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1. Introduction

The theory of function spaces is one of the most extensively studied areas of general topology, containing as a special
part of it, the problem of finding closure type properties of the function spaces and various covering properties of the initial
space dual to each other (see e.g. [1,4,6,9,12,14–17]). More recently, a discipline called Selection principles was developed
and at the beginning it dealt primarily with different sorts of open covers and selection hypothesis concerning them (see
[5,8,18]). Combining the two disciplines we find ourselves interested in trying to find closure type properties of function
spaces dual to those described by these selection principles when applied to certain open covers (see e.g. [11,12,14,13]). Of
course we could look at the problem the other way round. In this paper we are concerned with a selective variant of the
property of Reznichenko in function spaces, but unlike papers [12,13], we will examine its behavior when it is considered
as a bitopological property of function spaces endowed with the topology of pointwise convergence and the compact-open
topology. This was already done in [11] but only in the special case when the compact-open topology was with countable
tightness so Theorem 1.1 of this paper actually generalizes Theorem 4.3 of [11].

Before we proceed, a few words about the notation and the terminology which is mostly, up to some slight variations,
taken from [3]. a ⊆ b means that a is a subset of b whereas a ⊂ b means that a is a proper subset of b. N is the set of
positive integers. If τ is a topology on X and x ∈ X then Ωx(X, τ ) := {A ⊆ X \ {x}: x ∈ Clτ (A)}. All spaces are assumed to be
infinite Tychonoff.

The Reznichenko property of a space X was introduced in 1996 (at a seminar at the Moscow State University) as follows:
X has the Reznichenko property if for all A ⊆ X and x ∈ Cl(A) \ A there is a sequence (Bn: n ∈ N) of pairwise disjoint finite
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subsets of A such that for every open U � x the set {n ∈ N: Bn ∩ U = 0} is finite. It has been considered in the general case
in [10], in function spaces in [9,15,16], and in the context of hyperspaces in [7].

The definition of what could be called a selective bitopological version of the Reznichenko property was given in [11]:

we say that X is a selectively (τ1, τ2)-Reznichenko space at x ∈ X if τ1, τ2 are two topologies on X , with τ1 ⊇ τ2 and if for
each sequence (An: n ∈ N) of elements of Ωx(X, τ1) there is a sequence (Bn: n ∈ N) of pairwise disjoint sets such that
for each n ∈ N, Bn is a finite subset of An and such that for each τ2-neighborhood U of x, for all but finitely many n ∈ N

we have that U ∩ Bn 	= 0. If X is a selectively (τ1, τ2)-Reznichenko space at every x ∈ X then we just call it a selectively
(τ1, τ2)-Reznichenko space.

Now, we are interested (as it is very often practise) to characterize the selectively (τ1, τ2)-Reznichenko C(X) spaces, for
τ1 being the compact-open and τ2 the topology of pointwise convergence, using a suitable covering property of the space X .
To find the corresponding dual property we first modify the definition of the notion of an ω-shrinkable open cover which
was introduced it [15] for similar reasons:

we call a family U of open sets of X a k-shrinkable cover of X if there is a function f with dom( f ) = U such that for each
U ∈ U , f (U ) is a closed set with f (U ) ⊆ U and such that { f (U ): U ∈ U } is a k-cover of X . It is nontrivial if X /∈ U . As
already pointed out, this definition originates from [15] and combines the notion of an ω-shrinkable cover with the notion
of a k-cover (a family A of subsets of a space is a k-cover if each compact subset of the space in question is contained in a
member of A, see [2]).

It is convenient at this point to introduce one new sort of covers similar to the ones above (recall that functionally closed
subsets of a space X are inverse images of the set {0} under continuous real-valued functions defined on the space X ):

we shall call a family U of open sets of X a functionally k-shrinkable cover of X if there is a function f with dom( f ) = U
such that for each U ∈ U , f (U ) is a functionally closed set with f (U ) ⊆ U and such that { f (U ): U ∈ U } is a k-cover of X . It
is nontrivial if X /∈ U . The collection of all nontrivial functionally k-shrinkable covers of X will be denoted by Kshr ≡ Kshr(X).
It is pretty much obvious that for normal spaces, k-shrinkable and functionally k-shrinkable covers are the same thing.

For a space X by τk (τp) we will denote the compact-open (pointwise convergence) topology on C(X). o ∈ C(X) is
the constantly zero function. If we put O (S, ε) := { f ∈ C(X): f [S] ⊆ (−ε, ε)}, for S ⊆ X and ε > 0 a real number, then a
standard local base at o for the compact-open (pointwise convergence) topology is exactly the family of sets O (S, ε) where
S ranges over the compact (finite) subsets of X and ε over the positive real numbers. Ωk

o stands for Ωo(C(X), τk).
Now our result can be stated as follows:

Theorem 1.1. For a space X the following are equivalent:

(1) C(X) is a selectively (τk, τp)-Reznichenko space;
(2) for each sequence (Un: n ∈ N) of nontrivial k-shrinkable covers of the space X there is a sequence (Vn: n ∈ N), such that for each

n ∈ N, Vn is a finite subset of Un, n 	= m ⇒ Vn ∩ Vm = 0, and such that for each finite F ⊆ X, for all but finitely many n ∈ N there
is a U ∈ Vn with F ⊆ U .

We should prove this now, but before that we will reformulate the statement of the theorem in order to make it easier
to prove.

Let us say that X has the property P if for each sequence (Un: n ∈ N) of elements of Kshr there is a sequence (Vn:
n ∈ N), such that for each n ∈ N, Vn is a finite subset of Un , n 	= m ⇒ Vn ∩ Vm = 0, and such that for each finite F ⊆ X , for
all but finitely many n ∈ N there is a U ∈ Vn with F ⊆ U .

If a space X has the property P then it is clear that for each functionally k-shrinkable cover A there is a countable
B ⊆ A that is an ω-cover of X . In [11] it was shown that for each k-cover there is a functionally k-shrinkable cover refining
it. Thus for spaces with the property P for each k-cover A there is a countable ω-cover B ⊆ A. Using this fact it is not
difficult to verify that spaces with the property P are Lindelöf and therefore normal (recall that we assume all our spaces
to be Tychonoff). So for such spaces the classes of k-shrinkable and functionally k-shrinkable covers coincide. Also, the
property given by (2) of Theorem 1.1 is (formally) stronger than P . That is why the statement of our theorem is actually:

Theorem 1.2. For a space X the following are equivalent:

(1) C(X) is a selectively (τk, τp)-Reznichenko space,
(2) X has the covering property P ,

which is the formulation that we shall use when proving the result.
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2. The proof

Let us now establish some terminology and notation that will be needed for the proof.
We write x ⊥ y if neither x ⊆ y nor y ⊆ x holds. If a,b are finite sequences then len(a) is the length of a and a�b is the

finite sequence obtained by concatenation, that is, by adding b to a to the right.
For a set A and an a ∈ N we denote A y(a) := {n ∈ N: (a,n) ∈ A}. For a real-valued function f and a real number x > 0,

f ∗ x and f ∗x denote, respectively, the inverse image under f of the subsets (−x, x) and [−x, x] of the real line. If f is a
function then f |A will denote its restriction to A. A family (ai: i ∈ I) is inscribed in a family (bs: s ∈ S) if I = S and ai ⊆ bi

for each i ∈ I; (ai: i ∈ I) is a disjoint family if i 	= j ⇒ ai ∩ a j = 0.

(ai: i ∈ I) is:

– a cov-family if each ai is a finite set of subsets of X and for each finite F ⊆ X there is a finite T with i ∈ I \ T ⇒ ∃U ∈ ai

(F ⊆ U );
– a Rez-family if each ai is a finite subset of C(X) and for each finite F ⊆ X and each ε > 0 there is a finite T such that

i ∈ I \ T ⇒ ai ∩ O (F , ε) 	= 0.

Notice that, formally, finite families are both cov- and Rez-families.
A set A is bad if A ∈ Ωk

o and for each ε > 0 there is an f ∈ A with X ⊆ f ∗ ε.
If A ∈ Ωk

o is not bad then there must be a real number δ(A) with 1 > δ(A) > 0 such that X /∈ { f ∗ δ(A): f ∈ A}. This
way, for a fixed space X a function δ ≡ δX is defined and we shall refer to it in further text as a witnessing function on X .
Note that if B ⊆ A and B ∈ Ωk

o then B is also not bad.
Obviously, a space X has the property P iff for each family (Ui: i ∈ I) of elements of Kshr , with card(I) � ω, there is a

disjoint cov-family inscribed in it.
Similarly, C(X) is selectively (τk, τp)-Reznichenko iff for each family (Ai: i ∈ I) of elements of Ωk

o , with card(I) � ω,
there is a disjoint Rez-family inscribed in it.

For clearer understanding of the proof of Theorem 1.2 (i.e. Theorem 1.1) we will extract one part of it and present it in
form of a few preliminary lemmas.

The next lemma is a generalization of Lemma 3.3 of [11].

Lemma 2.1. If A ∈ Ωk
o and ε is a positive real number then there is a B ⊆ A and a function s : B → (0, ε) such that { f ∗ s( f ): f ∈ B}

is a functionally k-shrinkable cover of X .

Proof. Throughout the proof if Y ⊆ C(X) then Y will denote the closure of Y with respect to the compact-open topology.
Let o ∈ A \ A ⊆ Ck(X) and let ε be a positive real number. Suppose there is no pair (B, s) such that B ⊆ A, s : B → (0, ε)

and such that { f ∗ s( f ): f ∈ B} is a functionally k-shrinkable cover of X .
Let A1 := { f ∈ A: ∃r1, r2 ∈ (ε/2, ε) (r1 	= r2 and f ∗r1 = f ∗r2)}. Then for each f ∈ A1 there is an s( f ) ∈ (ε/2, ε) such that

f ∗ s( f ) is closed. Put U := { f ∗ s( f ): f ∈ A1}. If o ∈ A1 then U k-covers X (because ε/2 < s( f )). Letting g(U ) := U , U ∈ U
we produce a function confirming that U is functionally k-shrinkable, which is impossible. Thus, if we put A2 := A \ A1,
then o ∈ A2. Note that if f ∈ A2 and ε/2 � r1 < r2 < ε then f ∗ r1 ⊂ f ∗ r2.

Call (( fn, εn, ε′
n): n ∈ ω) an r-sequence if fn ∈ C(X), εn, ε′

n are reals with ε/2 � εn < ε′
n < ε, fn ∗ ε′

n ⊆ fn+1∗εn+1 and
n 	= m ⇒ fn 	= fm .

If M ⊆ C(X) we will call a family of triples (( f i, εi, ε
′
i): i ∈ I) a shr-family on M if: f i ∈ M , εi, ε

′
i are reals with 0 <

εi < ε′
i < ε, i 	= j ⇒ ( f i 	= f j and f i ∗ ε′

i 	= f j ∗ ε′
j) and { f i∗εi: i ∈ I} k-covers X . Note that for each such family, if L := { f i:

i ∈ I} ⊆ M , the function t : L → (0, ε), t( f i) := ε′
i is correctly defined, as well as the function g such that dom(g) = { f i ∗ ε′

i:
i ∈ I}, g( f i ∗ ε′

i) = f i∗εi . Then g witnesses that dom(g) ≡ { f ∗ t( f ): f ∈ L} is a functionally k-shrinkable cover. Thus, by the
assumption we made at the beginning of the proof of this lemma, there are no shr-families on A.

Claim 1. For each B ⊆ A2 with o ∈ B and each compact K ⊆ X there is an r-sequence (( fn, εn, ε′
n): n ∈ ω) such that fn ∈ B and

K ⊆ f0∗ε0 .

Proof of Claim 1. Put: B3 := { f ∈ B: for all r ∈ (ε/2, ε) and for each finite set T there are r0 ∈ (r, ε), r1 ∈ (ε/2, ε), g ∈ B \ T
such that f ∗ r0 = g ∗ r1};

B1 := { f ∈ B \ B3: ∃r0 ∈ (0, ε) ∀r ∈ (r0, ε) ∀r1 ∈ (ε/2, ε) ∀g ∈ B3 ( f ∗ r 	= g ∗ r1)}. B2 := B \ (B1 ∪ B3).
Then B = B1 ∪ B2 ∪ B3 and Bi ∩ B j = 0 ⇐ i 	= j. Note that:

(a) if f ∈ B1 ∪ B2 then there is a finite T ( f ) and an ε(1)( f ) ∈ (ε/2, ε) such that ∀r0 ∈ (ε(1)( f ), ε) ∀r1 ∈ (ε/2, ε) ∀g ∈ B
( f ∗ r0 = g ∗ r1 ⇒ g ∈ T ( f ));

(b) if f ∈ B1 there is an ε(2)( f ) ∈ (0, ε) such that ∀r ∈ (ε(2)( f ), ε) ∀r1 ∈ (ε/2, ε) ∀g ∈ B3 ( f ∗ r 	= g ∗ r1).
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List injectively B1 as ( fα: α < κ). We define inductively ((εα, ε′
α): α < κ) so that for each α < κ :

(Dα) max{ε/2, ε(2)( fα)} � εα < ε′
α < ε and fα ∗ ε′

α /∈ { fγ ∗ ε′
γ : γ < α}

holds.
Let ε0 := max{ε/2, ε(2)( f0)} and choose an ε′

0 ∈ (ε0, ε). Let β < κ and suppose we have constructed (εα, ε′
α) for all

α < β so that the conditions (Dα) hold for each α < β . We define εβ, ε′
β .

Let Sβ := {α < β: fα ∈ T ( fβ)} and εβ := max{ε/2, ε(2)( fβ), ε(1)( fβ)}. Then R := {r is a real number: εβ < r < ε and fβ ∗
r = fα ∗ ε′

α for an α ∈ Sβ} is finite (because Sβ is finite and fβ ∈ A2) so there is an ε′
β ∈ (εβ, ε) \ R . We verify (Dβ):

suppose there is an α < β with fα ∗ ε′
α = fβ ∗ ε′

β . As ε′
β ∈ (ε(1)( fβ), ε) and ε′

α ∈ (ε/2, ε) it follows from (a) that fα ∈ T ( fβ)

so α ∈ Sβ . Since εβ < ε′
β < ε, it must be that ε′

β ∈ R , a contradiction.

If { fα∗εα: α < κ} were to k-cover X the conditions (Dα), α < κ would imply that (( fα, εα, ε′
α): α < κ) is a shr-family

on A, which cannot be true as previously noted. Also, as εα � ε/2 for all α < κ we have that { fα ∗ ε/2: α < κ} does not
k-cover X , so o /∈ B1. Therefore o ∈ B2 ∪ B3. Choose any compact K ′ ⊆ X with K ′ ⊆ fα∗εα for no α < κ .

We now define an r-sequence ((hn, δn, δ′
n): n ∈ ω) so that hn ∈ B2 ∪ B3 and K ′ ∪ K ⊆ h0∗δ0.

As o ∈ B2 ∪ B3 there is a g ∈ B2 ∪ B3 with K ′ ∪ K ⊆ g ∗ ε/2. Let h0 := g , δ0 := ε/2 and choose a δ′
0 ∈ (δ0, ε).

Given (hk, δk, δ
′
k), k ∈ n + 1, so that

(Ln) for each k, j ∈ n + 1: ε/2 � δk < δ′
k < ε, hk ∈ B2 ∪ B3 and k 	= j ⇒ hk 	= h j , and for each k ∈ n: hk ∗ δ′

k ⊆ hk+1∗δk+1,

we define hn+1, δn+1δ
′
n+1.

Case 1: hn ∈ B3. If so there are r ∈ (δ′
n, ε), l ∈ (ε/2, ε) and a q ∈ B \ {hi: i ∈ n + 1} such that hn ∗ r = q ∗ l.

We first show that q /∈ B1. Suppose to the contrary that q ∈ B1. Then ∃α < κ (q = fα). K ′ ⊆ h0∗δ0 ⊆ hn∗δn ⊆ hn ∗ r =
q∗ l = fα ∗ l and ¬(K ′ ⊆ fα∗εα) imply εα < l. Also, ε > l > εα � ε(2)( fα) so, by (b), fα ∗ l 	= t ∗x whenever t ∈ B3, x ∈ (ε/2, ε).
But fα ∗ l = hn ∗ r, hn ∈ B3 and r ∈ (ε/2, ε), a contradiction.

Therefore q ∈ B2 ∪ B3. We put hn+1 := q, δn+1 := l and pick a δ′
n+1 ∈ (δn+1, ε). We have hn+1 = q /∈ {hi: i ∈ n + 1}, by

construction, and hn ∗ δ′
n ⊆ hn ∗ r = q ∗ l = hn+1 ∗ δn+1 ⊆ hn+1∗δn+1. Thus, (Ln+1) is satisfied.

Case 2: hn ∈ B2. Now there are c ∈ (δ′
n, ε), d ∈ (ε/2, ε) and a w ∈ B3 such that hn ∗ c = w ∗ d. As w ∈ B3 there are

c′ ∈ (d, ε), d′ ∈ (ε/2, ε) and a p ∈ B \ {hi: i ∈ n + 1} such that w ∗ c′ = p ∗d′ . As before: K ′ ⊆ h0∗δ0 ⊆ hn∗δn ⊆ hn ∗ c = w ∗d ⊆
w ∗ c′ = p ∗ d′ and p = fα for an α < κ imply ε > d′ > ε(2)( fα), thus p ∗ d′ 	= t ∗ x for any t ∈ B3, x ∈ (ε/2, ε), contradicting
the fact that p ∗d′ = w ∗ c′ , w ∈ B3, c′ ∈ (ε/2, ε). Therefore p ∈ B2 ∪ B3, so we let hn+1 := p, δn+1 := d′ and we take arbitrary
δ′

n+1 ∈ (δn+1, ε). Again, hn+1 = p /∈ {hi: i ∈ n + 1} and hn ∗ δ′
n ⊆ hn ∗ c ⊆ p ∗ d′ = hn+1 ∗ δn+1 ⊆ hn+1∗δn+1. (Ln+1) is satisfied.

Clearly ((hn, δn, δ′
n): n ∈ ω) is the required r-sequence. �

We now get back to proving the lemma. Enumerate all compact subsets of X as (Kα: α < μ). We shall define inductively
r-sequences (( fα,n, εα,n, ε′

α,n): n ∈ ω) for α < μ, so that for each β < μ:

(Cβ) ∀α1,α2 � β ∀n,m ∈ ω ((α1,n) 	= (α2,m) ⇒ ( fα1,n 	= fα2,m and fα1,n ∗ ε′
α1,n 	= fα2,m ∗ ε′

α2,m)) and Kβ ⊆ fβ,0∗εβ,0.

Let, in accordance with Claim 1, (( f0,n, ε0,n, ε′
0,n): n ∈ ω) be an r-sequence with K0 ⊆ f0,0∗ε0,0, f0,n ∈ A2. n 	= m ⇒

f0,n 	= f0,m by the very definition of r-sequences, and f0,n ∗ ε′
0,n ⊆ f0,n+1∗ε0,n+1 ⊂ f0,n+1 ∗ ε′

0,n+1 (because f0,n+1 ∈ A2 and
ε/2 � ε0,n+1 < ε′

0,n+1 < ε). Thus f0,n ∗ ε′
0,n ⊂ f0,n+1 ∗ ε′

0,n+1 ⊆ f0,m ∗ ε′
0,m for m > n, so (C0) is satisfied.

Let β < μ and suppose (( fα,n, εα,n, ε′
α,n): n ∈ ω) have been constructed for all α < β so that the conditions

(Cα), α < β , are satisfied. { fα,n∗εα,n: (α,n) ∈ β × ω} cannot k-cover X since otherwise, as (Cα) holds for all α < β ,
{( fα,n, εα,n, ε′

α,n): (α,n) ∈ β × ω} would be a shr-family on A, which is impossible. Thus there is a compact K ′
β ⊆ X with

K ′
β ⊆ fα,n∗εα,n for no (α,n) ∈ β × ω. Since fα,n ∗ ε′

α,n ⊆ fα,n+1∗εα,n+1, we must also have that K ′
β ⊆ fα,n ∗ ε′

α,n for no
(α,n) ∈ β × ω. As ε/2 � εα,n this also means that { fα,n: (α,n) ∈ β × ω} ∩ O (K ′

β, ε/2) = 0. Letting B ≡ O (K ′
β, ε/2) ∩ A2 and

K ≡ Kβ in Claim 1 we get an r-sequence (( fβ,n, εβ,n, ε′
β,n): n ∈ ω) with fβ,n ∈ O (K ′

β, ε/2) ∩ A2, Kβ ⊆ fβ,0∗εβ,0. We check
(Cβ):

By the definition of r-sequence we have that n 	= m ⇒ fβ,n 	= fβ,m . If α < β then fα,n /∈ O (K ′
β, ε/2) and fβ,m ∈

O (K ′
β, ε/2) so again fα,n 	= fβ,m .

Now, fβ,n ∗ ε′
β,n ⊆ fβ,n+1∗εβ,n+1 ⊂ fβ,n+1 ∗ ε′

β,n+1 ⊆ fβ,m ∗ ε′
β,m for m > n (because fβ,n+1 ∈ A2 and ε/2 � εβ,n+1 <

ε′
β,n+1 < ε), so fβ,n ∗ ε′

β,n 	= fβ,m ∗ ε′
β,m when n 	= m. If α < β then ¬(K ′

β ⊆ fα,n ∗ ε′
α,n). But K ′

β ⊆ fβ,m ∗ ε/2 ⊆ fβ,m ∗ ε′
β,m ,

so again, fα,n ∗ ε′
α,n 	= fβ,m ∗ ε′

β,m .
This, along with (Cα), α < β , guarantees (Cβ).
Having finished the construction, we see that, by virtue of (Cα), α < μ, {( fα,n, εα,n, ε′

α,n): (α,n) ∈ μ×ω} is a shr-family
on A, a contradiction. �
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It is easy to see that we could actually have B = A in the lemma above since by adding functionally open sets to a
functionally k-shrinkable cover of a Tychonoff space we end up also with a functionally k-shrinkable cover.

Also, let us note that if A ∈ Ωk
o is not bad and ε � δ(A) then, using the notation of the previous lemma, { f ∗ s( f ): f ∈ B}

is a nontrivial functionally k-shrinkable cover of X .

Lemma 2.2. Let X have the property P , E ⊆ N and let (Yn: n ∈ E) be a family of not bad elements of Ωk
o . If there exists a bijection

f : E → L × N, for an L ⊆ N, such that:

(i) if (k,n), (m, s) ∈ L × N and k 	= m then Ck,n ∩ Cm,s = 0;
(ii) if k ∈ L and n,m ∈ N then Ck,m = Ck,n,

where Cn,m = Y f −1(n,m) for each (n,m) ∈ L × N, then there is a disjoint Rez-family inscribed in (An: n ∈ E).

Proof. If a family (Bn,m: (n,m) ∈ L × N) of not bad elements of Ωk
o satisfies (i) and (ii) of this lemma we shall call it an

L-matrix. Thus, we actually need to show that in each L-matrix we can inscribe a disjoint Rez-family.

Claim 1. For each L-matrix (An,m: (n,m) ∈ L × N) and each ε > 0 there is an L-matrix (Bn,m: (n,m) ∈ L × N) inscribed in it and a
family (Dn,m: (n,m) ∈ L × N) such that:

Dn,m ⊆ An,m \ Bn,m for each (n,m) ∈ L × N;
Dn,m ∩ Dk,s = 0 whenever (n,m), (k, s) ∈ L × N and (n,m) 	= (k, s);

for each finite F ⊆ X there is a finite T such that if (n,m) ∈ (L × N) \ T then Dn,m ∩ O (F , ε) 	= 0.

Proof of Claim 1. We can of course suppose that 0 < ε < 1.
By Lemma 2.1, for each A ∈ Ωk

0 and each ε > 0 there is a function g(A, ε), with dom(g(A, ε)) ⊆ A, ran(g(A, ε)) ⊆ (0, ε),
such that U (A, ε) := { f ∗ g(A, ε)( f ): f ∈ dom(g(A, ε))} is a functionally k-shrinkable cover. Choose any witnessing function
δ on X .

Apply P to the family (U (An,m, εδ(An,m)): (n,m) ∈ L ×N) so as to obtain a cov-family (Hn,m: (n,m) ∈ L ×N) inscribed in
it. Find finite Pn,m ⊆ An,m such that Hn,m = {h ∗ g(An,m, εδ(An,m))(h): h ∈ Pn,m}. It is not difficult to see that if (n,m) 	= (k, s)
then Pn,m ∩ Pk,s = 0. For each n ∈ L put Q n := An,1 \ ⋃

m∈N
Pn,m .

Fix an n ∈ L. o is in the τk-closure of at least one of the sets Rn,1 := Q n ∪ (
⋃

m∈N
Pn,2m−1) and Rn,2 := Q n ∪ (

⋃
m∈N

Pn,2m)

because An,1 = Rn,1 ∪ Rn,2. If Rn,1 ∈ Ωk
o then let Bn,m := Rn,1 and Dn,m := Pn,2m for each m ∈ N. If this is not the case then

Rn,2 ∈ Ωk
o so let Bn,m := Rn,2 and Dn,m := Pn,2m−1 for each m ∈ N. It is an easy task to see that the families (Bn,m: (n,m) ∈

L × N) and (Dn,m: (n,m) ∈ L × N) are as required. �
Given an L-matrix (Bn,m: (n,m) ∈ L × N), put B1

n,m := Bn,m and use Claim 1 to obtain an L-matrix (B2
n,m: (n,m) ∈ L × N)

inscribed in it and a family (D1
n,m: (n,m) ∈ L × N) such that: D1

n,m ⊆ B1
n,m \ B2

n,m; D1
n,m ∩ D1

k,s = 0 whenever (n,m) 	= (k, s);

for each finite F ⊆ X there is a finite T (F ,1) such that if (n,m) ∈ (L × N) \ T (F ,1) then D1
n,m ∩ O (F ,1) 	= 0.

Suppose L-matrices (Bl
n,m: (n,m) ∈ L × N), for 1 � l � l0, and families (Ds

n,m: (n,m) ∈ L × N), for 1 � s < l0, have been
constructed so that the inductive hypothesis:

Ds
n,m ⊆ Bs

n,m \ Bs+1
n,m ; Bs+1

n,m ⊆ Bs
n,m for each 1 � s < l0; for each finite F ⊆ X and each 1 � s < l0 there is a finite T (F , s) with

∀(n,m) ∈ (L × N) \ T (F , s) (Ds
n,m ∩ O (F ,1/s) 	= 0)

holds. We apply Claim 1, with 1/l0 playing the role of ε, to (Bl0
n,m: (n,m) ∈ L × N) so as to produce Bl0+1

n,m , Dl0
n,m and finite

sets T (F , l0), F ∈ [N]<ω , in such a way that the inductive hypothesis is satisfied.
Having finished the construction we have that:

∀(n,m) ∈ (L × N) \ T (F , s) (Ds
n,m ∩ O (F ,1/s) 	= 0) for each finite F ⊆ X and each s ∈ N; if (s,n,m) 	= (s′,n′,m′) then Ds

n,m ∩
Ds′

n′,m′ = 0; Ds
n,m ⊆ Bn,m , for each s ∈ N.

Define finite sets Hn,m := (
⋃n

s=1 Ds
n,m) ∪ (

⋃{D j
n,i: i, j ∈ N, j > n and ( j − n) + i = m}). As D j

n,i ⊆ Bn,i = Bn,m , each Hn,m

is a finite subset of Bn,m . We show that (Hn,m: (n,m) ∈ L × N) is the required disjoint Rez-family.
First for disjointness. Let n1,n2 ∈ L, m1,m2 ∈ N. For k = 1,2 put

ak := {
(s, j, i) ∈ N × L × N: ( j = nk) ∧ (

(i = mk ∧ 1 � s � nk) ∨ (s > nk ∧ s + i = mk + nk)
)}

.

Then Hn ,m = ⋃{Ds : (s, j, i) ∈ ak}, k = 1,2. If (n1,m1) 	= (n2,m2) then a1 ∩ a2 = 0 so Hn1,m1 ∩ Hn2,m2 = 0, too.
k k j,i
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To show that (Hn,m: (n,m) ∈ L × N) is a Rez-family consider a finite F ⊆ X and an ε > 0. Take an s0 > 1/ε. We have

(n,m) ∈ (L × N) \ T (F , s0) ⇒ Ds0
n,m ∩ O (F ,1/s0) 	= 0.

There is an n0 ∈ N, n0 � s0, such that if m ∈ N and n � n0 then (n,m) /∈ T (F , s0). For each k ∈ N with 1 � k < n0 there is an
pk ∈ N such that (k,m) /∈ T (F , s0), for all m � pk . Put m0 := max

⋃
1�k<n0

{pk, pk + s0 − k}. Obviously T (F , s0) ∩ (N × N) ⊆
n0 × m0. Let (n,m) ∈ (L × N) \ (n0 × m0).

Case 1: s0 � n. As obviously (n,m) /∈ T (F , s0) we have 0 	= Ds0
n,m ∩ O (F ,1/s0). But Ds0

n,m ⊆ ⋃n
j=1 D j

n,m ⊆ Hn,m so Hn,m ∩
O (F , ε) 	= 0.

Case 2: n < s0. As now n < n0, we have m � m0 � pn, pn + s0 − n. Thus, for i := m − (s0 − n), i � pn so (n, i) /∈ T (F , s0)

and Ds0
n,i ∩ O (F ,1/s0) 	= 0. As s0 −n + i = m and s0 > n we have Ds0

n,i ⊆ ⋃{Ds
n, j: s > n and s −n + j = m} ⊆ Hn,m . Thus, once

again Hn,m ∩ O (F , ε) 	= 0. �
A particular trivial consequence of the previous lemma that we will need at some point on is formulated as follows.

Lemma 2.3. Let X have the property P , E ⊆ N and let (An: n ∈ E) be a family of not bad elements of Ωk
o . If there exists a bijection

f : E → L, for an L ⊆ N × N, such that:

(i) for each n ∈ N the set L y(n) is finite;
(ii) if (k,n), (m, s) ∈ L and k 	= m then Bk,n ∩ Bm,s = 0;

(iii) if (k,n), (k,m) ∈ L then Bk,m = Bk,n,

where Bn,m = A f −1(n,m) for each (n,m) ∈ L, then there is a disjoint Rez-family inscribed in (An: n ∈ E).

Proof. If m,n ∈ N such that L y(n) 	= 0, then choose a k ∈ L y(n) and put Bn,m := Bn,k . Denoting L0 := {n ∈ N: L y(n) 	= 0},
we have just defined an L0-matrix, in terms of Lemma 2.2, so by that the same lemma there is a disjoint Rez-family
( Jn,m: (n,m) ∈ L0 × N) inscribed in (Bn,m: (n,m) ∈ L0 × N). Then ( J f (n): n ∈ E) is the desired disjoint Rez-family. �
Lemma 2.4. Let X have the property P , E ⊆ N and let (An: n ∈ E) be a family of elements of Ωk

o . If there exists a bijection f : E →
L × N, for an L ⊆ N, such that:

(i) if n ∈ L and k, l ∈ N then k < l ⇒ Bn,k ⊇ Bn,l;
(ii) if n ∈ L then

⋂
k∈N

Bn,k = 0,

where Bn,m = A f −1(n,m) for each (n,m) ∈ L × N, then there is a disjoint Rez-family inscribed in (An: n ∈ E).

Proof. We prove there is a disjoint Rez-family inscribed in (Bn,m: (n,m) ∈ L × N).
L1 := {n ∈ L: for each m ∈ N the set Bn,m is bad}; L2 := L \ L1. If n ∈ L2 then there is an sn ∈ N such that ∀m ∈ N (m �

sn ⇒ Bn,m is not bad). For n ∈ L2, m ∈ N put Fn,m := Bn,sn+m ⊆ Bn,m . Then none of the sets Fn,m , (n,m) ∈ L2 × N, is bad.
(A) Fix functions g, U and δ as in Lemma 2.2. For each n ∈ N apply the property P to the family (U (Fm,k, δ(Fm,k)/n) ×

(m,k) ∈ L2 ×N) so as to get a disjoint cov-family (Hn
m,k: (m,k) ∈ L2 ×N) inscribed in it. Find finite Hn

m,k ⊆ Fm,k ⊆ Bm,k with
Hn

m,k = { f ∗ g(Fm,k, δ(Fm,k)/n)( f ): f ∈ Hn
m,k}.

Let Cm,k := ⋃m+k
i=1 Hi

m,k ⊆ Bm,k for each (m,k) ∈ L2 × N.
We show that (Cm,k(m,k) ∈ L2 × N) is a Rez-family. For a finite M ⊆ X and an ε > 0 fix an n0 > 1/ε and a finite set T

such that if (m,k) ∈ (L2 × N) \ T then ∃U ∈ Hn0
m,k (M ⊆ U ), i.e. Hn0

m,k ∩ O (M, ε) 	= 0. Set Tx := {n ∈ L2: ∃m ∈ N ((n,m) ∈ T )},
T y := {m ∈ N: ∃n ∈ L2 ((n,m) ∈ T )}. As Tx and T y are clearly finite, there is an m0 ∈ N, m0 > n0 such that Tx ∪ T y ⊆ m0. Let
(m,k) ∈ (L2 × N) \ (m0 × m0).

If k < m0 then m � m0 so m /∈ Tx and (m,k) /∈ T . Thus Hn0
m,k ∩ O (M, ε) 	= 0. But m � m0 > n0 so Hn0

m,k ⊆ ⋃m+k
i=1 Hi

m,k = Cm,k
and Cm,k ∩ O (M, ε) 	= 0.

If m < m0 then k � m0 > n0 so, again, Hn0
m,k ⊆ ⋃m+k

i=1 Hi
m,k = Cm,k , (m,k) /∈ T and consequently Hn0

m,k ∩ O (M, ε) 	= 0, i.e.
Cm,k ∩ O (M, ε) 	= 0.

(B) If (n,m) ∈ L1 × N choose a hn,m ∈ Bn,m with X ⊆ hn,m ∗ (1/(n + m)) and set Cn,m := {hn,m}.
We show that (Cn,m: (n,m) ∈ L1 × N) is a Rez-family. If (n,m) ∈ (L1 × N) \ (k × k), for a k ∈ N, then m � k or n � k, so

hn,m[X] ⊆ (−1/(m + n),1/(m + n)) ⊆ (−1/k,1/k), i.e. hn,m ∈ O (M,1/k) for arbitrary finite M ⊆ X .
(C) Obviously, by what we have shown, (Cn,m: (n,m) ∈ L × N) is a Rez-family inscribed in (Bn,m: (n,m) ∈ L × N). We

now proceed towards a disjoint Rez-family inscribed in it.
Fix a bijection v : N → L × N. Let D1 := Cv(1) ⊆ B v(1) and m1,k1 ∈ N such that (m1,k1) = v(1). Suppose finite sets

D1, . . . , Dl have been constructed along with (mi,ki) ∈ L × N, i = 1, l so that Di = Cmi ,ki ⊆ B v(i) and so that i 	= j ⇒ Di ∩
D j = 0. Let v(l + 1) = (a,b) ∈ L × N. D ′ := ⋃l

i=1 Di is a finite set,
⋂

s∈N
Ba,s = 0, Ba,s ⊇ Ba,s+1 so there must be a kl+1 � b
l
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with D ′
l ∩ Ba,kl+1 = 0. Put ml+1 := a and Dl+1 := Cml+1,kl+1 ⊆ Ba,kl+1 ⊆ Ba,b = B v(l+1) (because kl+1 � b). Clearly Di ∩ D j =

0 ⇐ i 	= j for i, j � l + 1.
Having finished this construction we let Gn,m := D v−1(n,m) ⊆ B v(v−1(n,m)) = Bn,m . The Gn,m-s obviously form a disjoint

family of finite sets because the sets Dn do. Fix a finite M ⊆ X and an ε > 0. There is a finite set T such that if (n,m) ∈
(L × N) \ T then Cn,m ∩ O (M, ε) 	= 0. As i 	= j ⇒ (mi,ki) 	= (m j,k j) (because Di 	= D j ) there is an i0 ∈ N such that if i � i0
then (mi,ki) /∈ T . Put P := {v(i): 1 � i < i0}. P is a finite set.

Let (n, l) ∈ (L × N) \ P . For i := v−1(n, l) we have i � i0 (since (n, l) /∈ P ), thus (mi,ki) /∈ T . Therefore Cmi ,ki ∩ O (M, ε) 	= 0.
But Gn,l = Di = Cmi ,ki so Gn,l ∩ O (M, ε) 	= 0. Thus, (Gn,m: (n,m) ∈ L × N) is the required disjoint Rez-family inscribed in
(Bn,m: (n,m) ∈ L × N). �

Now we are able to prove our result.

Proof of Theorem 1.2. (or Theorem 1.1) Let F be a family of subsets of an infinite set Z such that 0 /∈ Z , Z ∈ F , x∪ y ∈ F ⇒
(x ∈ F ∨ y ∈ F ), and let (An: n ∈ N) be a sequence of elements of F . Put A0 := Z , p(0) := 0, B(0) := Z and if B(i) ∈ F ,
p(i) ∈ N

<ω , i ∈ n + 1 have been defined define p(n + 1), B(n + 1) as follows (in the sequel (x) denotes the finite sequence
f : 1 → {x} of length 1):

There is a (and for definiteness we could choose the greatest such) in+1 ∈ n + 1 such that An+1 \ ⋃n
j=in+1+1 B( j) ∈

F , An+1 \ ⋃n
j=in+1

B( j) /∈ F . Let Sn+1 := {k ∈ N: p(in+1)
�(k) ∈ {p( j): j = in+1,n}}, kn+1 := max Sn+1 + 1 (where we take

max 0 = 0) and set p(n + 1) := p(in+1)
�(kn+1), B(n + 1) := B(in+1) ∩ (An+1 \ ⋃n

j=in+1+1 B( j))(∈ F ). When n,m ∈ N, m > n

then by “
⋃n

i=m(· · ·)” we mean the empty set.
We show that:

(1.n) if s ∈ N
<ω and s ⊂ p(n) then there is a m < n with s = p(m);

(2.n) if k,m � n then p(k) ⊆ p(m) ⇒ B(k) ⊇ B(m);
(3.n) if k < m � n then p(k) 	= p(m);
(4.n) if m,k � n then p(m) ⊥ p(k) ⇒ B(m) ∩ B(k) = 0.

hold for each n ∈ ω.
Obviously (i.0) are satisfied. Suppose that (i, j) holds for all j � n and i = 1,4.
s ⊂ p(n + 1) ⇒ s ⊆ p(in+1), by construction. in+1 � n so (1.in+1) holds. Therefore: either s = p(in+1) or s ⊂ p(in+1) and

s = p(m) for an m < in+1. Thus, (1.n + 1) holds.
To check (3.n + 1) fix a v � n. If v = 0 then p(v) = 0 	= p(n + 1) by construction. Let v � 1. Suppose p(v) = p(n + 1).

Then p(v) = p(in+1)
�(kn+1), p(v) = p(iv )�(kv ) so p(iv ) = p(in+1). But in+1 < n +1, iv < v so iv , in+1 � n and we have that

(3.n) holds. Hence iv = in+1. Now, in+1 < v � n and p(in+1)
�(kn+1) = p(v) ∈ {p( j): in+1 � j � n}, so kn+1 ∈ Sn+1, which is

impossible because kn+1 = max Sn+1 + 1. This means that p(v) 	= p(n + 1) in the first place, so, having in mind (3.i), i � n,
we are done.

Now for (2.n + 1). Let v � n.

Case 1: p(v) ⊆ p(n + 1). By (3.n + 1), p(v) ⊂ p(n + 1), so p(v) ⊆ p(in+1). Then by (2.n), B(v) ⊇ B(in+1). But B(in+1) ⊇
B(n + 1), by construction, so finally B(v) ⊇ B(n + 1).

Case 2: p(n + 1) ⊆ p(v). By (1.v) there is an m � v with p(n + 1) = p(m), which contradicts (3.n + 1).
Finally, we show (4.n + 1). First note that if 0 < m < m0, im = im0 then B(m) ∩ B(m0) = 0: as m > im this follows from

B(m0) ⊆ Am0 \ ⋃m0−1
j=im0 +1 B( j) and B(m) ⊆ ⋃m0−1

j=im0 +1 B( j). Now let p(r1) ⊥ p(r2) for some r1, r2 � n + 1. There are s ∈ N
<ω

and l1 	= l2 such that s�(l j) ⊆ p(r j), j = 1,2. By (1.r1) and (1.r2) there are m j � r j , j = 1,2 such that p(m j) = s�(l j). Then,
as clearly m1,m2 > 0, s = p(im1 ) = p(im2 ), so by (3.n + 1), im1 = im2 . p(m1) 	= p(m2) implies m1 	= m2. Hence, by our earlier
observation, B(m1) ∩ B(m2) = 0. By (2.n + 1) B(r j) ⊆ B(m j) so, finally, B(r1) ∩ B(r2) = 0.

Put T r := {p(i): i ∈ N} and Br := {l ∈ ω
N: ∀k ∈ N (l|k ∈ T r)}. Choose a well-order <0 of T r ∪ Br. Fix an n ∈ N.

If there is an s ∈ T r with p(n) ⊆ s, such that s ⊂ p(m) for no m ∈ N then let b(n) be the <0-least such s. In this case we
shall say that n is of type 1 and define tp(n) := 1. Set C(n) := ∩{B(k): p(k) ⊆ b(n)}(≡ B(p−1(b(n)))).

If n is not of type 1 but there is an l ∈ Br with p(n) ⊆ l such that ∩{B(k): p(k) ⊆ l} ∈ F then let b(n) be the <0-least
such l. In this case we shall say that n is of type 2 and define tp(n) := 2. Set C(n) := ∩{B(k): p(k) ⊆ b(n)}.

If n is neither of type 1 nor 2 then for all l ∈ Br such that p(n) ⊆ l we have ∩{B(k): p(k) ⊆ l} /∈ F . Let b(n) be the
<0-least such l. In this case we shall say that n is of type 3 and define tp(n) := 3. Set C(n) := B(n) \ ⋂{B(k): p(k) ⊆ b(n)}.

Note that C(n) ∈ F , C(n) ⊆ B(n) for all n ∈ N.
We show:

(1) if p(n) ⊆ p(m) ⊆ b(n) then tp(n) = tp(m) and b(n) = b(m).

Indeed, as clearly p(k1) ⊆ b(k2) ⇒ tp(k1) � tp(k2), if p(n) ⊆ p(m) ⊆ b(n) then both p(n) ⊆ b(m) (because p(m) ⊆ b(m))
and p(m) ⊆ b(n) hold, so tp(n) = tp(m) and then trivially, b(n) = b(m).
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Put P := {n ∈ N: len(p(n)) = min{len(p(m)): m ∈ N and b(m) = b(n)}}. Fix an n ∈ N, n ∈ {s ∈ N: b(s) = b(n)} 	= 0, so there
exists a positive integer en = min{len(p(s)) : b(s) = b(n)}. If b(m) = b(l) = b(n) and len(p(m)) = len(p(l)), then p(m) = p(l)
(because p(m) and p(l) are ⊆-comparable), thus, by the conditions (3.i), m = l. Hence, there is exactly one q(n) ∈ N such
that b(q(n)) = b(n) and len(p(q(n))) = en . Clearly q(n) ∈ P . This way a function q : N → P is defined so that:

(2) b(q(n)) = b(n), tp(q(n)) = tp(n), p(q(n)) ⊆ p(n) and n ∈ P ⇒ q(n) = n.

which is not difficult to see.

Claim 1. The following hold:

(3) b(n) = b(m) ⇒ q(m) = q(n);
(4) if n,k ∈ P and not both n and k are of type 3 then n 	= k ⇒ C(n) ∩ C(k) = 0;
(5) if tp(n) ∈ {1,2} and q(a) = q(d) = n then C(a) = C(d);
(6) if b(n) = b(m) and p(n) ⊆ p(m) then C(m) ⊆ C(n);
(7) tp(n) ∈ {1,2} ⇒ C(q(n)) = C(n).

Proof of Claim 1.

(3) We have that len(p(q(m))) = min{len(p(k)) : b(k) = b(m)} = len(p(q(n))), because b(m) = b(n). But p(q(m)) and p(q(n))

are ⊆-comparable as they both are subsets of b(q(m)) = b(m) = b(n) = b(q(n)) (here we bear in mind (2)), so p(q(m)) =
p(q(n)) and finally, q(m) = q(n) since p is a one-to-one function.

(4) For definiteness, let tp(n) ∈ {1,2}. If p(n) ⊥ p(k) then, by (4.i), B(n) ∩ B(k) = 0 so also C(n) ∩ C(m) = 0. Thus it remains
to consider the following two cases:
Case 1: p(n) ⊆ p(k). If p(n) ⊆ p(k) ⊆ b(n) then, by (1), b(n) = b(k), so q(n) = q(k) by (3). But n,k ∈ P and consequently
q(n) = n 	= k = q(k), a contradiction. Thus there must be an s ∈ N such that p(n) ⊆ p(s) ⊆ b(n), p(s) ⊥ p(k). Then
C(s) ∩ C(k) = 0. But tp(n) ∈ {1,2}, so C(n) = ⋂{B(l) : p(l) ⊆ b(n)} = ⋂{B(l) : p(l) ⊆ b(s)} = C(s) (note that, by (1),
b(n) = b(s) and tp(s) = tp(n) ∈ {1,2}).
Case 2: p(k) ⊆ p(n). Then tp(k) � tp(n), so tp(k) ∈ {1,2} and this is in fact Case 1.

(5) By (2) we have b(a) = b(n) = b(d) and tp(a) = tp(d) = tp(n) ∈ {1,2}. Hence C(a) = ⋂{B(l) : p(l) ⊆ b(a)} = ⋂{B(l) : p(l) ⊆
b(d)} = C(d).

(6) By (3) we have q(n) = q(m) = k so, by (2) tp(n) = tp(m) = tp(k), thus by (5), we only need to consider the case
tp(n) = tp(m) = 3. But then:

C(n) = B(n) \
⋂{

B(l) : p(l) ⊆ b(n)
}
,

C(m) = B(m) \
⋂{

B(l) : p(l) ⊆ b(m)
} = B(m) \

⋂{
B(l) : p(l) ⊆ b(n)

}
,

B(m) ⊆ B(n)
(
by (2.i) because p(n) ⊆ p(m)

)
,

so C(m) ⊆ C(n).
(7) q(n) ∈ P so, by (2), q(q(n)) = q(n). tp(q(n)) = tp(n) ∈ {1,2}, also by (2), so we can use (5) to conclude C(q(n)) =

C(n). �
Proof of (2) ⇒ (1). Let (An: n ∈ N) be a sequence of elements of Ωk

o . Letting F := Ωk
o , Z := C(X) \ {o} in the discussion

above we obtain functions p, B,b, C, tp,q and a set P as described there.
Set:

T0 := {
n ∈ N: tp(n) ∈ {1,2} and C(n) is bad

};
Ti := {

n ∈ N: tp(n) = i and C(n) is not bad
}
, i = 1,2;

T3 := {
n ∈ N: tp(n) = 3

};
Pi := P ∩ Ti, i ∈ {1,2,3};
f (n) := (

q(n),1 + len
(

p(n)
) − len

(
p
(
q(n)

)))
,

f : N → P × N and f i := f |Ti, i ∈ {1,2,3}.

Claim 2.

(8) f is injective;
(9) ran( f i) ⊆ Pi × N for i ∈ {1,2,3};

(10) ran( f i) = Pi × N for i ∈ {2,3}.
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Proof of Claim 2.

(8) If f (n) = f (m) then q(n) = q(m) =: k and len(p(n))− len(p(k))+ 1 = len(p(m))− len(p(k))+ 1 so len(p(n)) = len(p(m)).
Also b(n) = b(q(n)) = b(q(m)) = b(m) = b(k) and p(n), p(m) ⊆ b(k). Thus, as ⊆-comparable finite sequences of equal
length, p(n) = p(m), i.e. n = m.

(9) Let i ∈ {1,2,3}.
If n ∈ Ti then k := q(n) ∈ P , tp(q(n)) = tp(n) = i. If i = 3 it follows that k ∈ T3, so k ∈ P3 and f3(n) ∈ P3 × N. If i ∈ {1,2}
then q(n) = k = q(k), tp(k) ∈ {1,2} so, by (5), C(k) = C(n) is not bad. Again k ∈ Pi and f i(n) ∈ Pi × N. Therefore
ran( f i) ⊆ Pi × N.

(10) By (9) we only need to prove Pi × N ⊆ ran( f i). Let i ∈ {2,3} and fix a (n,m) ∈ Pi × N, i ∈ {2,3}, implies b(n) ∈ Br so
t := b(n)|(m − 1 + len(p(n)))) ∈ T r and len(t) = m − 1 + len(p(n)). Thus there is an s ∈ N with t = p(s). As len(t) �
len(p(n)) and t, p(n) ⊆ b(n) we have p(n) ⊆ p(s) ⊆ b(n). Hence, by (1) and (3), q(s) = q(n) = n (remember that n ∈ P ).
Finally, len(p(s)) − len(p(q(s))) + 1 = len(t) − len(p(n)) + 1 = m. Therefore f i(s) = (n,m). �

Put Rn,m := C( f −1(n,m)), (n,m) ∈ ran( f ).
(I) Let F1 := {C(n): n ∈ T1}, L := ran( f1). As, by (8), f1 : T1 → L ⊆ P1 × N ⊆ N × N is bijective we check the conditions

of Lemma 2.3.

(i) Let (a,d) ∈ L. There is an n ∈ T1 such that q(n) = a and d = len(p(n)) − len(p(a)) + 1. tp(n) = 1 so b(a) = b(q(n)) =
b(n) ∈ T r and, since p(n) ⊆ b(n), len(p(n)) � len(b(n)). Therefore d � len(b(a)) − len(p(a)) + 1 =: la . Thus L y(a) ⊆ la + 1
so L y(a) is finite.

(ii) Let (n,m), (k, l) ∈ L, n 	= k. Denote a := f −1(n,m), d := f −1(k, l). q(a) = n so by (2), b(a) = b(n) and p(a) ⊇ p(n). Thus,
by (6), C(a) ⊆ C(n). Similarly C(d) ⊆ C(k). But n,k ∈ P1, n 	= k so, by (4), C(n) ∩ C(k) = 0. Hence, finally, Rn,m ∩ Rk,l = 0.

(iii) Let (n,m), (n, l) ∈ L. a := f −1(n,m), d := f −1(n, l). q(a) = q(d) = n so, by (5), C(a) = C(d), i.e. Rn,m = Rn,l .

Now, by Lemma 2.3 there is a disjoint Rez-family (D(n): n ∈ T1) inscribed in F1.
(II) Let F2 := {C(n): n ∈ T2}. By (8) and (10), f2 : T2 → P2 × N is bijective and the remaining conditions of Lemma 2.2

can be verified exactly as it was done for Lemma 2.3 in (I). Thus there is a disjoint Rez-family (D(n): n ∈ T2) inscribed
in F2.

(III) Let F3 := {C(n): n ∈ T3}. As, by (8) and (10), f3 : T3 → P3 × N is bijective we check the conditions of Lemma 2.4.
Fix an n ∈ P3. For each m ∈ N there is an am ∈ T3 such that f (am) = (n,m). As Rn,m = C(am) we need to check whether⋂

m∈N
C(am) = 0 holds. q(am) = n for all m ∈ N, so by (2), b(am) = b(n) and p(n) ⊆ p(am) ⊆ b(n). Also, m = len(p(am)) −

len(p(n)) + 1, so limm→∞ len(p(am)) = +∞. Fix an l0 with p(l0) ⊆ b(n). As p(am) ⊆ b(n) and limm→∞ len(p(am)) = +∞,
there is an m0 with p(l0) ⊆ p(am0 ). Therefore by (2.i), B(am0 ) ⊆ B(l0). But then

⋂
m∈N

C(am) ⊆ C(am0 ) = B(am0 ) \ ⋂{B(s) :
p(s) ⊆ b(n)} ⊆ B(l0) \ ⋂{B(s) : p(s) ⊆ b(n)}. As l0 with p(l0) ⊆ b(n) was arbitrary we have that

⋂
m∈N

C(am) ⊆ ⋂{B(l) \⋂{B(s) : p(s) ⊆ b(n)} : p(l) ⊆ b(n)} = 0.
Let now n ∈ P3 and k, l ∈ N, k < l. For a := f −1

3 (n,k), d := f −1
3 (n, l) we have q(a) = q(d) = n, k = len(p(a)) − len(p(n)) + 1

and l = len(p(d)) − len(p(n)) + 1. Thus, len(p(a)) < len(p(d)) and, by (2), b(a) = b(d) = b(n). This implies p(a), p(d) ⊆ b(n)

and p(a) ⊆ p(d), i.e. by the conditions (2.i), B(a) ⊇ B(d). But C(a) = B(a) \ ⋂{B(s) : p(s) ⊆ b(a)}, C(d) = B(d) \ ⋂{B(s) :
p(s) ⊆ b(d)} and b(a) = b(d), so C(d) ⊆ C(a), i.e. Rn,l ⊆ Rn,k .

So, we can use Lemma 2.4 to find a disjoint Rez-family (D(n): n ∈ T3) inscribed in F3.
(IV) To each pair (A,n), where A is bad and n ∈ N assign a w(A,n) ∈ A with w(A,n)[X] ⊆ (−1/n,1/n), in such a way

that n 	= m ⇒ w(A,n) 	= w(A,m). If n ∈ T0 put hn := w(C(n),n) and D(n) := {hn}. Obviously D(n) ⊆ C(n).
We show that (D(n): n ∈ T0) is a disjoint family. Let n,m ∈ T0, n 	= m. If q(n) = q(m) then, by (2) tp(q(n)) = tp(n) ∈ {1,2},

so by (5) C(n) = C(m) =: G . Thus hn = w(C(n),n) = w(G,n) 	= w(G,m) = w(C(m),m) = hm , by the definition of the function
w , so D(n) ∩ D(m) = 0. If q(n) 	= q(m) then by (4) C(q(n)) ∩ C(q(m)) = 0. But D(n) ⊆ C(n) = C(q(n)) and D(m) ⊆ C(m) =
C(q(m)), by (7), so again D(n) ∩ D(m) = 0.

We show that it is a Rez-family. Fix an n0 ∈ N. If n ∈ T0 \ n0 then w(C(n),n)[X] ⊆ (−1/n,1/n) ⊆ (−1/n0,1/n0), i.e.
hn ∈ O (F , ε) for any finite F ⊆ X and any ε � 1/n0.

(V) To see that (D(n): n ∈ N) is the required disjoint Rez-sequence inscribed in (An: n ∈ N) (because D(n) ⊆ C(n) ⊆
B(n) ⊆ An) we only need to show that D(n) ∩ D(m) = 0 for n ∈ Ti , m ∈ T j , i 	= j.

As clearly not both n and m are of type 3 neither are both q(n) and q(m) of that type. Using (2) and (6) we get
C(n) ⊆ C(q(n)), C(m) ⊆ C(q(m)). Thus if q(n) 	= q(m) the assertion follows directly from (4) and D(n) ⊆ C(n), D(m) ⊆ C(m).

If on the other hand q(n) = q(m) then tp(n) = tp(m) =: a. This implies a ∈ {1,2}. But then C(n) = C(m), by (7). Hence
i = j, so this case is not possible.

Proof of (1) ⇒ (2). Throughout the proof by h← S we will denote the inverse image of a set S under a function h.
Let (An: n ∈ N) be a sequence of elements of Kshr . If in the discussion at the beginning of the proof of this theorem we

let F := Kshr and let Z be the family of all nontrivial open subsets of X , we obtain p, B,b, C, tp, P ,q as described there.
Let U be any nontrivial functionally k-shrinkable open cover of X and L a function such that for each U ∈ U , L(U ) ⊆ U ,

L(U ) is functionally closed and such that {L(V ): V ∈ U } is a k-cover of X . List injectively the compact subsets of X as
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(Fα: α < μ). Choose a U0 ∈ U with F0 ⊆ L(U0) and a f0 ∈ C(X) with f0[L(U0)] ⊆ {0}, f0[X \ U0] ⊆ {1}. If (Uβ, fβ) have
been defined for all β < α, so that fβ ∈ C(X), Fβ ⊆ L(Uβ) ⊆ f ←

β {0}, X \ Uβ ⊆ f ←
β {1} and for all β1 < β2 < α fβ1 	= fβ2 ,

Uβ1 	= Uβ2 , proceed the recursive definition as follows:

if { f ←
β {0}: β < α} k-covers X then we are over; if { f ←

β {0}: β < α} does not k-cover X take a compact Tα ⊆ X with
Tα ⊆ f ←

β {0} for no β < α, a Uα ∈ U with Tα ∪ Fα ⊆ L(Uα) and a fα ∈ C(X) such that L(Uα) ⊆ f ←
α {0}, X \ Uα ⊆ f ←

α {1}; it
is clear that fα 	= fβ for all β < α and also, for each β < α we must have that Uα 	= Uβ because otherwise Tα ⊆ L(Uα) =
L(Uβ) ⊆ f ←

β {0} for a β < α, which is impossible. Having finished this recursive definition there is a β0 � μ such that
{ f ←

β {0}: β < β0} k-covers X and such that for each β1 < β2 < β0 Uβ1 	= Uβ2 , fβ1 	= fβ2 . Therefore, the function gU such that
∀β < β0 (gU (Uβ) = fβ) and dom(gU ) = {Uβ : β < β0} ⊆ U is correctly defined. For gU the following hold: dom(gU ) ⊆ U ,
ran(gU ) ⊆ C(X), {gU (U )←{0}: U ∈ dom(gU )} k-covers X and X \ U ⊆ gU (U )←{1} for all U ∈ dom(gU ). Clearly o ∈ ran(gU )

with respect to the compact-open topology and as X /∈ U , ran(gU ) does not contain the function o.

For each U ∈ Kshr choose a function gU as described above. Apply the selectively (τk, τp)-Reznichenko property to the
family (ran(gC(n)): n ∈ N) so as to obtain a disjoint Rez-family (Dn: n ∈ N) inscribed in it. Find finite Dn ⊆ C(n) with
Dn = {gC(n)(U ): U ∈ Dn}. Define H(n), n ∈ N, recursively as follows.

Let H(1) := D1.
If tp(n) ∈ {1,2} then H(n) := Dn ⊆ C(n). Suppose now tp(n) = 3. Let m, s ∈ N be arbitrary with p(n) ⊆ p(s) ⊆ p(m) ⊆ b(n).

Then tp(m) = tp(s) = tp(n) = 3, b(m) = b(s) = b(n) (by (1)) and B(m) ⊆ B(s). So C(m) = B(m) \ ⋂{B(k) : p(k) ⊆ b(m)} ⊆
B(s) \ ⋂{B(k) : p(k) ⊆ b(s)} = C(s). Further,

⋂{C(i) : p(n) ⊆ p(i) ⊆ b(n)} = ⋂{B(i) \ ⋂{B(k) : p(k) ⊆ b(i)} : p(n) ⊆ p(i) ⊆
b(n)} = ⋂{B(i) \ ⋂{B(k) : p(n) ⊆ p(k) ⊆ b(n)} : p(n) ⊆ p(i) ⊆ b(n)} = ⋂{B(i) : p(n) ⊆ p(i) ⊆ b(n)} \ ⋂{B(k) : p(n) ⊆ p(k) ⊆
b(n)} = 0. To sum up, {C(i) : p(n) ⊆ p(i) ⊆ b(n)} can be viewed as a decreasing sequence of sets with an empty intersection,
so

⋃n−1
i=1 H(i) being finite (since all the sets H(i), 1 � i < n are), there must be a ln ∈ N with p(n) ⊆ p(ln) ⊆ b(n), such that

(
⋃n−1

i=1 H(i))∩ C(ln) = 0 (thus (
⋃n−1

i=1 H(i))∩ Dln = 0 also). Put H(n) := Dln ⊆ C(ln) ⊆ C(n). Notice that in this case (tp(n) = 3)
we have that H(n) ∩ H(i) = 0, 1 � i < n, by the construction. �

We check the disjointness of (H(n): n ∈ N). Let n,m ∈ N, n < m. If tp(m) = 3 then by the construction H(n) ∩ H(m) = 0.
So let tp(m) ∈ {1,2}.

If q(n) 	= q(m) then, as by (2) tp(q(m)) = tp(m), we can use (4) to deduce C(q(m)) ∩ C(q(n)) = 0. But H(m) ⊆ C(m) ⊆
C(q(m)) and H(n) ⊆ C(n) ⊆ C(q(n)), thus H(n) ∩ H(m) = 0.

Now, let q(m) = q(n). Then by (2), tp(n) = tp(q(n)) = tp(q(m)) = tp(m) ∈ {1,2}. Therefore C(n) = C(m) (by (5)) and
H(n) = Dn , H(m) = Dm (by the construction of the H(i)-s as {tp(m), tp(n)} ⊆ {1,2}). Suppose now there is a U ∈ H(n) ∩
H(m). Then gC(n)(U ) = gC(m)(U ) would be in Dn ∩ Dm , which is impossible.

That (H(n): n ∈ N) is a cov-family follows from the fact that there is an injective v : N → N with H(n) = D v(n) and the
fact that (Dn: n ∈ N) is a cov-family which can be established in the following way:

fix a finite F ⊆ X . As (Dn: n ∈ N) is a Rez-family there is an n0 ∈ N with ∀n � n0 (Dn ∩ O (F ,1) 	= 0). Thus if n � n0 there is
a U ∈ Dn with gC(n)(U ) ∈ O (F ,1), which, in view of X \ U ⊆ gC(n)(U )←{1}, implies F ⊆ U . �
References
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