{1}\right)$ adjacent to v_{i} and v_{i} but not to w_{i}. Moreover $x \in G(v)$ because $x \sim v_{i}, x \neq v, x \neq w_{i}$ and $x \nsucc w_{i}$. Thus $x=v_{1}$ and so $v_{1} \sim i_{1}$. Using the fact that $G\left(v_{i}\right)$ is a cube, we get $v_{1} \sim i_{3}$. Now, in $G\left(v_{1}\right), v_{i}$ and v_{j} are both adjacent to v, i_{1}, i_{3}, a contradiction since $G\left(v_{1}\right)$ is a cuive.
(iii) Therefore $\left|G_{i} \cap G_{i}\right|=1$ and $G_{i} \cap G_{i}=\left\{i_{r}\right\}$ for some $r \in\{1,2,3\}$. Together with $G_{i} \cap G_{k}=\left\{i_{1}, i_{2}\right\}$ and $G_{j} \cap G_{k}=\left\{j_{1}, j_{2}\right\}$, this implies $r \neq 3$ and so, without ioss of generality, $G_{i} \cap G_{i}=\left\{i_{1}\right\}=\left\{j_{1}\right\}$ and $G_{k}=\left\{w_{k}, i_{1}, i_{2}, j_{2}\right\}$. Using the same type of arguments as in (ii), we get $v_{l} \sim i_{1}$, and, because $G\left(i_{1}\right)$ is a cube, $v_{l} \not \not w_{k}$. Thus $w_{l} \neq w_{k}$ and the vertices $w_{i}, w_{i}, w_{k}, w_{l}$ are pairwise distinct.

Lemma 7. If $d\left(v_{i}, v_{j}\right)=3$, then $w_{i} \neq w_{j}$.

Proof. Assume that $w_{i}=w_{i}$ and let $v_{i} \sim v_{m} \sim v_{n} \sim v_{j}$ be a path of length 3 joining v_{i} to v_{i} in $G(v)$.

If $\left|G_{i} \cap G_{j}\right|=1$, then $G_{i} \cap G_{i}=\left\{w_{i}\right\}$ and $i_{r} \neq j_{s}$ for every $r, s \in\{1,2,3\}$. By Lemma 3, we may assume that $G_{i} \cap G_{m}=\left\{i_{1}, i_{2}\right\}$. Moreover, since $w_{m} \neq w_{i}=w_{i}$, we may assume, by Lemma 6 , that $G_{j}=G_{m}=\left\{j_{3}\right\}$. Therefore $G_{m}=\left\{w_{m}, i_{1}, i_{2}, j_{3}\right\}$, which implies $j_{3} \nsucc i_{1}$ and $j_{3} \nsucc i_{2}$, a contradiction in the cube $G\left(w_{i}\right)$.

If $\left|G_{i} \cap G_{i}\right|=2$, then $G_{i} \cap G_{i}$ is an edge, contradicting Lemma 2.
If $\left|G_{i} \cap G_{j}\right|=3$, then the subgraph $G_{i} \cap G_{j}$ is a 2 -claw and we may assume that $G_{i}=\left\{w_{i}, i_{1}, i_{2}, j_{3}\right\}$ with $i_{1}=j_{1}$ and $i_{2}=j_{2}$. By Lemma $3,\left|G_{i} \cap G_{m}\right|=2$ with $w_{i} \notin G_{m}$, and so G_{m} contains at least one of the two vertices i_{1}, i_{2}. Since $w_{m} \neq w_{i}=w_{j}$, Lemma 6 implies that $G_{i} \cap G_{m}=\left\{j_{s}\right\}$ for some $s \in\{1,2,3\}$, and so G_{m} contains at most ane of the two vertices i_{1}, i_{2}. Therefore, without any loss of generality,
$G_{i} \cap G_{m}=\left\{i_{2}\right\}$. Now, by Lemma 6 again, $G\left(i_{2}\right)$ has exactly 4 vertices in common with the cube $G(v)$, namely v_{i}, v_{m} and the two vertices of $G(v)$ adjacent to v_{j} and v_{m}. On the other hand, $v_{i} \in G\left(i_{2}\right) \cap G(v)$. This is a contradiction since v_{i} is not adjacent to v_{j}.

If $\left|G_{i} \cap G_{j}\right|=4$, then $G_{i}=G_{j}$, contradicting Lemma 2 .
Proposition 1. If a graph G is locally a cube and if, for some vertex v of G, there are two vertices $v_{i}, v_{i} \in G(v)$ such that $d\left(v_{i}, v_{i}\right)=2$ and $w_{i} \neq w_{i}$, then G is isomorphic to the 1 -skeleton of the 24-cell.

Proof. It is easy to check that the 1 -skeleton of the 24 -cell satisfies the above hypothesis. Therefore, it suffices to prove that a graph G satisfying this hypothesis is uniquely determined up to isomorphism.

We shall denote the adjacencies in the cube $G(v)$ by

$$
v_{1} \sim v_{2} \sim v_{3} \sim v_{4} \sim v_{1}, \quad v_{5} \sim v_{6} \sim v_{7} \sim v_{8} \sim v_{5}
$$

and

$$
v_{i} \sim v_{i+4} \quad \text { for every } i=1,2,3,4
$$

Suppose that $w_{1} \neq w_{3}$. Then, by Lemma $6, G_{1} \cap G_{3}=\left\{1_{1}\right\}$ without any loss of generality and $v_{1}, v_{2}, v_{3}, v_{4}, w_{1}, w_{2}, w_{3}, w_{4}$ are the 8 vertices of the cube $G\left(i_{1}\right)$, with

$$
w_{1} \sim w_{2} \sim w_{3} \sim w_{4} \sim w_{1}, \quad w_{1} \not f w_{3}, \quad w_{2} \not f w_{4}
$$

Since $v_{5} \sim v_{1}$ and $v_{5} \not \subset 1_{1}$, it follows from Lemma 3 that $G_{1} \cap G_{5}=\left\{1_{2}, 1_{3}\right\}$. Moreover, by Lemma 3 again, $G_{1} \cap G_{2}=\left\{1_{1}, 1_{2}\right\}$ without any loss of generality, and so $G_{1} \cap G_{4}=\left\{1_{1}, 1_{3}\right\}$ thanks to Lemma 6 . The neighbourhood $G\left(i_{1}\right)$ contains the vertices $v_{1}, v_{2}, v_{s}, w_{1}, w_{2}, w_{s}$ with

$$
w_{5} \sim v_{5} \sim v_{1} \sim v_{2} \sim w_{2} \sim w_{1} \sim v_{1}
$$

and $w_{5} \neq w_{1}$ by Lemma 3. Since $G\left(i_{2}\right)$ is a cube, we have $w_{2} \neq w_{5}$ and so, by Lemma 6, $G_{2} \cap G_{5}=\left\{1_{2}\right\}$ and $v_{1}, v_{2}, v_{5}, v_{6}, w_{1}, w_{2}, w_{5}, w_{6}$ are the 8 vertices of the cube $G\left(1_{2}\right)$, with

$$
w_{1} \sim w_{2} \sim w_{6} \sim w_{5} \sim w_{1}, \quad w_{1} \nsucc w_{6}, \quad w_{2} \nsim w_{5}
$$

By sunilar arguments, $w_{4} \neq w_{5}, G_{4} \cap G_{5}=\left\{1_{3}\right.$ and $v_{1}, v_{4}, v_{5}, v_{8}, w_{1}, w_{4}, w_{5}, w_{8}$ are the 8 vertices of the cube $G\left(1_{3}\right)$, with

$$
w_{1} \sim w_{4} \sim w_{8} \sim w_{5} \sim w_{1}, \quad w_{1} \not f w_{8}, \quad w_{4} \not f w_{5}
$$

The neighbourhood $G\left(w_{1}\right)$ contains the vertices $v_{1}, 1_{1}, 1_{2}, 1_{3}, w_{2}, w_{4}, w_{5}$. Since $G\left(w_{1}\right)$ is a cube, the missing vertex $w \in G\left(w_{1}\right)$ must be adjacent to w_{2}, w_{4}, w_{5} and non adjacent to $1_{1}, 1_{2}, 1_{3}$, so that $w \neq w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}, w_{8}$. Note that $w_{2} \not \not w_{8}$ (because w_{2} is already adjacent to 8 vertices distinct from w_{8}) and also $w_{4}<w_{6}, w_{5} \not \psi_{3}$.

Using similar arguments, it is now easy (but a little bit tedious) to show that the subgraph induced by G on the set of vertices $w_{i}(i=1, \ldots, 8)$ is isomorphic to a cube which is precisely the neighbourhood $G(w)$. Moreover, given any 4 vertices $v_{i}, v_{i}, v_{k}, v_{l}$ in a face of the cube $G(v)$, there is exactly one vertex f_{i} of G which is adjacent to $v_{i}, v_{i}, v_{k}, v_{i}$ and to the vertices $w_{i}, w_{i}, w_{k}, w_{i}$ of the corresponding face of the cube $G(w)$; for example, we have seen that $1_{1}, 1_{2}, 1_{3}$ are three of the vertices $f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}$. This shows that the graph G has $1+8+6+8+1=24$ vertices and, being uniquely determined up to isomorphism by the preceding construction, it is isomorphic to the 1 -skeleton of the 24 -cell.

Proposition 2. If a graph G is locally a cube and if, for some vertex v of $G, w_{i}=w_{i}$ whenever $v_{i}, v_{j} \in G(v)$ with $d\left(v_{i}, v_{j}\right)=2$, then G is isomorphic to the complement of the (3×5)-grid.

Proof. It is easy to check that the complement of the (3×5)-grid satisfies the above hypothesis. Therefore, it suffices to show that a graph G satisfying this hypothesis is uniquely determined up to isomorphism.

We use the same notations as in the proof of Proposition 1 to denote the adjacencies in $\boldsymbol{G}(v)$.

The hypothesis implies that w_{1} is adjacent to $v_{1}, v_{3}, v_{6}, v_{8}$ and that w_{2} is adjacent to $v_{2}, v_{4}, v_{5}, v_{7}$, with $w_{1} \neq w_{2}$ by Lemma 3. Using Lemma 5 , we may assume without loss of generality that $G_{1}=\left\{w_{1}, 1_{1}, 1_{2}, 1_{3}\right\}$ and $G_{3}=$ $\left\{w_{1}, 1_{2}, 1_{3}, 3_{1}\right\}$. Since $G\left(w_{1}\right)$ is a cube, it follows that 3_{1} is adjacent to v_{6} and v_{8} and, without loss of generality, $G_{6}=\left\{w_{1}, 1_{1}, 1_{3}, 3_{1}\right\}$ and $G_{8}=\left\{w_{1}, 1_{1}, 1_{2}, 3_{1}\right\}$. By Lemmas 3 and 5 , the subgraphs $G_{2}, G_{4}, G_{5}, G_{7}$ are then completely determined.

This construction shows that the graph G has 15 vertices and is uniquely determined up to isomorphism.

The proof of the Theorem follows immediately from Propositions 1 and 2.

3. Final comments

A. Brouwer [1] proved independently that there are exactly two connected graphs which are locally a cube. After some exchange of information, he could prove a more general result characterizing the graphs which are locally the complement of a $(p \times q)$-grid with $p \geqslant q \geqslant 2(q>2$ or $p>3)$. We shall say that these graphs are locally $\boldsymbol{p} \times \boldsymbol{q}$.

Theorem (Brouwer [1]). If G is a connected graph which is locally $\overline{p \times q}$ with $p \geqslant q \geqslant 2(q>2$ or $p>3)$, then G is the complement of $a((p+1) \times(q+1))$-grid or
(i) $p=4, q=2$ and G is the 1 -skeleton of the 24-cell
(ii) $p=q=3$ and G is the Johnson scheme $\binom{6}{3}$ on 20 vertices (that is the graph
whose vertices are the 3 -subsets of a 6-set, two vertices being adjacent iff the corresponding 3-subsets intersect in a 2-subset).

The remaining cases $(p, q)=(3,2),(2,2)$ or $(p, 1)$ with $p>1$ allow infinitely many nonisomorphic solutions. K_{2} is obviously the unique locally $\overline{1 \times 1}$ graph.

References

[1] A. Brouwer, Parsonal communication.
[2] H.S.M. Coxeter, Regular polytopes (Dover Publications, New York, 1973).
[3] J.I. Hall, Locally Petersen graphs, J. Graph Theory 4 (1980) 173-18:.

