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ABSTRACT 

A me t hod  to calculate the asymptot ical  eigenvalue density (asymptot ical  densi ty o f  zeros) p (x) 
o f  Jacobi matrices (or thogonal  polynomials)  in terms o f  its moments  is presented.  This me thod  
does not  require the convergence o f  con t inued  fractions and inversion o f  funct ional  transforma- 
t ions as previous ones do. It is shown to be applicable to a wide family o f  Jacobi matrices (orthog- 
onal polynomials) .  As a byp roduc t  the densi ty  p(x) is explicitly found  for certain classical orthog- 
onal polynomials .  

1. INTRODUCTION 

Let hii = a i and hi, i+1 = hi+ 1, i=bi be the matrix 
elements of a Jacobi matrix H, i.e. a real and sym- 
metric tridiagonal matrix of dimension N. The prob- 
lem of determining the asymptotical eigenvalue den- 
sity (AED in short notation 7 p(x 7 of a Jacobi matrix 
in terms of its components has been often present in 
different branches of physics and mathematics. To our 
knowledge only Dyson [1] for Jacobi matrices with 
a i = 0 and Dean [2] succeed to give a method for calcu- 
lating p(x). This method which requires the conver- 
gence of a certain continued fraction and the inver- 
sion of a functional transformation presents however 
many problems for practical purposes. Moreover it 
can only be applied for those Jacobi matrices which 
fulFd certain restrictive conditions, e.g. if the a i are 
positive, they must satisfy the following inequality : 

4 b ~ a k a k + l ;  k = i , i + l , i + 2  .... ; i = 1 , 2  . . . .  (1) 

Here the author proposes an alternative method of 
calculating the AED p(x) of any Jacobi matrix and 
applies it to a practical case which cannot be solved 
by Dean's method. This case corresponds to the Jacobi 
matrices defined as follows : 

I m =/3m® a ~ 0: ® ;~ 0;/3 real number 

m = m'~ m= 1,2 ,3  . . . . .  N (27 

One can observe that condition (1) is not fulfilled for 
each set of values (a,/3, (97. These matrices appear for 
different values (~,/3, ®) in certain physical contexts, 
see for instance [3] and references therein. On the 
other hand it is known that the characteristic poly- 
nomial Pr(x) of the r-squared principal submatrices of 
a Jacobi matrix H forms a family of orthogonal poly- 
nomials {Pr(X); r= 1, 2, 3 . . . .  } which satisfy the follow- 

ing three-term recurrence relation : 
2 

Pm + 1 (x) = (x - a m + 1) Pm (x) - bm Pm-1 (x) 

Po(x) = 1; Pl(X) = x -  a 1 

m-- 1, 2, 3 . . . .  (3) 

Moreover the eigenvalues of a N-dimensional Jacobi 
matrix are the roots of the polynomial PN(X). Then it 
is naturally observed that the asymptotical (N--, *'7 
eigenvalue density of the matrix H def'med by (2) is 
equal to the asymptoticat root density of the corre- 
sponding family {Pr(x)). To each set (a, fl, ®) there 
exists a family of orthogonal polynomials. In partic- 
ular we could obtain certain classical orthogonal poly- 
nomials (Chebyshev, Hermite . . . .  ) [5]. Therefore by 
calculating the AED of the Jacobi matrices defined by 
(27 one gets as a particular case the asymptotical den- 
sity of zeros of certain classical orthogonal polynomials. 

2. METHOD 

We shall characterize the asymptotical eigenvalue den- 
sity distribution p(x) of a finite Jacobi matrix H by the 
knowledge of all its moments/a' r, i.e. 

d 
P'r = f xr p(x7 dx r = 0, 1, 2, 3 . . . .  

C 

(c, d) being the support interval of p(x). The quantities 
P'r are calculated by the following relation 

/£r = lim gt' (N) r = 0, 1, 2, 3 . . . .  (4) 
N--, ** r 

which sunply" expresses the fact thatm ~ments ' a r e  thel~sym p - , (  ) of 
totical limit of the corresponding o ~'r 
the eigenvalue density p(fN))(x) of the N-dimensional 
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Jacobi matrix. The quantities/a'r (N) can be expressed 

[6] in terms of the matrix elements in the following 
compact form : 

/a~N 7 1 Z F(r~ ' = N- (m) ' r l ' r 2 ' r 2  .... 

N-x  r~ 2r 1 r~ 

. . . .  rj, rj, rj+ 1) i=Zl ai b i ai+ 1 

r i rj+ 1 
• . . a i+ j_  1 b i + j - 1  ai+j (s) 

m =  t , 2 , 3  . . . . .  N 

the first summation extending over all the partitions 
(r i , r 1, r½ . . . . .  rj'. ~., r;+ 1) of  the number m, subject 

to the following condition 

s 

r i + r~ + ... + ~j + 1 + 2 (r 1 + r 2 + . . .  + rj) = m (5a) 

and such that if r s = 0, 1 < s < j, then r k and rl~ are 

zero for each k > s. In the second summation, x denotes 
the number of  non-vanishing r i which take part in the 
corresponding partition of  m. Besides, j takes the values 

or - ~ -  if m is even or odd respectively. m/2 

The coefficients F are defined as follows : 

F ( r i , r l , r ~ , r  2 . . . . .  r j ' _x , r j_ l , r j )=m ( ; i  + r l  -1) 
Jr1!  

( r l+  r~+ r2-17 ! 

( r l - 1 ) ! r 2 !  r2! 

(r 2 + r~ + r 3 - 1 )  ! 

( r 2 - 1 7 ! r ~ ! r 3 !  

(rj_2 + rj_l + rj_l-l) ! (rj _1+ rj'-l) ! 

(rj_2-17 ! rj'_l ! r j_l!  (rj_ 1 -17! rj! (5b) 

For the evaluation of these coefficients, we must take 
into account the following convention : 

F(r i, r 1, r~, r 2 . . . . .  r;_ 1, 0, 0) = F( r i ,  r l ,  r~, r 2 . . . . .  r;_l). 

The first four moments (m = 1, 2, 3, 4) are explicitly 
written in terms of  the matrix elements in [6]. 

3. APPLICATION 

Let us consider the Jacobi matrix defined by (27. The 

moments/Jr  (N) of  its eigenvalue density take the 

following form according to (5) : 

/am(N) = -if1 (~m)F(ri,rx,r~ .... ,rj,rj+l)/3, r i  + r~ + ... + rj'+ 1 

N-x  ® r i + 2 ~ r l  Or2 +2~r2 Orj+ 2~rj 
l!; i (i+1) ... ( i+ j -1)  

i=1 

... ( i+j)(gq+ 1 

Applying (4) we get for the moments of  the AED : 

ri  +r½+- . -+  rj+ 1 
/am = y' F ( r i ' r l ' r i  . . . . .  r;, ' (m) J rJ+ 1)~ 

N-x  (gri +2ar l  (grj+ 1 
lim 1 ~ i ... ( i+j)  

N-,*~ -N-- i= l  

Using the binomial theorem and the following relation 
(See [7] pp. 122-]247, valid for any positive q, 

kq n q + l  = + 0 (nq) (5c) 
k= l  q + l  

(where B 2, B 4 . . . .  are the Bernoulli numbers), we can 
get 

r i +  r½+ -.- +r j '+ l  
/am= Z F ( r ; , r l , r 4  . . . . .  rj ,rj '+l)fl 

(m) " 

N q Nq-1 N q-2  lim {,,-'TT + A1 + A2 + "" } ( 6 )  
N ~ =  

q being defined for convenience as follows : 

q=O(ri+r~+ ... + r ; + l ) +  2~( r1+r2  + ... +rj) (7) 

or, by using (5a), 

q = ms + ((9-~)  (r i + r i  + . . .  + rj+ 17 

A 1, A2, A 3 ... .  are functions of  q, r i, ri+ 1' • '  ~ and 

the Bernoulli numbers. 

In order to get convergence for the moments/am in (6 7 , 
we choose an appropriate scale of  eigenvalues. Such a 
choice depends on the maximum value qmax of q. 
According to (7) we distinguish three cases : 

1. (9 > a. The value qmax = m(9 for r i + r½ + . . .  + r;+ 1 = m 

2. ® = a ;  q=mc ,  

3. ® < a. The value qmax = me, for r i + r~ + . . .  + rj'+ 1 = 0 

We study separately the corresponding three possibilities 
of  matrices (2). 

C a s e 1  : O > a 

Taking into account that the simplest partition 
[ri,  r 1, r~, r 2 . . . . .  rj, r ;+ l ]  o f m  is [m, 0, 0, 0 . . . . .  0,0] 

and on the other hand that m is the maximum value 
of the sum r i + r~ + . . .  + rj'+ 1' we can write equation 

(6) as follows : 

/a m = F (m, 0, 0, 0 . . . . .  0, 0)/3 m lim Nm® 
N-+** m O + l  

N(m-2)  O+2~ 
+ F ( m - 2 , 1 , 0 , 0  . . . . .  0 ,0)~ m - 2  Iim 

N--+~ ( m - 2 ) 0 + 2 ~  + 1 

Journal o f  Computational and Applied Mathematics, volume 3, no 3, 1977. 168 



+ F ( m - 3 , 1 , 1 , 0  . . . . .  0 ,0)3 m - 2  lira N ( m - 2 ) O + 2 a  
N~ ,,,, (m-2)6)+ 2a +1 

+ F ( m - 4 , 2 , 0 , 0  . . . . .  0,0)/3 m - 4  lim N(m-4)6)+4a  
N--* ** ( m - 4 ) O + 4 a  + 1 

+ ... (8) 

We get all the moments 11m finite in the units x(flN®) -1 . 

More precisely, eq. (8) shows that the moments of  the 

AED 0(x/3N6))Jacobi matrix with O > a take the form : 

/ a m -  1 m6)+1 m = 1, 2, 3 . . . .  (9) 

It is often more convenient to know the central mo- 
ments 11m or moments about the mean, which can be 
calculated [9] from 11m as follows : 

r 

11r = m~0 ( - v l ) r - m  (r) ta m (10) 

From (9) and (10) we get the central moments 

_ 1 ~ ( _ x ) r - m ( r )  IO+1)  m 
/lr (6)+1) r m=0 m6)+ l  (11) 

r =  1, 2, 3 ... .  

In particular when ®=1 this expression is reduced to : 

0 if r odd 

11r 1 
~ ( ~ +  1 ) i f  r even 

which are the central moments of  the so-called uniform 
or rectangular distribution 0(x/3N) = 1 defined in the 
interval (-1/2, + 1/2). In general [8], the knowledge 
of all the moments of  a distribution does not deter- 
mine it uniquely. (In our case however the uniqueness 
is fulfilled as we shall see later on.) 
Moreover it is not easy to know the shape of the distri- 
bution from its moments. In this case it is useful to 
calculate the skewness 71 and excess or kurtosis 72 
of  the distribution which supply an approximate 
aspect of  the distribution about its mean. From (11) 
we get 

113 _ 2(6)-1) (26)÷111/2 
7 1 -  3/2 3(9+1 

g2 

/a4 3 = 6 (26) 3 - 6 0 2  - 6) + 17 
72 = ~ - (36)+1) ( 4 0 + 1 )  

112 

(12a) 

(12b) 

One can observe that 71 only vanishes for a non-neg- 
ative 6), namely 6) = 1. 
Therefore the only possibility for the eigenvalues of  
the matrix (2) with 6) > a to be symmetrically distri- 
buted is the rectangular distribution, and this happens 
when 6) = 1 as we have seen above. 

C a s e  2 : 6) = o~ 

In this case q = ma. From (6) we can then obtain that 

# m =  1 ~  G F ( r i , r l , r ~ , r  2 . . . . .  rj, r j+ l )3  r i + r ½ + ' ' ' + r j ' + l  
m,, + 1 (m) 

(13) 

(where i is m/2 for m even and (m-17/2  for m odd) 
are the moments  of  the AED 0(x/Na) of  the lacobi 
matrix (2) with 6)=a. By using the properties (5b 7 of  
the coefficients F, eq. (13) is reduced to the following 
form : 

/a m - 1 ~ (~)  (i2i) fl m-2i  (14) 
"=  m,~+l x 0 

They are also the moments of  the asvmptotical eigen- 
value density of  the orthogonal polynomials defined 
by the following recurrence relation : 

Pm + 1 (x) = [x-13 (m+ 1) a ] Pm(x) - m 2a Pm_l(X) 

P0(x) = 1; Pl(X)= x-/3; m = 1, 2, 3 . . . .  (15) 

In particular when/3=0, expression (14) can be written 
as follows : 

½k - 2ka + 1 

k = 1, 2, 3 . . . .  (167 L"ik_l= 0 
If now ~ = 0, the moments  (16) are those of  the density 

distribution p(x) = (1/rr) (4 -x2)  -1/2 . Therefore the 
asvmptotical root distribution of  the ortho~onal poly- 
nomials (15) with fl=~= 0 (this is the case of  Chebyshev 
polynomials) is the inverse of  a semicircle whose support 
interval is (-2, +2). Furthermore one can emily verify 
that the eigenvalues of  the orthogonal polynomials 
defined by 

Pm+l (X)  = x Pm (x) - } Pm-l (X)  

P 0 ( x ) = l ; P l ( X ) = X ;  } > 0 ;  m = 1 , 2 , 3  . . . .  

are distributed asymototicallv by the function 

p(x)=~@ -- (4} -x2)  -1/2 on the interval ( -2x~,  + 2x/~-). 

On the other hand equation (16) for a= 1/2 shows the 

moments of  the distribution y = (1/27r) (4-z2) 1 / 2  
Therefore for large N it is found that the distribution 
of the zeros of  the orthogonal polynomials (157 with 
fl= 0 and ~ = 1/2 (this is the case of  Hermite polynomials) 

is ~iven by 0(x)= (l/2rrx/N) (4N-x2)  1/2 in the interval 

( -24-K + 2,/g7.  
From (14) we can get the skewness 3'1 and excess ~/2 
of  the corresponding density distribution. Their ex- 
plicit expressions in terms of  a and fl are complicated 
and are not written here. However it is interesting to 
say that only i ra  = (1 + ¢'2)/2 and fl = 0 the values 71 
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and ~/2 vanish simultaneously. For this pair of  values 
(~, 3), the moments of  the AED are given by 

1 2k 
(k) P2k = k ( l +  / 2 ) +  1 

k=  1 , 2 , 3  . . . .  

P2k-1 = 0 

which correspond to a quasi-Gaussian distribution, 
that is a distribution very close to the normal one. 

C a s e 3  : ~) < c~ 

Now qmax = ma, which corresponds to the partition 

[0, r 1, 0, r 2 . . . . .  0, rj, 0] of  m. From (6) one can 

observe that all the moments Pm do not diverge if 

one takes xN -a as eigenvalue variable. With this 
choice, expression (6) reduces as follows : 

pm = 1 Z F (0, r l , 0 ,  r 2 . . . . .  0, rj, 0) 
mc~ + 1 (m) 

_ m 
withr  1+ r 2 + . . . +  rj 2 

Using the properties of  the coefficients F, we can get : 

1 (~k) 
/a2k - 2k~ + 1 

k=  1 , 2 , 3  . . . .  
P½k- 1 = 0 (17) 

which are the moments of  the AED p (xN "e) of  the 
Jacobi matrices (2) with ~ > @. Equally well one can 

say that the AED 0 (xN-~) of  the orthogonal poly- 
nomials defined by 

Pm+ 1 (x) = [x -3 (m+ 1) 69] Pm(X) - m 2~ Pm_l(X) 

P0(x) = 1; Pl(X) = x - r ;  ~ > ®; m= 1, 2, 3 . . . .  
(18) 

have the moments given by (17). This result was al- 
ready found for 3 = 0 in equation (16) above, since 
for such value of  3 the polynomials (15) and (18) are 
the same. 
In addition one can observe that not only the Hermite 
polynomials (which require 3 = 0 and ~ = ® = 1/2 as 2. 
we have seen above) but all the polynomials (18) 
with ~ = 1/2 and ® < 1/2 have 

p(x) = (l/2rrx/N) ( 4 N - x  2) 1/2 3. 

as the distribution of  zeros for large N. 
Thus far, the moments of  all orders of  the AED p(x) 4. 
of  the Jacobi matrices (2) have been calculated and 
at times the analytical expression p(x) is obtained. 
In general to calculate the function O(x) from its 
moments it is necessary [9] to sum the series 

q~(t) = kX__0 ~ (it) k (19) 6. 

and then to do the following transformation : 

+ oo i tx  P(x)= f e-  ~ ( t )  dt 
- o o  

However this way of  getting p(x) is not useful when 
the power series (19) slowly converges except for 
small t. 
Finally it is known [9, 10] that the moments do not 
always determine completely a distribution, even 
when moments of  all orders exist. Only when the sup- 
port interval (a, b) is finite, the knowledge of  all the 
moments uniquely determines the distribution. When 
(a, b) is equal to ( - - ,  + - )  or (0, + - )  only some suf- 
ficient conditions for p(x) to be unique are known; 
perhaps the most useful one (see [8], Corollary 1.2, 
pag. 20) is that p(x) decrease exponentially or faster 
for large Ixh or equivalently that Pr grows no faster 
than r! for large r. It can be easily seen that the 
moments (9), (14) and (17) fulfil this condition. There- 
fore they determine uniquely p(x) for any interval 
(a, b). 

4. CONCLUSION 

A method for calculating the eigenvalue density of  a 
Jacobi matrix H with elements hii = a i and hi, i+ 1 = 

hi + 1, i = bi' or equivalently the density of  zeros of 

the orthogonal polynomials defined by (3), has been 
proposed. It has been shown to be applicable to a 
broad family o f  Jacobi matrices (orthogonal poly- 
nomials). As a particular case the asymptotical density 
of  zeros of  Chebyshev and Hermite polynomials has 
been found. 
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