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ABSTRACT 

The spectral factorization problem is solved for state-space systems via results on 
the canonical forms and inertia of Hermitiau matrix pencils. These algebraic results 
then give a deflation method for spectral factorization. 

1. INTRODUCTION 

A central algebraic problem in a variety of areas of system and control 
analysis and design is the spectral-factorization problem, which can be stated 
as follows. Let Q(s) be a paraconjugate Hermitian rational matrix which is 
Hermitian positive semidefinite on the purely imaginary axis. By paraconju- 
gate Hermitian, we mean 

B*(s) = Q’(s), (1) 
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where 
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a*(&* [a)( -s)]*. 

(Here, the * denotes Hermitian transpose and the overbar denotes complex 
conjugate.) From (l), it follows that @( io) is Hermitian for o real. The 
second requirement is 

for all real w whenever @(ia) is defined. The spectral-factorization problem 
is to find a rational matrix G(s), not necessarily square, such that 

Q(s) =G,(s)G(s). (2) 

Any G(s) satisfying (2) is called a (right) spectral factor of the spectral 
density Q(s). 

Alternatively, we could seek a (left) spectral factor F(s) satisfying 

Q(s) = F(s)F,(s). 

Observe that G(s) is a right spectral factor of Q(s) if and only if F(s) = G *(s) 
is a left spectral factor of Q(s). 

The G(s) satisfying (2) are not unique. For example, if V(s) is any matrix 
satisfying V,(s)V( s) = I, then V(s)G( s) is also a (right) spectral factor. For a 
complete discussion of the rational spectral-factorization problem, see [23]. As 
a first constraint we require 

G( s ) has full normal row rank 

which equals the normal rank of (P(s). (The normal rank of a rational matrix 
is defined to be its rank as a matrix over the rational field.) Other constraints 
that might be imposed include: 

1. G(s) is analytic in the open right (or left) half plane. 
2. G(s) has full row rank everywhere in the open right (or left) half 

plane. 

Spectral factorization has applications in Wiener filtering [19] (in fact, 
this is the origin of the term spectral factorization), H” control design [8], 
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network synthesis [l], and linear-quadratic control design [ZZ]. Here, we look 
at the last problem in some detail. 

The standard linearquadratic control problem is to minimize the cost 

with respect to the control {u(t), 0 < t < cc} and subject to the constraint 

i(t) = Ax(t)+ Bu(t) 

with given. In the matrices and R are Hermitian. All other 
matrices and vectors are arbitrary but are required to have compatible 
dimensions. 

It is well known that if 

1. R is positive definite Hermitian, 
2. Q is positive semidefinite Hermitian, 
3. the pair (A, B) is stabilizable, i.e., [ sl - A B] has full row rank for all 

complex s in the closed right half plane, and 

4. the pair (A, Q) is detectable, i.e., 
sl - A 

[ 1 Q 
has full column rank for 

all complex s in the closed right half plane, 

then the minimum exists. Moreover, the value of this minimum cost is given 
by x*(O)Pr(O) and is achieved by the feedback control 

u(t) = - R-‘B*Px(t), (4) 

where P is the unique Hermitian matrix satisfying both the algebraic riccati 
equation (ARE) 

PA+A*P+Q-PBR-‘B*P=O (5) 

and the requirement that 

A 
c 
EfA - BR-‘B*p (6) 

has all its eigenvalues in the open left half plane. 
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To each Hermitian solution P of the ARE (5) there corresponds a 
spectral-factorization of the rational matrix 

C’(s) = R + B*( - SZ - A*) -'Q(sZ - A) -‘B. (7) 

Indeed, with 

(2) holds. Note incidentally that this shows that, if (5) has any Hermitian 
solution P, then Q(s) must be a spectral density with one (right) spectral 
factor given by G(s). 

Moreover, G(s) is invertible with 

so the poles of G(s)-’ are given by the eigenvalues of A,. If, therefore, we 
choose the unique Hermitian solution P of the ARE (5) subject to (6), then 
G(s)-’ is analytic in the closed right half plane. Alternatively, we can say 
that G(s) has all its zeros in the open left half plane. Such a G(s) is called a 
minimum phase (right) spectral factor. With the optimal control (4) the 
closed-loop dynamics of the system become 

i(t) = A&) 

which is an asymptotically stable system since A, has all its eigenvalues in 
the open left half plane. Thus, in the linearquadratic control problem, there 
is a correspondence between the asymptotic stability of the closed-loop 
system and the choice of the minimum-phase spectral factor in the related 
spectral-factorization problem. This is one motivation for seeking a 
minimum-phase spectral factor. 

It is also possible to associate an eigenvalue problem with the spectral-fac- 
torization ‘problem. The spectral density Q(s) in (7) can be rewritten as 

@(s)=R+[o IJ*][~‘~~ ’ I-‘[;] 
sZ+A* (8) 
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from which it follows that the inverse of O(s) can be written as 

-1 

Q(s)-l=R-‘-R-‘[o B*] “-* ;;;;I 
Q 1 [I ; R-‘. 

First, the poles of the spectral density Q(s) are given by the eigenvalues 
of the Hamiltonian matrix 

H,= 
[ 

-*Q _\* ) 1 
and the poles of the inverse of the spectral density Q(s) are given by the 
eigenvalues of another Hamiltonian matrix 

Hz = -*Q 
- RR-‘B* 
_ A* 

1 
’ 

(A matrix of the form 

with Y* = Y and Z* = Z is said to be Hamiltonian.) Next, observe that if P is 
a Hermitian solution of the ARE (5) and if 

T= ’ ’ 
[ 1 P I’ 

then, using T as a similarity transformation on Hz, 
nian matrix 

- BRp’B* 

- A; 

Me obtain the Hamilto- 

(9) 

The block triangular structure of (9) indicates that the eigenvalues of Hz are 

specified completely by the eigenvalues of A, and conversely. Moreover, I 
[ 1 P 

is a basis for the invariant subspace of Hz corresponding to the eigenvalues 
of A,.. 
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In conjunction with the preceding material, this then suggests that a 
numerical approach to the spectral-factorization problem might be based on 
the Hamiltonian eigenvalue problem, at least when R = @(cc) is invertible. 
Indeed, the generally accepted numerical technique for solving the ARE (5) 
subject to (6) and hence the spectral-factorization problem is to set up the 
Hamiltonian matrix Hz. Then, transform H, to upper Schur form, using an 
eigenvalue method such as the QR algorithm, so that the upper left block 
only has eigenvalues in the open left half plane. The Hermitian solution P is 
constructed from a basis of the invariant subspace of Hz corresponding to 
these open-left-half-plane eigenvalues. To overcome numerical difficulties 
when R may be close to a singular matrix, the method has been extended to 
a generalized eigenvalue problem, and the QZ algorithm is used rather than 
the QR algorithm. There is a substantial literature based on this approach. In 
particular, consult [2, 14, 201. 

There are a number of objections to this approach. First, it is a Hamilto- 
nian eigenvalue problem that is being solved, but this is not recognized in the 
above method. Papers which are concerned with numerical algorithms based 
on structural results include [5, 6, 151. There has also been a large amount of 
work based on algebraic aspects of factorization problems in general, and 
spectral-factorization problems in particular. Papers of interest here include 
[4, 131, while the books [3, 11, lo] contain a wealth of relevant material. 

In the spectral-factorization example that we looked at in detail viz. the 
linearquadratic control problem, we specifically introduced assumptions 
which guaranteed that Hz had no eigenvalues on the imaginary axis. In the 
context of the control problem, this is a natural requirement, but the spectral 
factorization itself imposes no such constraint. The ability to solve problems 
with purely imaginary eigenvalues of Hz is closely related to the exploitation 
of the Hamiltonian structure. 

Second, the technique discussed above fails when R is singular even if the 
generalized eigenvalue approach is used. This case corresponds to Q(s) 
having zeros at s = cc. It is useful to think of this case as a limiting case of 
purely imaginary zeros of a(s). 

The work reported in this paper arose out of an attempt to devise a 
numerical algorithm to solve spectral-factorization problems when R is 
singular and/or the spectrum a(s) has purely imaginary zeros. In this paper, 
we report on the algebraic results of this investigation. The numerical work 
will be reported elsewhere. The final outcome is a general approach to the 
spectral factorization of an arbitrary proper, rational paraconjugate Hermi- 
tian matrix which is positive semidefinite on the purely imaginary axis. 

The organization of this paper is as follows. In Section 2, some basic 
material on minimal realizations of rational matrices with structure is dis- 
cussed; in Section 3, a canonical form for Hermitian pencils is discussed. 
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Section 4 presents a key result relating inertias of Hermitian matrices and 
canonical forms of Hermitian pencils. The main result of the paper is 
presented in Section 5. In Section 6, we introduce a deflation lemma which 
forms the basis of later numerical work. Section 7 contains an extension to the 
main result, while Section 8 contains concluding remarks. 

2. REALIZATIONS 

In the previous section, we showed that for the linear-quadratic control 
problem, there is an associated spectral-factorization problem with spectral 
density given by (7). Also, we observed that one realization (8) of this 
spectral density had the property that there is an associated Hamiltonian 
matrix. In this section, we look at the general implications of the paraconju- 
gate property (1) on the properties of a realization of a proper rational matrix. 

We assume that there is given a square rational matrix Q(s) satisfying (1) 
with 

@(co) finite, 

tha,t is, Q(s) is proper and paraconjugate Hermitian. Further, let 
{A, B, C*, D} be a realization of Q(s) in the control-system sense, that is, 

Q(s) = D + c*(sz - k) -lg. (11) 

The realization {A, B, C*, D} is*said to be minimal if there is no other such 
realization of Q(s) having an A matrix with smaller dimension. Necessary 
and suffici:nt conditions for the minimality of the realization {A, B, C*, D} 
are that (A, B) is controllable and (A, C*) is observable. The most straight- 
forward characterization of these conditions is that 

sz - ii 
[,I--A B] and c* 

[ 1 
have full row and column ranks respectively for all complex s. 

The following lemma shows that 110) and the structure (1) together with 
the minim$ity of the realization {A, B, C*, D} imply certain relationships 
between A, B, C, and D. The method of proof is not original; it has also 
been applied in other circumstances where the structure of a rational matrix 
is important [9, 16, 191. 
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LEMMA 2.1. Let O(s) satisfy (1) and (10) together with a minimal 
realization {A, B, C*, D} for Q(s) us in (111). Then D* = D, and there 
exists a unique nonsingular matrix H satisfying 

- A* = H-‘&f, (12) 

-C= H-‘B, (13) 

B* = C*H, (14) 

-H*=H. (15) 

Further, if the realization {A, B*, C*, D} is real, then so is H. 

Proof. Noting that 

O*(s) = D*+ B*( - sZ - A*) -k, 

it follows from (1) that { - A*, - C, B*, D*} is also a minimal realization of 
Q(s). Thus, D* = D, and there exists a unique nonsingular matrix H such 
that (12), (13), and (14) hold. However, (12), (13), and (14) also hold with H 
replaced by - H*. Therefore, the uniqueness of H implies (15). 

Finally, noting that H is given by the unique solution to 

%?(A, B) = HQT( - A*, -C), 

where 

V(d,B)=[B AB $B . . . A”-‘B] 

with n = dimension d, it follows that H is real if A^, B, and C are all real. n 

Application of this lemma to (11) and setting A = AH yields 

@(s)=D+B*(sH-A)-%, 

where D* = D, H* + H = 0, and A* = A. Thus, we can assume that for any 
Q(s) satisfying (10) and (l), there exists a minimal realization 

Q(s) = D + B*(sH - A) -lB 

where D*=A, A*=A,and -H*=HwithdetH#O. 
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Our test for minimality here is that [ sH - A B] has full row rank for all s. 
To see this, observe the following equivalences: 

[sH-A Blhasfullrowrankforall s 
($ 

[si-AH-’ Blhasfullrowrankforall s 
* 

[sZ - H-'A H-'B] has full row rank for ah s. 

The first of these is our test for minimality, while the second and third are 
the tests for controllability and observability of the realization 

with A*=A,and -H*=H. 
When considering factorizations of Q(s), it is necessary to study both the 

poles and zeros of (P(s). The poles of Q(s) are the eigenvalues of the 
(regular) matrix pencil sH - A, where H is skew-Hermitian and A is 
Hermitian. Now, clockwise rotation of this eigenvalue problem by 57/2 (that 
is, s = ix) produces a Hermitian matrix pencil 

X(iH)-A 

in the h-plane, since iH is Hermitian. 
Similarly, the zeros of Q(s) are defined as those values of s for which 

Q(s) has less than normal rank. Since 

dimension A + normal rank CD(s) = normal rank A B*“” i , 1 
then the zeros of Q(s) are related to the eigenvalues of the matrix pencil 

where is skew-Hermitian, and A B 
[ 1 B* D 

is Hermitian. Exactly as 

for the poles, this leads to consideration of the Hermitian matrix pencil 
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Hermitian matrix pencils have been studied in the mathematical litera- 
ture. In particular, a (Jordari) canonical form, which we describe in the next 
section, is known. 

Finally in this section, we look at the effects of the transformation s = iX 
on Q(s). Define 

Then, instead of (l), we have 

**(A) = \k(h), (16) 

where 

and instead of the nonnegativity requirements on the iw axis, we now have 

for all real X whenever $(A) is defined. A rational matrix satisfying (16) is 
said to be Hermitian. 

This then leads to the following variation on Lemma 2.1. 

LEMMA 2.2. Let y(X) satisfy (16) and (lo), and let there be given a 
minimal realization {A, B, C*, D} for *(A): 

‘P(X) = D + C*(XI - ii) -lB. 

Then D* = D, and there exists a unique nonsingular matrix H satisfying 

C = HP’B, 

B* = C*H, 

H*=H. 
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Thus, we can assume that for any \k(h) satisfying (10) and (16) there 
exists a minimal realization 

\k(h)=D+B*(XH-A)-% 

where D* = D, A* = A, and H* = H with det H # 0. 
We therefore consider a proper, Hermitian, rational matrix ‘k(h) which is 

nonnegative on the real A-axis. Our spectral-factorization problem is then 
mathematically equivalent to seeking a proper rational matrix G(h) satisfying 

‘4’(X) =G*(X)G(X). 

For the remainder of this paper, we confine our attention to this formulation 
of the spectral-factorization problem. 

3. HERMITIAN PENCILS 

We have argued in the previous section that the pole-zero structure of a 
proper, Hermitian, rational matrix is closely related to the eigenvalue struc- 
ture of the pole and zero pencils respectively. Since these pencils are both 
Hermitian, it is logical to investigate the underlying structure of Hermitian 
pencils. In this section, we state standard results on a (Jordan) canonical form 
for Hermitian pencils [18]. 

First, let us introduce some notation: 

0, d2f m X m zero matrix, 

Zmdzf m X m matrix with entries ai, j, 

Smdzfrn~rn matrixwithentries 6j,m+l_j, 

R/:, ef m x m matrix with entries ai + r, j, 

T,,, e* m X m matrix with entries Si, m + 2 j. 
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Let H and A be a pair of R X n Hermitian matrices. Then, there exists a 
nonsingular n x n matrix T such that 

T*(XH+I.LA)T= & 33; 
i=l 

where each .G?i has one of four canonical forms which we classify as follows. 

Type 1: 

where ei = * 1, ui is real, and mi is a positive integer. Thus, this block has 
the form 

We call ei the sign of the block gi. 
Type 2: 

h+pai 

h+Wi P 

P 
. . 

. . 

X+Wi CL 

X+Pai P 

is a Zm, ~2m, block, with ~7, # a,. Notice that there is no sign associated 
with blocks of this type. 

Type 3: 
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is an mi x mi block, with ei = f 1. Thus, this block has the form 

'i 

P 

P x 
. h 

. . 
. . 

. . 

I” x 
P x 

809 

Again, ei is called the sign of the block gi 

Type 4: 

where Ss, +i is simply S,, +i with the entry in the (mi + 1, mi + 1) position 
changed from 1 to 0. Thus,’ this block is a type3 block with odd size, ei = 1, 
and the p in the center position replaced by zero. 

REMARKS. 

1. Since blocks of type 1, 2, and 3 all have full normal rank, whereas 
each type4 block has normal rank defect 1, it follows that the number of 
type-4 blocks in the canonical form equals the normal rank defect of the 
pencil AH + PA. It is therefore clear that type4 blocks are possible if and 
only if det( X H + PA) is identically zero. 

2. Similarly, from a study of the ranks at X f 0, p= 0, it follows that the 
total number of blocks of types 3 and 4 equals the rank defect of H. Thus, the 
canonical form contains at least one block of type 3 or 4 if and only if H is 
singular. 

4. INERTIA RESULTS 

We define the inertia i { H } ‘of a Hermitian matrix H to be a triple of 
nonnegative integers (Y, p, and y where 

(Y = number of positive eigenvalues of H, 

j? = number of zero eigenvalues of H, 

y = number of negative eigenvalues of H. 
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Our notation for the inertia will be 

The inertia of a Hermitian matrix has two simple but useful properties: 

1. For every nonsingular matrix D, 

i{D*HD} =i{H}. 

2. If H = $;cl Hj, then 

i(H) = i i{Hj}, 
j=l 

where the inert& are summed as S-dimensional vectors. 

The inertia of a Hermitian pencil X H + PA is the set of inertias of the 
Hermitian matrices AH + PA parametrized by real X and p. It follows that 
the inertia of a Hermitian pencil XH + PA (for each real value of X and p) is 
specified by the sum of the inert& of the canonical blocks (for each real 
value of A and IL). Thus, it is first necessary to determine the inertias for each 
canonical block. 

We now describe the inertias of the fundamental blocks in the canonical 
form. 

Type 1: Recall that each type-l block has the form 

where E = f 1 and a is real. The cases for m even and m odd are treated 
separately. (See Table 1.) 

Type 2: From the form of a type-2 block, it is clear that for a block of 
size 2n the inertia for all h and ~1, not both zero, is always 
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TABLE 1 
TYPE 1 

m 

Inertia 

X# -a/l X= -up 
p arbitrary pL+o 

This is a consequence of the fact that A + ap # 0 for all real A and EL, not 
both zero, since a # a. 

Type 3: Recall that each type-3 block has the form 

where e = f 1. This is clearly identical to a type-l block with a = 0 and the h 
and p interchanged. (See Table 2.) 

Type 4: From the form of a type4 block, it is clear that for a block of 
size 2n + 1 the inertia for all X and p, not both zero, is always 

n 

0 1 . 
n 

TABLE 2 
TYPE 3 

Inertia 

PfO jJ=o 
m X arbitrary A#0 

0 ;t 
n-l 

2n i{cX}+ 1 
n i I n-l 

2n+l i{ep}+ i 
0 

n 

0 
1 

n n 
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For a certain class of Hermitian pencils, the next lemma makes precise 
the connection between the inertia of a Hermitian pencil XH + PA as a 
function of real X and p and the description of the canonical form. This 
lemma is central to a number of the subsequent results. 

LEMMA 4.1. The canonical form of the Hermitian pencil AH + PA has 
the property that 

1. all type-l blocks have even size and positive sign, and 
2. all type-3 blocks have odd size and negative sign, 

if and only if the inertia of X H - A, fm each real A, has the form 

where N, c, and d are nonnegative integer constants and ah is a nonnegative 
integer which is zero except for a finite set of values of A for which a, is 
positive, and the inertia of H has the form 

This latter inertia we call the inertia at X = 00, since it corresponds to p = 0 
for X arbitrary but rwnzwo. Thus, this condition can be interpreted as the 
earlier condition with X = 00 and a, = c. 

Moreover, we can make the following correspondence: 

ah = the number of blocks of type 1 with even size and positive sign which 
correspond to the real eigenvalue A, 

c = the number of blocks of type 3 with odd size and negative sign, and 
d = the number of blocks of type 4. 

Proof. First, we prove the necessity. Let X, be a finite eigenvalue of the 
pencil AH + PA. Thus, suppose that there are a, type-l blocks with even 
size and positive sign corresponding to the eigenvalue X,, a other type-l 
blocks with even size and positive sign corresponding to the remaining real 
eigenvalues, b type-2 blocks, c type3 blocks with odd size and negative sign, 
and d type-4 blocks. 
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Then, for X not an eigenvalue and with p = - 1, the direct sum of these 
blocks has inertia of the form 

which equals 

% 
0 

% 

+ 

where N = Na, + N, + Nb + NC + Nd, and the N, represent the sizes of the 
various blocks. 

Next, for h = A, and p= - 1, the direct sum of these blocks has inertia 
of the form 

which equals 

N, 
0 + 

% ii 

Finally, for X # 0 and p = 0, the direct sum of these blocks has inertia of 
the form 

N, 
+ c + 

i I N, 

Nd 
d , 
Nd i 
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Since the same argument applies to all the finite real eigenvalues, this proves 
the necessity of the stated form. 

The sufficiency proof is also straightforward, but messier than the above. 
Suppose the inertia of AH - A has the stated form, and again suppose there 
is a real eigenvalue of X H + p A at h = X,. We need to show that certain 
type-l blocks corresponding to X = X, and certain type-3 blocks cannot occur 
in the canonical form of XH + pA. Thus, consider a further subdivision of 
block types as follows: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

Type 1, even size, negative sign, X = A,. 
Type 1, even size, positive sign, X = A,. 
Type 1, odd size, negative sign, h = X,. 
Type 1, odd size, positive sign, X = X,. 
Type 1 blocks corresponding to all other finite real eigenvahres. 
Type 3, even size. 
Type 3, odd size, negative sign. 
Type 3, odd size, positive sign. 
Type 4. 

Note that we have not included type2 blocks, as it is clear from the fact that 
their inertia has the form 

N 

ii 
0 9 

N 

independently of real X and p not both zero, that we obtain no information 
about type-2 blocks from the inertia pattern. 

Now, let the numbers of blocks of the above types be n,, ns,... , n9, and 
let the size information be specified by N,,. . . , N4, NJ’), Nz2), N,, . . . , N9. We 
will need the two size specifications Ng’) and Ni2’, since class 5 possibly 
contains a mix of type-l blocks. We show that nr, ns, n4, n6, and ns are all 
zero and that n, = c and n9 = d. 

For the pencil X H + p A, let A r be the smallest finite real eigenvalue of 
X H + y A greater than X,, unless X, is the largest real eigenvalue, in which 
case set X, = co. Similarly, let X_ r be the largest finite real eigenvalue of 
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XH+pA less than ha, unless h, is the smallest real eigenvalue, in which 
case set X_, = -co. 

We compute the inertias of the pencil for X _ r < X < X,, X = X,, and 
X, < X < X,. The computed inertias are than equated to the form given in the 
lemma statement. Note that for h _ r < X < X r the inertia contribution from 
class 5 will be constant. 

Let ~=N,+...+N,+N,+~..+N,.Then,of L,<X<X,,weob- 
tain 

iii+~p+~,+~,=N+~, (17) 

n,=d, (18) 

G+N$2)+n4+ng=N; (19) 

for h = X,, we obtain 

G+N$‘)-n,+n,=N+c-a,, 

n, + n, + n3 + n4 + n9 = d + a,, (20) 

(21) 

and for h, < X <X,, we obtain 

n,=d, 

fi+NJ2)+n3+n8=N. (22) 

First, from (18), we have n, = d. Then, subtracting (21) from (19) we 
obtain n1 + n4 = 0, from which we conclude nr = 0, and n4 = 0, since n, 

and n4 are nonnegative integers. Then from (19) and (22) it follows that 
n3 = 0, and thus from (20) that n2 = uo. Thus, we have shown that for the 
eigenvalue at X = X,, we have exactly aa type-l blocks, which all have even 
size and positive sign. Clearly, we can repeat the above argument for each 
finite real eigenvalue. Thus, it follows that NJ’) = NJ2) = N,, say. 
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Substituting the above in the equations (17) and (19), we obtain just two 
independent equations 

N+NN,+n,=N+c, 

i++~,+n,=N, 

which imply 

n7 -n8=c. 

We still have the information about the inertia at X = cc to use. Thus, it 
remains to consider the case h = 1 and p = 0. Since all the type-l blocks have 
even size, the contribution to the total inertia from these blocks has the form 

The two terms NJ’) and NJ2) are needed to take account of the possibility of 
having both positive- and negative-sign blocks among the even blocks of type 
3. Then we have n,+ n7 + n8= c. Recall that c= n7- ng, so we obtain 
ns + 2ns = 0, from which we conclude ns = 0 and n, = 0, since n6 and n8 

are nonnegative integers. This completes the proof of the sufficiency. n 

This lemma may be of independent interest. It is clearly possible to 
explore other relationships between the canonical form of a Hermitian pencil 
X H + pA and the inert& of the Hermitian matrices for real X and p. 

5. MAIN RESULT 

In this section, we give various equivalent characterizations for the 
existence of spectral factors. This result ‘should be seen as a generalization of 
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the material in [13], where attention is restricted to the case when \E(co) is 

nonsingular. There are also close connections with the work on linear-quadratic 

singular optimal-control problems [7], reducing subspaces [21], and the 

Hamiltonian Schur decomposition in [ 151. 

THEOREM 5.1. Suppose \k(X) is an m x m proper rational matrix which 

is Hermitian, and suppose that the normal rank of ‘k( X ) is p. Further, let 

\k(A) = R + 9?*(X2t- a?) -‘.?a 

be a minimal realization where %‘* = 2, z&‘* = -01, and 2 is nonsingular. 

Then the following statements are equivalent. 

1. q(X) > 0 for all real X for which q(X) is defined. 

2.’ The canonical form for X2 - LZZ’ contains blocks of types 1 and 2 
only. Each block of type 1 has even size and positive sign. The canonical 

form for 

contains blocks of all types in general. Each block of type 1 has c. bvn size 

and positive sign. There are exactly p blocks of type 3; each such block has 

odd size and negative sign. There are exactly m - p blocks of type 4. 

3. (A weaker version of the previous condition.) Same as the previous 

condition, but the sign of each type-l block is unspecified. 

4. There exists a minimal realization of q(h) congruent to that given 

above and of the form 

-1 

‘P(A)=R+[B* c”] “:-QA 
1 [I 

; , 

and for any such realization there exists a skew-Hermitian matrix P such that 

PA+A*P*+Q PR+C 

(PR+C)* R ” 1 
‘The matrix pencils are given for p = ~ 1. 
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with rank equal to p. This inequality is known as the linear matrix inequal- 
ity. 

5. There exists a factorization of 9(X) of the form 9(X) = G*(X)G(X) 
where G(h) is a proper p x m rational matrix. 

Proof. Proof of 1 ---* 2: The majority of the detail needed for the proof of 
this implication is contained in the previous section and in Appendices A, B, 
and C. 

From the material in Appendix A it follows that in the canonical form for 
X.% - ~2 each type-l block has even size and positive sign. 

From the material in Appendix B, together with the fact that the 
canonical form for h%’ - LS’ only contains type-l and type-2 blocks, with all 
the type-l blocks having even size, it follows that there exists a nonsingular 
matrix T such that 

0 z 
T*S’T= z o, 

[ 1 
T*dT = $ A 

[ 1 Q' 

where Q = Q*. Indeed, Q is positive semidefinite in this case. 
Thus, using T as state basis change, we assume a minimal realization of 

q(h) with 

e&f= [ 0 z 1 
z 0’ 

d=Ag [ A 1 

Q' 

and 9 B = 
[ 1 c ’ 

where Q* = Q. Moreover, the zero pencil 

is congruent to 

(23) 
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Finally, we also have 

\II(X)=R+B*(hZ-A*))‘C+C*(XZ-A)-‘B 

+B*(XZ-A*))‘Q(XZ-A)-%. 

First, consider the case when \E(A) has no real poles. The inertia of the 
zero pencil (23) is now shown to be of the form 

for each real X. (Refer to Lemma 4.1 for the notation.) 
If +(A) has no real poles, then because we are considering a minimal 

realization of \k(h) it follows that S’ and consequently A and A* have no 
real eigenvalues. Therefore, (23) is congruent to 

oz 0 

[ 1 IO 0, 
0 0 *(A) 

This can be checked using 

-(Xl-A*))$ f(xZ-A*))$ (AZ-A*))‘{Q(XZ-A))‘B+c} 

0 I (XI-A)-% 
0 0 I I 

as a congruent transformation on the pencil (23). Since \E(X) is an m x m 
rational matrix, has normal rank p, and is nonnegative on the real axis, it 
follows that the inertia of the pencil (23) for each finite real X has the 
required form with c = p, d = m - p, and N equal to the dimension of A. 
Furthermore, the inertia of 

[ 0 0 z 0 0 z 0 0 0 1 
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is simply 

D. J. CLEMENTS AND K. GLOVER 

N 

1: m . 
N 

Thus, application of Lemma 4.1 completes the proof when *(A) has no finite 
real poles. 

There now remains the case when q(X) has poles on the real axis. The 
details are relegated to Appendix C. 

Proof of 2 -+ 3: This is trivial. 
Proof of 3 + 4: As in the proof of 1 -+ 2, we assume, without loss of 

generality, that 

where Q* = Q, so that the zero pencil 

is easily seen to be congruent to 

Now, for Appendix B, the canonical form of this pencil implies that there 
exists a nonsingular matrix D such that 

and 

(25) 
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where 

s, s2 L 1 v s3 
>O 
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with rank p. 
Now, consider the restrictions imposed on D by equation (24). Let 

Z = Dp*, and write 4 4 ‘A D = D4 D, De 

I 1 D, D, D, 

and 

z, z2 z, 
z = z, z, z, 

[ I z, z, 53 

It follows from (24) that 

from which we conclude that D2 = 0, D, = 0 and Z, = 0, Z, = 0. Further, 
Z, = D,, Z, = D9, Z, = D,, and Z, = D3. Thus, D, 0 4 

D= D4 D, D6 . 

[ 1 D, 0 0s~ 

Clearly, D, is nonsingular. Again, using congruence transformations, we 
force D4 = 0, and De = 0, and D, = I, without affecting the above form. In 
particular, (24) is left unchanged and the rank and positive semidefiniteness 
of 

s, s2 
[ 1 s‘2F % 

are preserved. This then implies Z, = 0, Z, = 0, and Z, = I, since DZ* = I. 
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Altogether, 
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4 

D=O [ 

0 03 

Z D, 0 0, 1 D, 

D9 

z=o [ 

0 D7 

z 
0, 

03 0 4 1 
which implies 

D:D, + DTD, = 0, 

D;D9 + D;D3 = 0, 

since D*Z = I. From (25), we then obtain 

where 

[:; ::]=[;]b* Ll 

with rank[ N* L] = p. 
We show that D, is nonsingular. From the first column of (26), we have 

QDl + A*D7 = D,NN* + D,St, 

C*D1 + B*D, = L*N*, 

AD, = D,NN* + D,S,*. 
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Suppose that there exists r # 0 such that D,x = 0. Then, 

823 

A*D,x = DsNN*x + D,S,*x, 

B*D,x = L*N*x, 

0 = D,NN*r + D,S,*r, 

and so 

D:A*D,x = 0: D,NN*x + D:D,Sdx 

= (I - D;D3)NN*x - D;D,S,*x 

= NN*x - D;( D,NN*x + D,S,*x) 

= NN*x. 

Thus, x*NN*x = 0, and so N*x = 0. 
From the above, this gives 

A*D,x = D,Sax, 

B*D,x = 0, 

0 = D,Stx. 

Using the last of these equations, we conclude that the null space of D, is an 
invariant subspace of S,*. Therefore, there exists z z 0 and X such that 

D,z = 0. 

Also, note that y = D,z # 0 (otherwise D would be singular), but then we 
have 

A*y = Xy, 

B*y = 0, 

which contradicts the controllability of the pair (A, B). Thus, D, is nonsin- 
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gular, and P = 0; *DT satisfies 

p*+p=o 

and 

PA+A*P*+Q PB+C 

B*P* + c* R 

with rank p. 

1 1 S,*D,’ 

Proof of 4 + 5: Let P be a skew-Hermitian matrix 
matrix inequality 

PA+A*P*+Q PB+C = N 

B*P* + c* R 1 [ L* b* 1 
with rank[N* L] = p. Then, with 

G(X) = L + N*(XZ - A) +, 

it follows easily that 

Q(X) = G*(A)G(X). 

Proof of 5 -+ 1: This is trivial. 
This completes the proof of the theorem. 

satisfying the linear 

Ll 

n 

This theorem assumes a minimal realization of 9(h). A less restrictive 
assumption is discussed in Theorem 7.1. 

If R = ‘k(oo) is nonsingular, the existence of a solution to the linear matrix 
inequality with rank p (p = m in this case) is equivalent to a solution of the 
algebraic Riccati equation [22] 

PA+A*P*+Q-(PB+C)Rp’(PZ?+C)*=O. 

6. DEFLATION 

In this section, we apply the inertia result of Lemma 4.1 to develop a 
symmetric deflation procedure for the class of Hermitian pencils of interest in 
this paper. The two deflation lemmas below are important in that they 
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suggest a numerical technique which exploits the inherent structure of the 
Hermitian pencil. The proof of the first of these lemmas is long and not 
particularly interesting; the details can be found in Appendix D. The second 
lemma is trivial. 

LEMMA 6.1. lf the canonical form of the Hermitian pencil 

0 0 Xh+pa 

0 hH+pA X 

hh+jGi x X I 

where X denotes don’t care entries and h and a are not both zero, has the 

property that 

1. all type-l blocks have even size and positive sign, and 

2. all type3 blocks have odd size and negative sign, 

then the canonical foTm of XH + PA has the same property, with the same 

numbers of type3 and type4 blocks. 

LEMMA 6.2. Zf the canonical form of the Hermitian pencil 

0 0 
0 XH+pA 1 

has the property that 

1. all type-l blocks have even size and positive sign, and 

2. all type3 blocks have odd size and negative sign, 

then the canonical form of XH + PA is identical except for the removal of 

one type4 block with size 1, 

Proof. The given pencil is clearly congruent to 

[O]@~H+/LH 

but the first term is a type4 block with size 1. This completes the proof. n 

We now show how these deflation lemmas can be applied to the spectral- 
factorization problem. By Theorem 5.1, it is enough to find a skew-Hermitian 
P satisfying the linear matrix inequality with minimal rank. 
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Suppose therefore that we are given a Hermitian pencil h H + pA with 
the properties that (i) each type-1 block has even size and positive sign, and 
(ii) each type3 block has odd size and negative sign. We study the various 
solutions X,, pa, and x of the equation 

(h,H + poA)x = 0 

such that 1X,1+ Ipal # 0 and x # 0. 
We are interested in the following cases. 

1. Rank deflation. Suppose that Hx = 0 and Ax = 0. (Note that this is 
only possible if there are type4 blocks in the canonical form of h H + PA.) 
Construct a unitary matrix D such that D*r is zero except for the first 
component. Then 

D*(XH+pA)D= ; hH ypA 
I 1 1 ’ 

where, by Lemma 6.2, the Hermitian pencil XH, + pA, has the same 
canonical structure as h H + pA except for a single type4 block with size 1. 

2. Nonfinite deflation. Suppose that Hx = 0, Ax # 0, and x*Ax = 0. 
(Such an x exists precisely when at least one type3 or type4 block has size 
greater than 1. The standing assumption that all type-3 blocks have odd size 
and the same sign is important here.) A slight extension of the construction 
above now produces a unitary matrix D such that 

0 I-la 

D*(hH+pA)D= hH,+pA, X 

X X I 

where a # 0. Now, by Lemma 6.1, the Hermitian pencil AH, + pA, has the 
same canonical structure as X H + pA with the same numbers of type3 and 
type4 blocks. 

3. Finite deflation. ‘Suppose that Hx z 0. It then follows that pa # 0. 
Thus, - h,/pa is a finite eigenvalue and x a corresponding eigenvector 
provided the pencil X H + pA has full normal rank. This will be the case 
when no more rank and nonfinite deflations are possible. From the assump- 
tion that all type-l blocks in the canonical form for XH + pA have even size 
and the same sign (positive), we conclude that x*Hx = 0 and x*Ax = 0. 
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Again, a construction similar to the above produces a unitary matrix D such 
that 

D*(XH+pA)D= 

where h # 0. 

0 Xh+pa 

hH,+pA, X 

X X 

If these deflations are applied repeatedly until no more deflations are 
possible, then accumulating the unitary transformations appropriately, we 
obtain a unitary D such that 

D*(XH+pA)D= 0 PA, AH, + PA, 

[ 

0 0 AH, + pAi 

AH:+pAT hH,*+pA; hH,+pA4 I 

where (referring back to Lemma 4.1 for the definitions of N, d, and c) 

1. A, is a c X c negative definite matrix. HI 2* H [ 1 is an (N + c + d) X N matrix with full column rank N. This is a 
3 

straightforward consequence of the fact that H has rank 2N. 
3. XH, + pA, is an (N + d)X N pencil with full normal column rank. 

The jth column of XH, + pA, has the form 

0 

where the first nonzero entry h hi + pa j occurs in row rj (this means hj or a j 
is nonzero). There also holds 

r,>r,> ... >r,. 
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The leading nonzero entry Xh, + paj in the jth column of XH, + pAI is 
the result of a nonfinite deflation step (hi = 0) or a finite deflation step 
(hi # 0); this latter case corresponding to a finite eigenvalue - a j/hj. From 
properties 1, 2, and 3 above, it follows that each finite eigenvalue of the 
pencil 

0 AH, + PA, 

PAZ AH, + PA, 1 (27) 

must be one of the values - aj/hj with hj + 0, i.e. one of the finite 
eigenvalues of the pencil X H + PA used in a finite deflation step. Thus, the 
choice of the finite eigenvalues in the finite deflation steps controls the 
locations of the finite eigenvalues of the pencil (27). 

Now let us return to the specific pencil hH + pA of interest to us, i.e. 

-A 

so that 

0 0 I 
H=-0 0 0 

[ 1 I 0 0 

and 

with an obvious abuse of notation. The above discussion implies that we have 
a unitary D such that 
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and 
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Since D is unitary, it is easy to show that H, is zero and 
HI 

[ 1 H, has 
3 

orthogonal columns. Using only unitary transformations and incorporating 
these transformations into D, it follows that (24) and (25) hold, i.e., 

and 

D* 
0 0 
0 0 OD=o 
z 0 

z 1 [ 0 0 z 
0 0 

0 I 0 0 

C A* 

1 [ s, s2 
R B* D= S; S, 

B 0 SZ S: 

where 

with rank p. Note that p corresponds to c here, and that we have renamed 
the transformed A matrix as S with corresponding changes in the names of 
the component matrices. Further, the unitary matrix D has the form 

4 0 03 
D= [ 0 D, 0 1 . 

D, 0 D9 

Now, we continue as in the proof of Theorem 5.1. There is, however, a 
major difference between how we get to this stage in Theorem 5.1 and the 
approach above. In Theorem 5.1, we assumed we had the pencil in canonical 
form and knew the (almost certainly not unitary) transforming matrix D, 
whereas the above approach only assumes that we know the properties of the 
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canonical form from which we construct a unitary transforming matrix D 
and we end up with a triangular form rather than a (Jordan) canonical form. 
This is important numerically, as it is well known that the computation of the 
Jordan form is unreliable whereas the computation of a Schur upper triangu- 
lar form using only unitary transformations is not. 

Finally, in this section, we show that the zero structure of the adjoint of 
the right spectral factor G(X) is given by the structure of the pencil (27). 

LEMMA 6.3. The pen& 

0 AH, + 0, 
PA2 AH, + PA, 1 

and 

pD; *N XI + PA* 

PL* PB* 1 
have the same structure. 

Proof. Let fi be the unitary matrix which satisfies 

It follows that 

for some nonsingular T satisfying T*T = - A,. It follows that 

0 AH, + PA, 
PA, AH, + ~4, 1 

has the same structure as 

- pNT -AZ-ps, 

- pL*T 1 -I& ’ 
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which in turn has the same structure as 

pN Al+&, 

PL* 1 PS, * 

From the bottom row of (26), we obtain 

S, = D:A*D,* - Mv*D,*D;* 

S,= B*D,* - L*N*D,*D,*. 

Thus, the above pencil has the same structure as 

pN AZ + ,uD;“A*D, * 

PL* 1 pB*D,* ’ 

which has the same structure as 

pD;*N hZ+pA* 

PL* 1 pB* ’ 

This completes the proof. n 

We note that the right spectral factor G(A) computed in Theorem 5.1 is 

G(X) = L + N*D;‘(hZ - A) -‘B. 

7. EXTENSION 

In this section we trade off the minimality assumptions imposed in 
Theorem 5.1 against a full-rank assumption on \k( X). 

THEOREM 7.1. Theorem 5.1 continues to hold provided we 

1. replace the minimality assumption with the assumption that 
[A A?’ - d ~331 has fill row rank for all X with nonnegative imaginary part, 

2. add the assumption that \k(A) has full rwrmul rank, i.e. p = m, and 
3. delete the reference to minima&y in condition 4. 
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Proof. The proof goes through as in Theorem 5.1 essentially unchanged 
for 1 + 2, 2 + 3, 4 + 5, and 5 + 1. 

The main difference is the proof 3 + 4. Construct the congruence matrix 
D in such a way that the pencil 

pN XZ+pS, 

PL* l-4 1 

has all its finite eigenvalues in the closed upper half plane. The discussion in 
the previous section indicates that this is possible, as does a reexamination of 
the proof of 3 -+ 4 in Theorem 5.1. The key step is showing the nonsingular- 
ity of D,. The proof shows that singularity of D, implies the existence of a 
nonzero z and a A satisfying 

Dl*z = 0, 

N*z = 0, 

and of a nonzero y satisfying 

A*y = Xy, 

B*y = 0. 

Since ‘k(X) has full normal rank, so does the pencil above. Therefore, the first 
set of equations shows that x is a finite eigenvalue, with left .eigenvector 
[z* 01. Since the pencil has been constructed to have finite eigenvalues in 
the closed upper half plane only, it follows that h has nonpositive imaginary 
part and so x has nonnegative imaginary part. Similarly, from the second set 
of equations and the relaxed minimality assumption, we conclude that x has 
negative imaginary part. This is a contradiction. Thus, D, must be nonsingu- 
lar. 

This completes the proof. n 

REMARK. The proof of Theorem 7.1 shows that if [A.%’ - x2 221 is 
full-rank in Im X > 0, then the spectral factor can be constructed to have no 
zeros on Im X > 0. A weaker result can be obtained under the assumption 
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that [A.% - ~2 .%?I is full-rank on Im X = 0 with JI(X) of full normal rank. 
Then Theorem 5.1(1,2,3,5) are still equivalent. The proof involves 1 -+ 2 -+ 3 
as above and then deflating the uncontrollable part as in Section 6 and finally 
applying 3 -+ 4 for the resulting minimal system. 

8. CONCLUDING REMARKS 

In this paper, we have studied in detail the algebraic structure of the 
spectral-factorization of proper rational Hermitian matrices with a view to 
producing a reliable but general-purpose computational algorithm. In this 
development, we have exploited the properties of Hermitian pencils. To the 
authors’ knowledge, the only other work in this vein is [17, 121, where the 
connection between the algebraic Riccati equation and Hermitian pencils is 
studied. 

The major restriction in this paper is that the spectral density Q(s) or 
‘k(A) must not have any poles at cc. It is not clear how this restriction can be 
removed in the development in this paper. 

APPENDIX A 

We show that if the proper, Hermitian rational matrix \Ir(X) has represen- 
tation 

*(A) = R +93*(X% - d) -‘sif (28) 

with det(A,% - &) = 0 for some real value X,,\k(X) positive semidefinite 
for all real X in a neighborhood of X,, and [X0.%’ - & %?] with full row 
rank, then each type 1 block corresponding to X, in the canonical form for 
the pencil X&’ + p..& has even size and positive sign. 

We need the following preliminary result. 

RESULT A.l. Form>,l, 
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Proof Letn=m-l,R*,=[X ,..., X”],ande,*=[O ,..., O,l].Thenwith 

(I,-hivJ’= l I A*, 
0 I (I,-AN”)-’ ’ 

Wrn-Tn)= 
[ 

A:” (AS ;;*_, ) ) 

nnn n 1 
um-~~,*)-‘= 

[ 

;., (1 _&-1 ’ 

n n 1 
the proof follows easily by carrying out the block matrix multiplication and 
simplifying the resulting terms. n 

Thus, we have the following corollary. 

COROLLARY A.2. There exist an m X m rational matrix P,(X) and an 

(m - 1) X (m - 1) rational matrix Q,,, _ 1(h), both invertible at X = 0, such 
that 

P,*(X)(XS, - T,)P,(X) = xmq&_l(x). 

Proof. Observe that I, - XN,,, and XT, _ 1 - S, _ r are unimodular poly- 
nomial matrices. W 

Since det .% # 0, only type-1 and type-2 blocks may appear in the 
canonical form for X%’ - s?. Since det(X&’ - &) = 0, suppose that 
X%’ - ~8 has r blocks of type 1 with sizes ml,. . . , m, and signs cl,. . . , cr 
corresponding to X,. 

Applying Corollary A.2 to each of the type-1 blocks shifted to X = X,, and 
noting that all other blocks not corresponding to h, are invertible at X = A,,, 
it follows that there exist rational matrices P(X) and Q(A), both invertible at 
X = X,, such that 

P*(A)(Xx - .d)P(X) = Q(A)@ cBICi(X - A,)“‘. (29) 
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The assumed full row rank of [X0%’ - ~4 .%Y’] implies that [h&’ - .M L%], 
and hence 

[ P*(h)(LP - d)P(X) P”(X)9Y] 

have full row rank for all X in a neighborhood of X,. Partitioning 

P*( X)9? = 
Bl(V 

[ 1 $(V ’ (30) 

where B,(A) has T rows, it follows that $(A,) has full row rank. 
Substituting (29) and (30) into (28) gives 

‘I’(X) =‘&,(A)+ B,*(X) 6 q(X - A,)“’ 
1 

-1 

%(O 
i=l 

where 

$,(A) = R + B:(X)Q(h) -‘B,(h). 

Since B,( A,) has full row rank, there exists a rational matrix B,(h), 
invertible at X = A,, such that B,( h)B,(X) = [I, 01. Thus, altogether we have 

B,*(X)\I/(X)Bo(X) = B,*(X)\I/,(X)B,(A)+ @:-,‘;l(hg - A,> ~ 
[ 

m, 
i 1 

where B,*(X)\k,(X)&(X) is analytic at X = h,. Since B,*(X)+(X)&(X) is 
positive semidefinite near A = X,, it follows that ei = 1 for i = 1,. . , r and 
m,, ms,. . . , m, are all even. 

APPENDIX B 

In this appendix, we examine some useful congruences for the various 
canonical blocks, at least in the cases of interest to us. 
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First, we introduce some notation: 

Et*j)dzf n X n matrix with entries Bk,iSI, j, 

e(i)!Ff 
n- n vector with entries S,, i. 

Type 1: We only consider even-size blocks. Thus, with m = 2n and a 
real 

6 [(A + ads, + PT,] 

Here, the congruent transformation can easily be seen to consist of permuta- 
tions only when the sign e is positive. Otherwise, row and column sign 
changes are also needed. 

Type 2: A type-2 block with size m = 2n is clearly congruent to 

Type 3: We only consider odd-size blocks. Then, with m = 2n + 1, 
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Type 4: From the type-3 material above, it follows that type-4 blocks are 
congruent to 

From these considerations, it follows that a canonical form containing 
only type-l blocks with even size and type-2 blocks is congruent to 

If all the type-l blocks have positive sign, then the congruent transformation 
can be chosen to be a permutation matrix, and Q will then be positive 
semidefinite with rank equal to the number of type-l blocks. More generally, 
the congruence transformation will also include row and column sign changes, 
and the inertia of Q will correspond to the number of positive- and negative- 
signed blocks. 

If blocks of all types are allowed with the restriction that type-l blocks 
must have even size and type-3 blocks must have odd size and positive sign, 
then the above considerations show that the canonical form is congruent to 

where 

is positive semidefinite with rank equal to the number of type3 blocks. The 
congruent transformation is generally a permutation matrix with row and 
column sign changes. 
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APPENDIX C 

D. J. CLEMENTS AND K. GLOVER 

In this appendix, we complete the proof of the implication 1 + 2 in 
Theorem 5.1 for the case when 9(h) has poles on the real axis. 

Let us write 

\k(X) = [B*r-* I][ $ R”][ yB]> 
where r = XI - A. With the definitions 

A,=A+ BK, 

QK = Q + CK + PC* + K*RK, 

C,=C+ K*R, 

rK=AZ-A,, 

T,=(Z-KT-‘B)-‘, 

we have 

$((A) = T,pP(X)T, 

=TK*[B*r-* zl[c". ;][yqT, 

= B*r,-* I zI[i ";l[,y ,“I[: $yB] 
= B*r,-* E zl[ :; :I[ T;IIB]* 

Here we have used the identities 

(31) 

T-‘BT, = I?,-‘B, 

TK = Z + K&‘B. 
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we have the realization 

We choose K so that this realization of \kK(X) is minimal and so that \k,(h) 
has no real poles. Such a K always exists as follows. Since a minimal 
realization for ‘k(X) is given, we have [A, B] forming a controllable pair. We 
choose K so that A, has no real eigenvalues. It follows that \k,(A) has no 
real poles. We have no guarantee, though, that [L@‘~ - h2K ~8~1 has full 
row rank for all X. Let f(K) be a polynomial in the components of K such 
that f(K) = 0 if and only if [ dK - A.XK ~2~1 does not have full row rank 
for all X. Such a polynomial can be constructed from the minors of the 
controllability matrix. Stppose f(K) = 0. Since f(0) # 0, there exists in every 
neighborhood of K, a K such that f( Z?) # 0. For a small enough neighbor- 
hood of K, none of the poles of *i(h) will be real. Set K = Z?. 

Now, clearly qK(h) is positive semidefinite everywhere on the real axis. 
Thus its zero pencil 

0 A,-Xl B 

4*K-XZ QK CK 
B* cg R I 

has the required canonical form. However, this pencil is clearly congruent to 

0 A-XI B 
A*-XI Q C , 

B* C* R 1 
which is the zero pencil for q(X). Thus, this pencil must also have the same 

canonical form. This completes the proof. 
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APPENDIX D 

Proof of Lmmu 6.1. First, we prove the result for h not zero. Let 
X, = a/h. The given pencil is then congruent to 

[ 

0 0 A+& 
0 AH+pA pb (32) 

A+p& pb* M 1 
for some vector b and some real 8. 

From Lemma 4.1, the assumption of this lemma together with h + 0 is 
equivalent to the matrix 

0 0 h - A, 

0 AH-A -b 1 A-&, -b* -8 
(33) 

having an inertia of the form 

N+c-a, 

d+a, 

N 

for each real X, including X = CO. 
Clearly, for finite real h with h # X,, the inertia of h H - A is, from (33) 

and (34), equal to 

N+c-a, 

i i 

d+ax , 

iv 

(35) 

where g= N- 1. 
Now consider the case when X = X,, i.e., h, is real. Denote the inertia of 

X,H-Aby 

(36) 
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Then, by continuity of the eigenvalues of AH - A as a function of A, it 
follows from (35) that 

since aho = 0 in a neighborhood of X = A,. 
From (33) and (34), it follows that the inertia of 

X,H-A -b 

-b* -8 1 

(37) 

(38) 

equals 

i 

N+c-aA, 

d+aAo-1 

N I 
With a little algebra, it also follows that the inertia of (38) has the form 

where 

x+y+z=2, (41) 

x < 1, (42) 

2 < 1. (43) 

Thus, combining (39) and (40), we obtain 

N+c-aAo=a+x, (44) 

d+ah, -1=p-1+y, (45) 

N=y+z. (46) 
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From (37), (43) and (46) we obtain 

2 = 1, 

y = N. 

From (41), (42), and (43), we have two remaining possibilities to consider, 
viz., x = 0, y = 1 and x = 1, y = 0. Suppose x = 0, y = 1. Then, from (44) 
and (45), 

cu=(N-1)+c-(U,“_l), 

P=d+(a,“-1). 

This corresponds to the removal of one of the type-l blocks corresponding to 
the real eigenvalue h, and hence a reduction in the overall size of these 
type-l blocks. 

Next, suppose x = 1, y = 0. Then, again from (44) and (45), 

a=(N-l)fc-ax,, 

/3 = d + ax,. 

This does not entail removal of one of the type-l blocks corresponding to the 
real eigenvahre X,, but only a reduction in the overall size of these type-l 
blocks. 

Thus, altogether, the matrix X,H - A has inertia 

N+C-ti,” 

i i 

d+Z,“-1 , 

N 

where #=N-1 and tih,=ah, or aho- 1. 
Finally, we consider the case when h = co, i.e., we are interested in the 

inertia of H. However, since this corresponds to X = 1 and p = 0 in (32) it is 
clear that the inertia of H is 

so that Z, = c also. From Lemma 4.1, this completes the proof when h # 0. 
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Next, we prove the result when h = 0 but a # 0. In this case, it is clear 
that the given pencil is congruent to 

[& A;:” i] 

for some vector b and some real 8. 
This time, from Lemma 4.1, the assumption of the lemma is equivalent to 

the matrix 

0 0 -1 
0 AH-A Xb 

-1 hb* A8 I 
(47) 

having an inertia of the form 

for each real A, including A = co. From (47), it is clear that for all finite real 
A,theinertiaof XH-A is 

where N = N - 1. Thus, we need only consider the case X = co in detail. We 
show that the inertia of H is 

Denote the inertia of H by 
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First, we observe that for all real I_L < 0 and sufficiently small in magnitude, 
the inertia of H + PA equals the inertia of X H - A, where X = l/ 1~1, which 
in turn equals 

N-tC 

i i 

d . 
N 

Thus, by continuity of the eigenvahres of H + pA as a function of p, we 
obtain 

Treating the case /.L > 0 in a similar manner, we obtain 

so that combining the above gives 

Next, an argument identical to that used in the first part of the proof 
yields 

N=a+x, (50) 

d+c-l=P-lty, (51) 

N=y+z, (52) 
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where 

845 

r+y+z=2, (53) 

X<l, (54) 

z<l. (55) 

It follows from (49) (52) and (55) that z = 1 and y = z; from (48), (50), and 
(54) that x = 1 and (Y = N; and finally from (53) and (51) that y = 0 and 
p = d + c. From Lemma 4.1, this completes the proof when h = 0 and a # 0. 

Finally, it is clear from all the above that the numbers of type-3 and 
type4 blocks in the canonical form of XH + PA equal those in the canonical 

form of the originally given pencil. n 

The first author would like to thank the Department of Engineering at the 
University of Cambridge fm providing a pleasant environment during a study 
leave. He also acknowledges a conversation with Paul Van Dooren which 
eventually led to the use of the inertia ideas in the proofs. The original proofs 
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